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ABSTRACT

We consider the chain ladder reserving method in a Bayesian set up, which
allows for combining the information from a specific claims development tri-
angle with the information from a collective. That is, for instance, to consider
simultaneously own company specific data and industry-wide data to estimate
the own company’s claims reserves. We derive Bayesian estimators and credi-
bility estimators within this Bayesian framework. We show that the credibility
estimators are exact Bayesian in the case of the exponential dispersion family
with its natural conjugate priors. Finally, we make the link to the classical chain
ladder method and we show that using non-informative priors we arrive at the
classical chain ladder forecasts. However, the estimates for the mean square error
of prediction differ in our Bayesian set up from the ones found in the literature.
Hence, the paper also throws a new light upon the estimator of the mean
square error of prediction of the classical chain ladder forecasts and suggests
a new estimator in the chain ladder method.
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1. INTRODUCTION

Claims reserving is one of the basic actuarial tasks in the insurance industry.
Based on observed claims development figures (complete or incomplete devel-
opment triangles or trapezoids) actuaries have to predict the ultimate claim
amount for different lines of business as well as for the whole insurance port-
folio. They are often confronted with the problem that the observed develop-
ment figures within a given loss development triangle heavily fluctuate due to
random fluctuations and a scarce data base. This makes it difficult to make a
reliable forecast for the ultimate claim. In such situations, actuaries often rely
on industry-wide development patterns rather than on the observed company
data. The question then arises, when and to what extent should one rely on the
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industry-wide data. A similar question arises when considering different lines
of business. If the data of a line of business is too scarce, one typically con-
siders the development pattern of other similar lines of business. Here, again,
the question occurs how much should one rely on the claims experience of
other similar lines of business and how much weight should one give to the
observations of the individual line under consideration.

The mathematical tool to answer such kind of questions is credibility theory.
The point is that besides the specific claims development triangle there are also
other sources of information available (so-called collective information such as
the development pattern of industry-wide data, the development figures of
other “similar” lines of business or expert opinion), which may tell something
about the future development of the claims of the specific claims development
triangle in question. Credibility theory allows for modelling such situations
and gives an answer to the question of how to combine specific and collective
claims information to get a best estimate of the specific ultimate claim amount.

In claims reserving, various models and methods are found in the literature,
for an overview we refer to England and Verrall [5] and Wüthrich and Merz [21].
In the following we concentrate on the chain ladder reserving method which
is still one of the best known and most popular method in the insurance prac-
tice. However, the basic idea of this paper, namely to consider a Bayesian set
up and to use credibility techniques for estimating the ultimate claim amount
can be transformed to any other claims reserving method.

2. CLASSICAL CHAIN LADDER

Assume that Ci, j denotes the total cumulative claim of accident year i ! {0,… , I }
at the end of development period j ! {0, …, J}. Without loss of generality, we
assume that the development period is one year. Usually, Ci, j denotes either
cumulative claims payments or claims incurred, but it could also be another
quantity like, for instance, the number of reported claims. We assume that the
claims development ends at development year J and that therefore Ci,J is the
total ultimate claim amount of accident year i. Throughout this paper, Ci, j is
referred to as claim of accident year i at the end of development year j and
Ci,J as the ultimate claim. The exact definition of “claim” depends on the sit-
uation and on the claims data considered (cumulative payments or claims
incurred). At time I we have observations (upper left trapezoid) 

DI = {Ci, j : 0 # i # I, 0 # j # J, i + j # I }, (2.1)

and the random variables Ci, j need to be predicted for i + j > I. In particular,
we want to predict for each accident year i the ultimate claim Ci,J and the out-
standing loss liabilities (if Ci, j refers to payments)

Ri = Ci,J – Ci,I – i . (2.2)
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We define for j = 0,1, …, J

Cj = (C0, j, C1, j, …, CI – j, j )�, (2.3)

the column vectors of the observed trapezoid DI, and for k # I – j

j .S ,
k

i j
i

k

0

=
=

C!5 ? (2.4)

The chain ladder method was originally understood as a deterministic algo-
rithm for setting claims reserves without having an underlying stochastic model
in mind. The basic assumption behind the chain ladder method is that successive
column vectors {Ci, j : i = 0,1, …,I} for j = 0, …, J are, up to random fluctua-
tions, proportional to each other, i.e.

Ci, j +1 - fj Ci, j (2.5)

for appropriate constants fj > 0. These factors fj are called chain ladder factors,
development factors or age-to-age factors. The chain ladder algorithm is such
that at time I the random variables Ci,k for k > I – i are predicted by the chain
ladder forecasts 

,i k ,C C ,
CL

i I i j
j I i

k 1

= -
= -

-

f% (2.6)

where 
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j 1+
.

S

S
j I j

I j

1

1

=
- -

- -

f 5
5

?
?

(2.7)

Thus the ultimate claim Ci,J is predicted by Ci,J
CL and the chain ladder reserve

of accident year i at time I is 

Ri
CL = Ci,J

CL – Ci,I – i. (2.8)

Remark:

• To be strict, (2.8) is the chain ladder reserve for a cumulative payments tri-
angle or trapezoid. For incurred claims, the chain ladder reserve is 

Ri
CL = Ci,J

CL – Ci,I – i
paid

(2.9)
= (Ci,J

CL – Ci,I – i) + (Ci,I – i – Ci,I – i
paid ),
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i.e. we have to add the difference between the incurred claims Ci,I – i and the
cumulative payments Ci,I – i

paid . Both are known at time I, i.e. the difference
between (2.9) and (2.8) is a known constant, which has no impact on the
reserving problem and the associated uncertainty. Without loss of generality
we therefore just consider the reserves as defined in (2.8).

It is the merit of Mack [10] to have formulated the stochastic model underly-
ing the chain ladder method. Mack’s model relies on the following model
assumptions:

Model Assumptions 2.1. (Mack’s chain ladder model)

M1 Random variables Ci, j belonging to different accident years i ! {0,1, …,I}
are independent.

M2 There exist constants fj > 0 and sj
2 > 0, such that for all i ! {0,1, …,I} and

for all j = 0,1,…, J –1 we have

E [Ci, j+1 | Ci,0,Ci,1,…, Ci, j ] = fj Ci, j , (2.10) 

Var[Ci, j+1 | Ci,0,Ci,1,…, Ci, j ] = sj
2Ci, j . (2.11)

Note that Mack’s model is a distribution-free model making only assumptions
on the conditional first and second moments.

The advantage of an underlying stochastic model is that it does not only
yield a point estimate for the ultimate claim but that it also allows for estimating
the standard error of the chain ladder prediction. A formula for estimating
the mean square error of prediction was derived in Mack [10]. This formula
was the subject of discussions and of further investigations for example in
Barnett and Zehnwirth [1], Buchwalder et al. [2], Mack et al. [13], Gisler [6]
and Venter [17].

In the literature, one finds also other stochastic models leading to the chain
ladder forecasts given by (2.6) and (2.7), in particular the (overdispersed) Pois-
son model with maximum likelihood estimators leads also to the chain ladder
reserves. More details on these models and a comparison of other models related
to the chain ladder method can be found in Mack [9], England and Verrall [5],
Mack and Venter [12], Hess and Schmidt [7], and Mack [11]. However, in our
opinion, Mack’s model reflects best the very idea behind chain ladder method.

In this paper we introduce a Bayesian chain ladder model, which is the
Bayesian counterpart to Mack’s model. We will see later that under certain con-
ditions and by using non-informative priors, the chain ladder forecasts in the
Bayesian model are the same as in the classical chain ladder model. However,
the estimators of the mean square error of prediction are different to the ones
given in Mack [10]. Moreover, we would like to remark that the Bayesian model
considered in this paper is different to the Bayesian models considered for the
increments Di, j = Ci, j – Ci, j –1 in Verrall [18] and [19]
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In the sequel it is useful to define for j = 0, …, J

Bj = {Ci, k ; i + k # I, k # j} 1 DI , (2.12)

which is the set of observations up to development period j at time I. It is con-
venient to switch from the random variables Ci, j to the random variables Yi, j

(individual development factors) defined by

Yi, j = .
,

,

i j

i j 1+

C
C

(2.13)

Without loss of generality we assume in (2.13) that Ci, j > 0. If Ci, j = 0 then the
process stops, which is also the case in Mack’s model, because then E [Ci, j+1 |
Ci, j = 0] = 0 and Var [Ci, j +1 |Ci, j = 0] = 0. Analogously, for j = 0,1,…, J – 1, we
denote by 

Yj = (Y0, j,Y1, j , …,YI – j – 1, j )�,

the column vectors of the observed Y-trapezoid and by 

yj = (y0, j, y1, j , …, yI – j – 1, j )�

a realization of Yj. The chain ladder assumptions (2.10) and (2.11) are then
equivalent to

E [Yi, j | Ci,0,Ci,1,…, Ci, j ] = fj , (2.14) 

Var[Yi, j | Ci,0,Ci,1,…, Ci, j ] =
js

,i j

2

C . (2.15)

In the chain ladder methodology and in the underlying stochastic chain lad-
der model of Mack, only the individual data of a specific claims development
triangle or claims development trapezoid are considered and modelled. In this
paper we also want to make use of prior information or of portfolio information
from other “similar” risks, from which we can possibly learn something about
the unknown claims development pattern of the considered specific claims
data. To do this, we have to consider the chain ladder methodology in a
Bayesian set up. This is described in the next section.

3. BAYES CHAIN LADDER

In the Bayesian chain ladder set up, the unknown chain ladder factors fj ,
j = 0,1, …, J – 1, are assumed to be realizations of independent positive, real
valued random variables Fj . We denote by 
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F = (F0, F1, …, FJ–1)�

the random vector of the Fj’s and by 

f = ( f0, f1, …, fJ–1)�

a realization of F. In the Bayes chain ladder model it is assumed that condi-
tionally, given F, the chain ladder Model Assumptions 2.1 are fulfilled.

Model Assumptions 3.1. (Bayes chain ladder)

B1 Conditionally, given F, the random variables Ci, j belonging to different acci-
dent years i ! {0,1, …, I } are independent.

B2 Conditionally, given F and {Ci,0, Ci,1, …,Ci, j}, the conditional distribution of
Yi, j only depends on Fj and Ci, j , and it holds that 

E [Yi, j | F, Ci,0,Ci,1,…, Ci, j ] = Fj , (3.1) 

Var[Yi, j | F, Ci,0,Ci,1,…, Ci, j ] =
j js

,i j

2

C
F_ i

. (3.2)

B3 {F0, F1,…, FJ–1} are independent and positive.

Remarks:

• The conditional expected value of Yi, j, given F and {Ci,0, Ci,1, …,Ci, j}, depends
only on the unknown chain ladder factor Fj and not on the chain ladder fac-
tors Fk of other development years k ! j.

• In (3.2) Ci, j plays the role of a weight function, i.e. the conditional variance
of Yi, j , given F and {Ci,0, Ci,1, …,Ci, j }, is inversely proportional to Ci, j .
Note that the nominator of (3.2) may depend on Fj .

• Of course, the unconditional distribution of F does not depend on DI . The
distributions of the Fj’s are often called structural function.

• We define 

j

j 1+
,

S

S
j I j

I j

1

1

=
- -

- -

F 5
5

?
?

which is the estimator of the chain ladder factor fj in the classical chain lad-
der model (see (2.7)). Then it follows from Model Assumptions 3.1 that 

j j, ,E F j=F B F8 B (3.3)

j

j
j

j
j, .

S
Var F

s
I j 1=

- -

2

F B
F_ i8 5B ? (3.4)
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• Conditionally, given F, {Ci, j : j = 0,1,…, J} possess the Markov property,
i.e. the conditional distribution of Ci, j +1 given {Ci, k : k = 0,1, …, j} depends
only on the last observation Ci, j and not on the observations Ci,k for k < j.
This is a slightly stronger assumption than assumption M2 of Mack (Model
Assumptions 2.1), where only the conditional first and second moments and
not the whole conditional distribution depends on the last observation Ci, j .

• Conditionally, given F,

{Yi, j : j = 0,1, …, J – 1} are uncorrelated and (3.5)

Yi, j and Yk, l are independent for i ! k. (3.6)

(3.5) is a well known result from Mack [10]. Note however, that the Yi, j in (3.5)
are only uncorrelated but not independent (see Mack et al. [13]).

• It is sometimes convenient to consider the increments 

Di, j+1 = Ci, j+1 – Ci, j

and to define the incremental chain ladder factors Fj and the corresponding
incremental observations Yi, j by 

Yi, j = +D

,

,

i j

i j 1

C = Yi, j – 1, (3.7)

Fj = Fj – 1. (3.8)

The Bayes chain ladder conditions can also be written in terms of Yi, j and
Fj instead of Yi, j and Fj and are exactly the same as Model Assumptions 3.1
if we replace Yi, j, Fj and F by Yi, j, Fj and F

~
, respectively.

• Our goal is to find best predictors of Ci, j for i + j > I, given the observations DI .

In the Bayesian framework it is assumed that the distribution of the data (Yi, j)
given F as well as the distributions of the Fj’s are specified. Then Bayes’ theo-
rem allows for the calculation of the posterior distribution of F given the data.
The next theorem gives the result for this calculation. In practice, the condi-
tional distribution of the data given F as well as the prior distributions of
the Fj’s are mostly unknown. What can be done in such cases is the subject
of Section 4.

Theorem 3.2. Under Model Assumptions 3.1 it holds that a posteriori, given the
observations DI, the random variables F0, F1, …, FJ – 1 are independent with pos-
terior distribution given by (3.11).

Remark:

• Because of (3.7), Theorem 3.2 holds also true for F0, F1, …, FJ – 1.
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Proof of Theorem 3.2.

To simplify notation, we use in the remainder of this section the following ter-
minology: for j = 0,1, …, J – 1, the distribution functions of the random vari-
ables Fj are denoted by U( fj ), i.e. we use the same capital U for different dis-
tribution functions and the argument fj in U( fj ) says that it is the distribution
function of Fj . Analogously, we denote the conditional distribution of the
data, given Fj = fj or F = f, by Ffi

( .) and Ff ( .), respectively. For instance,
Ffj

(yi, j |Bj) is the conditional distribution of Yi, j, given Fj = fj and given Bj .
From Model Assumptions 3.1 follows that

dFf (y0, …, yJ – 1 | B0) = d
i

I j

j

J

0

1

0

1

=

- -

=

-

%% Ffj
(yi, j |Ci, j), (3.9)

where Ci, j = yi, j – 1Ci, j – 1 for j $ 1. For the joint posterior distribution of F given
the observations DI we find

(3.10)
jf j

j

I

I

,...,

,

dU f dF y dU

dU

, ,J
i

I j

i j i j
j

J

j

J

0 1
0

1

0

1

0

1

"

"

-
=

- -

=

-

=

-

CD

D

f

f

f %%

%

^ _ _
_

h i i
i

* 4
(3.11)

which completes the proof of the theorem. ¡

Remark:

• Note that the conditional distribution of Fj , given DI, depends only on Yj

and Cj, where Ci, j , i = 0, …, I – j play the role of weights because of the
variance condition Var[Yi, j |Ci,0,…,Ci, j, Fj ] = sj

2(Fj ) /Ci, j . Indeed, the ran-
dom variables Yi, j are the only ones in the Y-trapezoid containing informa-
tion on Fj.

Next we derive the Bayes predictor of the ultimate claim Ci, J.

Definition 3.3. A predictor Z of some random variable Z is said to be better or
equal than a predictor Z if

2 2
.Z ZE Z E Z#- -` _j i: :D D (3.12)

Definition 3.3 means that we use the expected quadratic loss as optimization
criterion.

The following result is a well known result from Bayesian statistics.
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Theorem 3.4. Let Z be an unknown random variable and X a random vector of
observations. Then the best predictor of Z based on X is 

.Z E Z XBayes
= 6 @ (3.13)

Remark:

• ZBayes also minimizes the conditional quadratic loss, i.e.

2
.arg min ZZ E Z X

Z

Bayes
= -` j: D (3.14)

Let Ci, J be a predictor of the ultimate claim Ci, J based on the observations DI .

Definition 3.5. The conditional mean square error of prediction of Ci, J is defined
by

i i I .mse E, , ,J J i J
2

= - C DC C` `j j: D (3.15)

Denote by 

Ri = Ci, J – Ci, I – i (3.16)

the corresponding claims reserves estimate. Then, note that 

i i i I .R Rmse mse E R, J i
2

= = - DC` ` `j j j: D (3.17)

From (3.14) follows that 

Ci, J
Bayes = E [Ci, J |DI ] (3.18)

is the best estimator minimizing the conditional mean square error of predic-
tion (3.15).

Theorem 3.6. Under Model Assumptions 3.1 we have 

j,i JC C F,
Bayes

i I i
Bayes

j I i

J 1

= -
= -

-

% (3.19)

for J > I – i, where Fj
Bayes denotes the Bayes estimator of Fj .

Remarks:

• The corresponding claims reserves estimate is given by 

Ri
Bayes = Ci, J

Bayes – Ci, I – i .

CREDIBILITY FOR THE CHAIN LADDER RESERVING METHOD 573

https://doi.org/10.2143/AST.38.2.2033354 Published online by Cambridge University Press

https://doi.org/10.2143/AST.38.2.2033354


• If we consider the incremental chain ladder factors Fj , we obtain from (3.7),
that 

Fj
Bayes = Fj

Bayes – 1,

and hence 

j,i J .FC C 1,
Bayes

i I i
Bayes

j I i

J 1

= +-
= -

-

% a k

Proof of Theorem 3.6.

From the posterior independency of the Fj , given DI, (see Theorem 3.2) follows
that Yi, j , j = I – i, …, J – 1, are also conditionally uncorrelated. Thus we obtain 

j
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I I

I

,i J
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¡

Next we want to find a formula for the mean square error of prediction of Ri
Bayes,

which is the same as the mean square error of prediction of Ci, J
Bayes. Because

of the general property 

Var [X ] = E [Var [X |Y ]] + Var [E [X |Y ]]

it holds that 

I

I I

I I

, ,

,

i J i J

i J

,

, .

mse C E C

E

E C E

Var F

F

,

,

,

Bayes Bayes
i J

i J

Bayes
i J

2

2

= -

=

+ -

C

C

C

D

D D

D D

` `

`

j j

j

;
78

7;

E
A B

A E
(3.20)

In the classical approach of Mack [10] the first term corresponds to the process
error and the second to the estimation error. Here, this picture is not so clear
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any more. Since F is a random vector, the first term is some kind of an “average”
process error (averaged over the set of possible values of F) and the second term
is some kind of an “average” estimation error.

J 1-J 1-

I I

I

I

, , ,

, ,

, .

E

E

C F

Var Var

Var

Var

F F F

F F

Fs
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_

^

i
i

h

7 8
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A B
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A
(3.21)

By iterating (3.21) we obtain

J 1-k 1+I, .C F FVar F s, ,i J i I i I i k k
k I i

J

1
2

1
2 2g g= - - -

= -

-

FC D F F! ^ h7 A (3.22)

Formula (3.22) is the same as the formula found by Mack [10], which is not
surprising, since conditionally on F, the chain ladder model assumptions of
Mack are fulfilled. The next step however differs, because the Fj’s are now
random. From (3.22) and since the Fj are conditionally independent, given DI ,
we obtain for the “average” process error

m n

I I

I I

,

.

E

C F E E F

Var F

s

,

,

i J

i I i
Bayes

k
n k

J

m I i
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k I i
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2 2

1

111

=

-
= +

-

= -

-

= -

-

F

C D D

D D%%!

_
^

i
h

8
9 9

B
C C) 3 (3.23)

The “average” estimation error of Ci, J
Bayes is given by (using the posterior inde-

pendence again) 

j j

j

,

,

i I i

i I i

-

-

I I I I
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,i J ,
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V
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A E B* 4
(3.24)

From (3.20), (3.23) and (3.24) follows immediately the following result:

Theorem 3.7. The conditional mean square error of prediction of the Bayesian
claims reserves of accident year i is given by

I i-
B

, ,i I i i I i- -

I,i i J

I i- ,

mse R E C

C CG D

,
Bayes Bayes

i J

2

2

= -

= +

C D` `j j; E
(3.25)
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where

I i- m nI I ,F E E FsG Bayes
k

n k

J

m I i

k

k I i

J
2 2

1

111

=
= +

-

= -

-

= -

-

F D D%%! ^ h9 9C C) 3 (3.26)

j
B

II i- .VarD
j I i

J 1

=
= -

-

DF%
J

L
KK

N

P
OO (3.27)

4. CREDIBILITY FOR CHAIN LADDER

In the Bayesian set up, the best predictor of the ultimate claim Ci, J is 

j,i J .C C F,
Bayes

i I i
Bayes

j I i

J 1

= -
= -

-

% (4.1)

However, to calculate Fj
Bayes one needs to know the distributions of the Fj as

well as the conditional distributions of the Ci, j, given F. These distributions are
usually unknown in the insurance practice. The advantage of credibility the-
ory is that one needs to know only the first and second moments. It is assumed
that these first and second moments exist and are finite for all considered random
variables. Given a portfolio of similar risks, these moments can be estimated from
the portfolio data. For the results of credibility theory used in this paper we refer
the reader to the literature, e.g. to the book by Bühlmann and Gisler [3].

By chain ladder credibility we mean that we replace the Fj
Bayes in (4.1) by

credibility estimators Fj
Cred.

Definition 4.1. The credibility based predictor of the ultimate claim Ci, J given DI

is defined by 

j,i J .C C F( )
,

Cred
i I i

Cred

j I i

J 1

= -
= -

-

% (4.2)

Remarks:

• Note that we have put the superscript Cred into brackets and that we call
Ci

(Cred) a credibility based estimator and not a credibility estimator. By defini-
tion a credibility estimator would be a linear function of the observations.
However, given the multiplicative structure in the chain ladder methodology,
it would not make sense to restrict to linear estimators of Ci,J.

• The corresponding reserve estimate is defined by

Ri
(Cred ) = Ci, J

(Cred ) – Ci,I – i .
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Credibility estimators based on some statistic X are best estimators which are
a linear function of the entries of X. For estimating Fj we base our estimator
on the observations Yi, j, i = 0, …, I – j – 1, since these are the only observations
of the Y-trapezoid containing information on Fj .

Definition 4.2.

jj

j j

j j

i 0=

.arg minF E
:

Cred

a a Y

2

( ) ( )
,

j j
i j

= -
= + I j 1- -

i0

BF F
F F !

` j: D# - (4.3)

In other words, Fj
Cred is defined as the best estimator within {Fj : Fj = a0

( j ) +

,i ji 0=
a Y( )jI j 1- -

i! } minimizing square error function E [(Fj – Fj )
2 |Bj ].

Theorem 4.3. (Credibility estimator)

i) The credibility estimators for the chain ladder factors Fj are given by 

Fj
Cred = aj Fj + (1 – aj) fj , (4.4)

where 

j

j 1+
,

S

S
j I j

I j

1

1

=
- -

- -

F 5
5

?
?

(4.5)

j

j 1+

j

j

,
S

S
j

I j

I j

t

1

1

2

=

+
- -

- -

s 2
a 5

5
?

?
(4.6)

and the structural parameters are given by 

fj = E [Fj ], (4.7)

sj
2 = E [sj

2(Fj )], where sj
2(Fj ) is defined in (3.2), (4.8)

tj
2 = Var [Fj ]. (4.9)

ii) The conditional mean square error of prediction of Fj
Cred is 

mse (Fj
Cred ) = E [(Fj

Cred – Fj )
2 | Bj ] = aj

j

jS

s
I j 1

2

- -5 ? = (1 – aj) tj
2. (4.10)
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Remark:

• Note that Fj is the estimate of the development factor fj in the “classical”
chain ladder model. That is, (4.4) is a credibility weighted average between
the classical chain ladder estimator Fj and the a priori expected value fj

(expert opinion or market experience).

Proof of the theorem:

Conditionally on B j , the random variables Yi, j, i = 0,1,…, I – j – 1, fulfil the
assumptions of the Bühlmann-Straub model (see Section 4.2 in Bühlmann and
Gisler [3]). Then (4.4) is the well known credibility estimator in the Bühlmann-
Straub model and the formula of its mean square error is also found, for exam-
ple, in Bühlmann and Gisler [3], Chapter 4. ¡

The credibility estimator (4.4) depends on the structural parameters fj, sj
2 and

tj
2. These structural parameters can be estimated from portfolio data by using

standard estimators (see for instance Bühlmann and Gisler [3], Section 4.8).
For the conditional mean square error of prediction we obtain similar to

(3.20)

I

I I I I

, ,

,

i J i J

i J, , .

mse R mse C E C

E E C EVar F F

( ) ( ) ( )
,

,
( )

,

Cred Cred Cred
i J

i J
Cred

i J

2

2

= = -

= + -

i C

C C

D

D D D D

` ` `
`

j j j
j

;
78 7;

E
A B A E

The first summand, the “average” process error, remains unchanged and is the
same as in Theorem 3.7. For the “average” estimation error we obtain 

j j,i I i-I I I,i J , .E C E C E F FF( )
,

Cred
i J

Cred

j I i

J

j I i

J2 2
1 1 2

- = -
= -

-

= -

-

C D D D% %
J

L
KK` N

P
OOj

R

T

S
S
S

7;
V

X

W
W
W

A E
(4.11)

Henceforth, we have 

mse (Ri
(Cred ) ) = Ci,I – i GI – i + C 2

i,I – i DC
I – i , (4.12)

where 

mI i- nk I I
2 ,F E E FsG Bayes

n k

J

m I i

k

k I i

J
2

1

111

=
= +

-

= -

-

= -

-

F D D%%! ^ h9 9C C) 3 (4.13)

j j I .E FD I i
C Cred

j I i

J

j I i

J 11 2

= --
= -

-

= -

-

DF%%
J

L
KK

N

P
OO

R

T

S
S
S

V

X

W
W
W

(4.14)
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Note that these two terms, in general, cannot be calculated explicitely. There-
fore, to find an estimator for the conditional mean square error of prediction
we make the following approximations in (4.13) and (4.14):

j j ,F FBayes Cred- (4.15)

j j
j

j

jj jI ,E F E F
S

s
BBayes Cred

j I j

2 2

1

2

-- - =
- -

D aF F` `j j; ; 5E E ? (4.16)

where - means that the equation is not exactly but only approximately fulfilled.
Then we get

j j j jj
j

j
jI I .aE F E F F

S
F

s
Bayes Bayes

I j
Cred2 2 2 2

1

2
2

-= - + +
- -

D DF` ` `j j j9 ; 5C E ?

and using the posterior independence (see Theorem 3.2) 
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j
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Thus we have found the following approximation for the conditional mean
square error of prediction of Ri

(Cred ):

Theorem 4.4

mse (Ri
(Cred ) ) , Ci,I – i G*

I – i + C 2
i,I – i D*

I – i , (4.17)

where 

I i m n=
n

k
n

,aF F
S

s
s

G Cred

m I i

k
Cred

n I n
n k

J

k I i

J
2

1 2

1

2
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11

= +
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P

O
Oj 5 ?* 4 (4.18)
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j j5 ? (4.19)
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Remark:

• By replacing in (4.18) and (4.19) sj
2 and the variance components sj

2 and tj
2

in aj by appropriate estimates, we obtain from Theorem 4.4 an estimator for
the conditional mean square error of prediction of Ri

(Cred ).

Often the conditional mean square error of prediction or the conditional pre-
diction standard error (= square root of the conditional mean square error of
prediction) of the total claims reserves is of interest too. Denote the aggregate
claims reserves by 

,R R( ) ( )Cred Cred

i

= i! (4.20)

where Ri
(Cred ) = 0 for those i for which I – i $ J.

,

,

i J

i J
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I I I I, , .
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X
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(4.21)

Because of the conditional independence of the accident years we get for the
first term 

I -I I I I, , ,E EVar VarF F, , ,i J
i

i J
i

i I i i
i

= = -CC CD D D D G! ! !=> 78G H A B
(4.22)

where GI – i is given by (4.13). Note that the average process error of R(Cred ) is
the sum of the individual process errors of Ri

(Cred ).
For the second summand, the average estimation error, we obtain 

,
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(4.23)

Hence, we obtain additional cross-covariance terms for which we need to find
approximations. These cross terms derive from the fact that the same chain
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ladder factors are used for different accident years. With the approximations
(4.15) and (4.16) we get for the terms in the second summand 
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where D*
I – i is given by (4.13). In the second last equation we have used 
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Thus we have found the following result:

Corollary 4.5.

,k I i- I i- ,mse R mse R C C D2( ) ( )
,

( )Cred Cred

i
i I i

Cred

k i

I

i

I

11

- + -
= +=

*
i! !!` `j j (4.25)

where mse (Ri
(Cred )) and D*

I – i are as in Theorem 4.4.
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5. LINK TO CLASSICAL CHAIN LADDER

In this section we consider the situation, where the information contained in
the prior distribution is non-informative. This is the case if the variance tj

2

becomes very large, i.e. in the limiting case as tj
2
"3.

Corollary 5.1. For tj
2
"3 (non-informative prior), the credibility based chain-

ladder forecasts coincide with the classical chain ladder forecasts, that is 

j

j

j 1+

j j ,F
S

S
Cred

I j

I j

1

1

= = =
- -

- -

F f5
5

?
?

(5.1)

.R RCL( )Cred
=i i (5.2)

Remarks:

• Note, that fj are the estimates of the chain ladder factors in the classical
chain ladder model (compare with (2.7)). Hence in this case the credibility
based chain ladder forecasts are the same as the classical chain ladder fore-
casts and the resulting reserves are the same as the classical chain ladder
reserves.

Proof:

The corollary follows immediately from Theorem 4.3, because aj " 1 for
tj

2
"3. ¡

The next result shows how we can estimate the conditional mean square error
of prediction in the limiting case of non-informative priors, which is in this case
the conditional mean square error of prediction of the classical chain ladder
forecast. Thus the following result gives another view on the estimation of the
prediction error in the classical chain ladder method and suggests a different
estimator to the ones found so far in the literature. The estimation of the mean
square error of prediction has been the topic of several papers in the ASTIN
Bulletin 36/2 (see Buchwalder et al. [2], Mack et al. [13], Gisler [6], Venter [17]).
They all give different views how the prediction error can be estimated. As dis-
cussed in Gisler [6], we believe that the Bayesian approach is the appropriate
way to look at the situation and to estimate the conditional mean square error
of prediction. In the Bayesian approach the estimate is canonically given in the
model assumptions.

From Corollary 5.1 and Theorem 4.4 we obtain immediately the following
result:

Corollary 5.2. The conditional mean square error of prediction of the chain lad-
der reserves Ri

CL can be estimated by 
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,i I i- ,Dmse R C,
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and where sj
2 are appropriate estimators for sj

2.

Remark:

• These estimators should be compared to the ones suggested by Mack [10]
and Buchwalder et al. [2]. The estimate GI – i of the “average” process error
is slightly bigger compared to the ones in Mack [10] and Buchwalder et al.
[2]. The reason is that we also study the variability in the chain ladder fac-
tors Fj which results in the additional terms sn

2 /Sn
[I – n – 1]. Note that for many

practical applications sn
2 /Sn

[I – n – 1] % fj
2.

• The estimate DI – i of the “average” estimation error is the same as the one
in the so-called conditional resampling approach by Buchwalder et al. [2],
but it is different from the one in Mack [10]. For a discussion and a com-
parison we refer to Chapter 3 in Wüthrich and Merz [21].

Finally, from Corollary 5.1, Corollary 5.2 and Corollary 4.5 we obtain 

Corollary 5.3. The conditional mean square error of prediction of the total reserve

R RCL CL

i

= i! can be estimated by 

,k I i- I i- ,Dmse R mse R C C2 ,
CL CL

i
i I i

CL

k i

I

i

I

11

= + -
= +=

i! !!% %` `j j (5.6)

where CCL
k,I – i is defined in (2.6) and where mse% (Ri

CL) and DI – i are as in Corollary 5.2.

6. EXACT CREDIBILITY FOR CHAIN LADDER

The case where the Bayes estimator is of a credibility type is referred to as
exact credibility in the literature. In this section we consider a class of models
for the chain ladder method for which this is the case, i.e. where Fj

Bayes = Fj
Cred.
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For the Bayes estimator we have to specify the family of distributions. Because
of the one to one relations (3.7) and (3.8) we can specify either the conditional
distributions of the incremental claim figures Yi, j and the a priori distributions
of the incremental chain ladder factors Fj or the conditional distributions of
the cumulative claim figures Yi, j and the a priori distributions of the Fj . The
class of models and distributions considered in the following can be thought
of either as the distributions of the cumulative or the incremental claim figures
and the corresponding chain ladder factors. All results hold true for both sit-
uation. However, in the following, we will present the models and assumptions
in terms of the cumulative figures.

The basic assumption of the class of models considered in this section is
that, conditionally on F and Bj, the random variables Y0, j,…,YI, j are indepen-
dent with a distribution belonging to the one-parameter exponential dispersion
family and that the a priori distribution of Fj belongs to the family of the nat-
ural conjugate priors.

The exponential dispersion family is usually parameterized by the so called
canonical parameter. Hence, instead of F with realizations f we consider in
this section the vector Q of the canonical parameters Qj with realizations ‡.
Of course, as we will see, the two parameters are linked each to the other.

Definition 6.1. A distribution G‡ is said to be of the exponential dispersion type,
if it can be expressed as

/ , / , ,exp �
q q

dG x w
x b

c x w d x x Af f nq ! 1=
-

+] ] ^ ]g g h g< F (6.1)

where

n ( .) is either the Lebesgue measure on � or the counting measure,

f ! �+ is the dispersion parameter,

w ! �+ is a suitable weight,

b(‡) is a twice differentiable function with a unique inverse for the first derivative
b�(‡).

If X has a distribution function of the exponential dispersion type (6.1), then
it is well known from standard theory of generalized linear models (GLM)
(see e.g. McCullagh and Nelder [14] or Dobson [4]) that 

mX = E [X ] = b�(‡), (6.2)

s2
X = Var(X ) = w

f
b�(‡). (6.3)

By taking the inverse in (6.2) we obtain 

‡ = (b�)–1(mX) = h (mX), (6.4)
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where h ( .) is called the canonical link function.
The variance can also be expressed as a function of the mean by 

,X w b h w VVar
f

m
f

m� X X= =] ^^ ^g hh h (6.5)

where V ( .) is the so-called variance function.

Definition 6.2. The class of distributions as defined in (6.1) is referred to as the
one (real-valued) parameter exponential dispersion class

Fexp = {G‡ : ‡ ! M}, (6.6)

where M is the canonical parameter space (set of possible values of ‡).

It contains the (sub-)families

F b,c
exp 1 Fexp (6.7)

specified by the specific form of b ( · ) and c ( ·, · ).

In the following we assume that, conditionally on F and Bj, the random vari-
ables Y0, j , …,YI, j are independent with a distribution belonging to a one-para-
meter exponential dispersion family F b,c

exp . The following results hold true under
this general condition. However, not all exponential dispersion families are suited
for our problem. In particular, the random variables Yi, j need to be non-
negative. Hence, only distributions having support on �+ are suitable for the
chain ladder situation.

A subclass of the exponential dispersion class are the class of models with
variance function 

V ( m) = m p. (6.8)

These models are defined only for p outside the interval 0 < p < 1. For p # 0
they have positive probability mass on the whole real line. This family includes
in particular the following distributions:

• p = 0: Normal distribution 

• p = 1: (Overdispersed) Poisson distribution 

• 1 < p < 2: Compound Poisson distribution with Gamma distributed claim
amounts, where the shape parameter of the Gamma distribution is g =
(2 – p) / ( p – 1).

• p = 2: Gamma distribution 

This family of models was also considered in Ohlsson and Johansson [16] in
connection with calculating risk premiums in a multiplicative tariff structure.
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In this paper there is also given a good summary on the properties of this fam-
ily. In Ohlsson and Johansson [16], this family was referred to as the family of
the Tweedie models, whereas otherwise in the literature, the Tweedie models are
often restricted to the compound Poisson case with 1 < p < 2 .

For paid chain ladder, the Tweedie models with 1 < p < 2 for modeling the
incremental payments seems to us of particular interest. It assumes, that the
incremental claim payments Di, j = Ci, j + 1 – Ci, j have a compound Poisson dis-
tribution, which is often a very realistic model. In a claims reserving context
this family has, for example, already been studied in Wüthrich [20].

Model Assumptions 6.3. (Exponential familiy and conjugate priors)

E1 Conditional on Q = (Q0, …,QJ –1) = ‡ and Bj, the random variables Y0, j ,…,
YI, j are independent with distribution of the exponential dispersion type given
by (6.1) with specific functions b ( · ) and c ( ·, · ), dispersion parameter fj and
weights wi, j = Ci, j .

E2 Q0, …, QJ–1 are independent with densities (with respect to the Lebesgue mea-
sure)

j
j

j
j, ,expq

q qf b
d f

j
j

( )
( )

j

0
0

=
-

+
2

2u ] ] `g g j
R

T

S
S
S

V

X

W
W
W

(6.9)

where fj
(0) and jj

2 are hyperparameters and j j,exp d f j( )0 2` j9 C is a normalizing fac-
tor.

Remarks:

• From Assumption E1 follows that 

j
,

,
j i

j
j ij / , / .expy C

y b
a y Cf f,

,
,q i j

j

i j j
i j j=

-
B

q
f

q_ _ _i i i* 4 (6.10)

• From Assumption E1 also follows that

E [Yi, j | Qj ] = b�(Qj ) = Fj , (6.11)

Var (Yi, j | Qj ,Ci, J) =
,iC

f

j

j b �(Qj) =
,iC

f

j

j V (Fj ). (6.12)

Hence conditionally, given Fj, the chain ladder assumption M2 of Mack’s
model (Model Assumptions 2.1) are fulfilled. The difference to the Mack
assumptions is, that specific assumptions on the whole conditional distribution
and not only on the first and second conditional moments are made.
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For instance for Tweedie models with p = 1, the Yi, j (or the Yi, j) are assumed
to be conditionally overdispersed Poisson distributed, or for the Tweedie
models with 1 < p < 2, the Yi, j (or the Yi, j) are assumed to be conditionally
compound Poisson distributed.

• The distributions of Q0,…, QJ – 1 with densities (6.9) belong to the family U b
exp

of the natural conjugate prior distributions to F b,c
exp , which is given by 

exp : , ,� �qu xg jU b
g 0

2
#!= =

+] `g j% /
, , .expq

q q
qu

x b
d x M

j
jg 2

0
0

2 !=
-

+] ] `g g j> H

• The Gaussian model and the Gamma model studied in Gisler [6] are spe-
cial cases of the exponential dispersion model defined above.

• The model is formulated in terms of individual development factors Yi, j .
We could also formulate it in terms of Ci, j. Then, for given ‡, we would obtain
a time series model similar to Murphy [15], Barnett and Zehnwirth [1] or
Buchwalder et al. [2].

Theorem 6.4. Under Model Assumptions 6.3 and if the region M is such that
uj(‡) disappears on the boundary of M then it holds that E [Fj ] = fj

(0). Moreover,
we have 

Fj
Bayes = Fj

Cred = aj Fj + (1 – aj) fj
(0), (6.13)

where

j

j 1+

j ,
S

S
I j

I j

1

1

=
- -

- -

F 5
5

?
?

(6.14)

j

j
j

j
j ,a

S

S

t

sI j

I j

1
2

2

1

=

+
- -

- -

5
5

?
?

(6.15)

sj
2 = fj E [b �(Qj)] = fj E [V (Fj )] , (6.16)

tj
2 = Var [b�(Qj)] = Var (Fj ). (6.17)

Remarks:

• Note that Fj
Bayes in Theorem 6.4 coincides with the credibility estimator of

Theorem 4.3. Therefore Ci, J
Bayes = Ci, J

(Cred ).
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• For Tweedie models with p $ 0 the conditions and the result of the theorem
are fulfilled for p = 0 (Normal-distribution), for 1 < p < 2 (compound Poisson)
and for p = 2 (Gamma), but not for p > 2 (see Ohlsson and Johansson [16]).

Proof of the theorem:

The result of the theorem follows directly from well known results in the actu-
arial literature. It was first proved by Jewell [8] in the case without weights.
A proof for the case with weights can, for instance, be found in Bühlmann
and Gisler [3]. ¡

Theorem 6.5. If, in addition to the conditions of Theorem 3.4, uj�(‡) disappears
on the boundary of M then 

i)

j
j

j

j
j j j j .E F

S

s
t1Bayes

I j

2

1

2
2

- = = -
- -

B a aF` _j i; 5E ? (6.18)

ii) The conditional mean square error of prediction of the reserve Ri
Bayes of accident

year i is given by 

I i-

,

,

i J

i J

,i I i-

I

I

* *

,

,

i J

i J

I i- ,

mse R E C C
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( )
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,
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i

i I i

2

2

2

-

= -
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= +
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D` `
`

j j
j

;
;

E
E (6.19)

where

I i m n=
n

k
n

,aF F
S

s
s

G Bayes

m I i
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Bayes

n I n
n k

J

k I i

J
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1 2

1
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1
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Bayes
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J
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iii) The conditional mean square error of prediction of the total reserve RBayes =

iR Bayes
i! is

,k I i- I i- .mse R mse R C C D2 ,
Bayes Bayes

i
i I i

Bayes

k i

I

i

I

11

- + -
= +=

*
i! !!` `j j (6.20)
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Remarks:

• Note, that G*
I – i and D*

I – i are the same as in Theorem 4.4.

• For the Tweedie models for p $ 0 the condition and the result of Theorem 6.5
are fulfilled for p = 0 (Normal distribution) and for 1 < p < 2 (compound Pois-
son). For p = 2 (Gamma-distribution) it is only fulfilled for j2 < 1. In this case
the natural conjugate prior uj(‡) is again a Gamma-distribution, and j2 < 1
means, that the shape parameter g of this Gamma distribution is smaller than
one. In many practical examples this is fulfilled, see also also Section 9.2.6
in Wüthrich-Merz [21].

Proof of the theorem:

Since Fj
Bayes is a credibility estimator it follows from Theorem 4.3, that (6.18)

holds true, if all random variables are square integrable. Thus, it remains to
prove that Fj is square integrable. From (6.9) we get

j

j

j

j

2

2

,

.

q q q

q q q q q

u f b

u f b b

j

j j

�

� �

1

1 1

( )

( )

j

j j

0

4
0 2

= -

= - +

�

�

u

u u

] ]` ]
] ]` ] ] ]
g gj g
g gj g g g

Since uj�(‡) disappears on the boundaries of M, we have 

j

j jj

2

2 .

q q q q q qf b d b d

E VVar

j j

j j

� �0 1 1

1 1

( )
j

M
j

M4
0 2

4

= - +

= + fF

u u

F

# #]` ] ] ]
_ _

gj g g g
i i8 B

Hence, Fj is square integrable.
The proof of (6.19) is the same as in Theorem 4.4. The proof of (6.20) is

the same as the derivation of Corollary 4.5. ¡

7. LINK TO CLASSICAL CHAIN LADDER

IN THE CASE OF EXACT CREDIBILITY

In this section we consider the same exponential dispersion family Bayes mod-
els as in Section 6. But now we look at the situation of non-informative priors,
i.e. we consider the limiting case for tj

2
"3.

Corollary 7.1. Under Model Assumptions 6.3 and if uj (‡) disappears on the
boundaries of M, then for tj

2
"3 (non-informative prior) 
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j

j

j 1+

j ,F
S

S
Bayes

I j

I j

j1

1

= = =
- -

- -

F f5
5

?
?

(7.1)

.R RBayes CL
=i i (7.2)

Remarks:

• Note, that fj are the estimates of the chain ladder factors in the classical
chain ladder model. Hence in this case the Bayes chain ladder forecasts are
the same as the classical chain ladder forecasts and the resulting Bayes
reserves are equal to the classical chain ladder reserves.

Proof:

The credibility weights aj " 1 for tj
2
"3. The result then follows immediately

from Theorem 6.4. ¡

From Theorem 6.5 and Theorem 7.1 we also obtain immediately the follow-
ing result for the donditional mean square error of prediction:

Corollary 7.2. Under Model Assumptions 6.3 and if uj(‡) and uj�(‡) disappear
on the boundaries of M, then it holds, for tj

2
"3 (non-informative prior), that

the conditional mean square error of prediction of the chain ladder reserves Ri
CL

can be estimated by 

,i I i- ,Dmse R C,
CL

i I i I i I i
2

= +- - -i C G% ` j (7.3)
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s
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where sj
2 are appropriate estimators for sj

2.

Remarks:

• See also the remarks before and after Corollary 5.2.

• For Tweedie models, the result holds true for p = 0 (Normal) and for 1 < p < 2,
but not for p = 2, since j2 has to be smaller than one for p = 2. In particular
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the case 1 < p < 2 (compound Poisson with Gamma claim severities) seems
to us a fairly adequate and good model for the conditional incremental chain
ladder factors Yi, j in the case of paid triangles or trapezoids.

Finally, from Theorem 7.1, Theorem 7.2 and Corollary 4.5 we obtain

Corollary 7.3. The conditional mean square error of prediction of the total reserve

R RCL CL
i

= i! can be estimated by 

,k I i- I i- .Dmse R mse R C C2 ,
CL CL

i
i I i

CL

k i

I

i

I

11

= + -
= +=

i! !!% %` `j j (7.6)

where mse% (Ri
CL) and DI – i are as in Corollary 7.2 with classical chain ladder fac-

tors fj .

8. NUMERICAL EXAMPLE

For pricing and profit-analysis of different business units it is necessary to set
up the claims reserves for each of these business units (BU) separately. In
Appendix A trapezoids of cumulative payments of the business line contractors
all risks insurance for different BU of Winterthur Insurance Company are given
(for confidentiality purposes the figures are scaled with a constant). The aim
is to determine for this line of business the claims reserves for each business
unit. Thus we have a portfolio of similar loss development figures, which is
suited to apply the theory presented in this paper.

The following table shows the estimated values of the structural parameters fj,
sj

2, tj
2, which are needed for estimating the credibility chain ladder factors Fj

Cred.
These parameters have been estimated by the “standard estimators”, which
can be found e.g. in Section 4.8 of Bühlmann and Gisler [3].
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The next table shows the development factors Fj estimated by classical chain
ladder (Fj

CL) and by the credibility estimators (Fj
Cred ) of Section 4 as well as

the corresponding credibility weights aj and the “weights” Sj
[I – j – 1].
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From the above table we can see that the chain ladder (CL) and the credibility
(Cred) estimates can differ quite substantially (see for instance the estimate of
F0 for BU F). The estimate of the variance component tj

2 became negative for
j = 0, 5, 7 and 8. Therefore Fj

Cred is identical to E [Fj ] = fj for j = 0, 5, 7 and 8.
The values of the above result table can be visualized by looking at the fol-

lowing graphs showing the resulting loss development pattern of a “normed
reference year” characterized by a payment of one in development year 0.
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From these graphs one can see the smoothing effect on the chain ladder pro-
cedure on the estimates.

The next two graphs show for the business units A and E the same kind of
development patterns. “CL Portfolio” is the one obtained by the chain ladder
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factors of the portfolio data (total of all BU), “CL BU” the one obtained by
the chain ladder factors of the BU and “Cred BU” the one obtained by the
credibility estimated chain ladder factors of the BU. One can see from these
figures that Cred BU is somewhere in between “CL Portfolio” and “CL BU”.

Finally the next table shows the estimated reserves and the estimates of the
square root of the conditional mean square error of prediction (mse).
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In total over all business units, the difference between the chain ladder reserves
and the credibility reserves is 6%, and for the business units it varies between
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4% and 38%. Hence the differences between the chain ladder and the credibility
estimated reserves can be quite substantial and may have a considerable impact
on the profit and loss of the individual BU.

The estimates of the mse need some further explanations. In the Bayesian
or credibility model as well as in the formula of Mack [10], the formula of the
estimates of the mse contain the estimates of the variance components sj

2 and
hence the results depend on how these sj

2 are estimated. In the credibility based
chain ladder methodology the sj

2 are structural parameters, which are esti-
mated on the basis of the data of the whole portfolio by just taking the mean
of the “individual” estimates obtained from the data of each business unit triangle
on its own (see table below). This means that the same “overall” estimates of the
sj

2 are used for all business units. This makes sense, since we consider a port-
folio of “similar” claims triangles and since the pure random fluctuations of
the “individual estimators” are very big due to the scarce data. This makes
also sense for estimating the mse of the chain ladder reserves, be it by using
the formula of Mack or the slightly different formula developed in this paper.
The resulting figures are given in the block “estimated mse1/2 with overall sj

2”.
The results within this block are directly comparable to each other. In the
column “Cred” you find the results by applying theorem 4.4 and corollary 4.5.
The results in the column “CL, a = 1” are the mse for the CL-estimates obtained
with a non-informative prior by applying Corollaries 5.2 and 5.3 or Theorem 4.4
with a = 1 (and Fj

cred replaced by Fj
CL). Finally in the column Mack you find

the results by applying Mack’s formula with the overall sj
2. From the figures

in the block “estimated mse1/2 with overall sj
2” in the above table we can see,

that, for each business unit, the estimated mse is smaller for the credibility
reserve than for the chain ladder. However, the mse of the chain ladder reserve
obtained with the new credibility formula with a = 1 differ only little from the
values obtained with the estimator suggested by Mack [10]. These findings are
similar to the findings in Buchwalder et al. [2], Section 4.2 and Table 5.

For comparison purposes we have also added the estimated mse of the
chain ladder reserves, if each triangle is considered on its own and if for each
business unit the sj

2 are estimated from the data of that particular business unit
(see table below). This would mean, that we do not believe, that the triangle
are in some sense “similar” and that the individual estimators of the sj

2 are bet-
ter than the “overall” estimates based on the data of the whole portfolio. How-
ever note, that the volatility in the estimates of the sj

2 becomes much bigger,
which is then transferred to the estimates of the mse. In any case the obtained
figures are not comparable with the figures in the block “estimated mse1/2 with
overall sj

2”. But they well illustrate the dependence of the estimated mse on
the estimates of the sj

2. Again the results obtained with the new formula (a = 1)
differ only little from the ones obtained with the Mack formula.

The chain ladder method can also be applied to the portfolio trapezoid
(data from the total of all business units). By doing so, the total reserve
obtained is 2’746 and the estimated mse1/2 is 1’418. This shows once more the
well known fact that the chain ladder method is not additive. Credibility could
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only be applied to the portfolio triangle, if the structural variance components
were a priori known or fixed in a pure Bayesian way. In our paper, we have
followed the empirical credibility approach and estimated the structural
parameters from the portfolio data. Therefore we could not do a credibility esti-
mate based on the trapezoid of the portfolio data.
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APPENDIX 

A. LOSS DEVELOPMENT DATA

The following trapezoids of cumulative payements show the loss development
of the line building engineering for different business units. For confidential-
ity reasons the data were multiplied with some constant.

598 A. GISLER AND M.V. WUTHRICH

BU B
dev.year

acc. year 0 1 2 3 4 5 6 7 8 9 10
1986 92 442 541 541 528 528 528 528 528 528 528
1987 451 1'077 1'085 1'178 1'212 1'217 1'217 1'217 1'217 1'217 1'217
1988 404 717 834 849 849 850 850 850 850 850 850
1989 203 572 813 875 878 910 912 1'096 1'089 1'089 986
1990 352 834 1'048 1'072 1'088 1'088 1'088 1'088 1'088 1'088 1'088
1991 504 1'246 1'272 1'353 1'285 1'285 1'285 1'285 1'285 1'285 1'285
1992 509 1'008 1'061 1'061 1'061 1'071 1'071 1'071 1'071 1'071 1'071
1993 229 580 630 670 672 672 672 672 672 672 672
1994 324 815 871 859 867 777 777 777 777 777 777
1995 508 805 906 969 971 971 971 971 971 971 971
1996 354 641 833 842 842 842 842 842 842 842 842
1997 431 847 854 915 918 918 918 918 918 918
1998 205 830 978 1'034 1'048 1'048 1'048 1'048 1'048
1999 522 1'134 1'064 1'202 1'202 1'210 1'210 1'210
2000 567 925 915 957 953 953 953
2001 1'238 1'924 2'034 1'897 1'897 1'897
2002 355 1'003 1'137 1'164 1'196
2003 312 680 682 686
2004 246 352 418
2005 91 418
2006 130

BU A
dev.year

1986  118 487 1'232 1'266 1'266 1'397 1'397 1'397 1'492 1'492 1'492
1987 124 657 863 890 914 916 941 941 941 865 865
1988 556 2'204 3'494 2'998 2'983 3'018 2'458 2'458 2'470 2'470 2'470
1989 1'646 2'351 2'492 2'507 2'612 2'612 2'608 1'755 1'755 1'755 1'755
1990 317 886 890 890 950 990 990 990 990 990 990
1991 242 919 1'218 1'224 1'229 1'249 1'249 1'249 1'249 1'249 1'249
1992 203 612 622 639 667 647 647 647 647 647 647
1993 492 1'405 1'685 1'668 1'753 1'742 1'804 1'804 1'804 1'804 1'804
1994 321 1'149 1'728 1'863 1'877 1'877 1'877 1'877 1'877 1'877 1'877
1995 609 1'109 1'283 1'294 1'253 1'255 1'255 1'255 1'255 1'255 1'255
1996 492 1'627 1'622 1'672 1'672 1'672 1'672 1'672 1'621 1'621 1'621
1997 397 793 868 889 964 964 964 964 964 964
1998 523 1'098 1'475 1'489 1'489 1'489 1'489 1'489 1'489
1999 1'786 2'951 3'370 3'029 3'211 3'289 3'325 3'325
2000 241 465 536 596 652 652 652
2001 327 622 577 583 583 583
2002 275 520 529 529 541
2003 89 327 378 382
2004 295 301 396
2005 151 406
2006 315

acc. year 0 1 2 3 4 5 6 7 8 9 10
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BU C
dev.year

acc. year 0 1 2 3 4 5 6 7 8 9 10
1986 268 456 485 483 483 483 483 483 483 483 483
1987 268 520 577 579 579 579 579 579 579 579 579
1988 385 968 1'017 1'019 1'019 1'019 1'019 1'019 1'019 1'019 1'019
1989 251 742 795 931 931 931 931 931 931 931 931
1990 456 905 1'162 1'164 1'164 1'164 1'164 1'164 1'191 1'191 1'191
1991 477 1'286 1'376 1'376 1'373 1'373 1'373 1'373 1'373 1'373 1'373
1992 405 999 1'172 1'196 1'196 1'210 1'210 1'210 1'210 1'210 1'210
1993 443 932 952 965 984 992 1'012 1'012 1'012 1'012 1'012
1994 477 1'046 1'336 1'362 1'375 1'375 1'375 1'375 1'375 1'375 1'375
1995 581 1'146 1'316 1'362 1'391 1'391 1'391 1'391 1'391 1'391 1'391
1996 401 997 1'229 1'248 1'281 1'284 1'264 1'264 1'264 1'264 1'264
1997 474 778 939 1'321 1'366 1'392 1'392 1'392 1'392 1'392
1998 649 1'420 1'707 1'709 1'709 1'709 1'709 1'638 1'638
1999 911 1'935 2'304 2'307 2'309 2'309 2'309 2'362
2000 508 1'054 1'101 1'071 1'071 1'071 1'071
2001 389 790 868 909 1'569 1'569
2002 373 998 1'091 1'155 1'201
2003 276 853 932 948
2004 465 820 859
2005 343 622
2006 254

BU D
dev.year

acc. year 0 1 2 3 4 5 6 7 8 9 10
1986 330 1'022 1'066 1'086 1'094 1'094 1'094 1'094 1'094 1'094 1'094
1987 327 873 1'057 1'076 1'082 1'082 1'082 1'082 1'082 1'082 1'082
1988 304 1'137 1'234 1'460 1'475 1'588 1'586 1'586 1'586 1'586 1'586
1989 426 1'289 1'418 1'574 1'578 1'634 2'250 2'044 2'044 2'044 2'044
1990 750 2'158 2'910 3'071 3'213 3'199 3'052 3'052 3'052 3'052 3'052
1991 761 2'164 2'446 2'570 2'578 2'558 2'558 2'558 2'558 2'558 2'558
1992 1'119 2'666 2'946 3'008 3'021 3'022 3'019 3'019 3'019 3'019 3'019
1993 917 2'458 2'892 3'502 3'629 3'664 3'887 3'867 3'697 3'697 3'697
1994 905 2'014 2'459 2'466 2'554 2'554 2'554 2'540 2'540 2'540 2'540
1995 1'761 2'990 3'235 3'795 3'816 3'841 3'842 3'860 3'860 3'860 3'860
1996 824 2'063 2'378 2'368 2'384 2'368 2'373 2'373 2'373 2'373 2'373
1997 4'364 6'630 6'850 6'885 6'923 6'923 6'923 6'923 6'923 6'923
1998 493 1'587 1'780 1'794 1'838 1'838 1'838 1'865 1'865
1999 4'092 7'710 6'596 7'201 7'292 7'292 7'292 7'292
2000 1'733 3'647 3'699 3'780 3'773 3'773 3'773
2001 1'261 2'658 3'063 3'036 3'093 3'095
2002 1'517 3'054 3'335 3'438 3'438
2003 778 1'212 1'247 1'215
2004 727 1'661 1'816
2005 561 1'486
2006 459

BU E
dev.year

acc. year 0 1 2 3 4 5 6 7 8 9 10
1986 486 964 1'057 1'106 1'130 1'130 1'138 1'131 1'131 1'131 1'131
1987 867 1'669 1'643 1'717 1'720 1'724 1'724 1'724 1'724 1'724 1'724
1988 1'285 1'925 2'204 2'488 2'507 2'509 2'510 2'510 2'436 2'436 2'436
1989 395 994 1'309 1'442 1'467 1'467 1'477 1'477 1'477 1'477 1'477
1990 802 1'468 1'776 1'823 1'827 1'832 1'833 1'833 1'833 1'833 1'833
1991 966 1'967 2'628 2'743 2'294 2'338 2'358 2'358 2'358 2'358 2'358
1992 759 1'766 1'922 1'863 1'886 1'886 1'886 1'886 1'886 1'886 1'886
1993 1'136 2'139 2'219 1'921 1'931 1'944 1'947 1'867 1'867 1'867 1'867
1994 1'467 2'243 2'553 2'598 2'598 2'598 2'598 2'598 2'598 2'598 2'598
1995 1'309 2'521 2'660 2'640 2'639 2'641 2'659 2'659 2'659 2'659 2'659
1996 877 2'170 2'341 2'420 2'516 2'516 2'431 2'431 2'431 2'468 2'468
1997 1'004 1'963 2'260 2'226 2'226 2'215 2'215 2'059 2'059 2'059
1998 1'351 2'579 2'736 2'759 2'760 2'766 2'688 2'737 2'737
1999 906 2'341 2'667 2'655 2'655 2'650 2'650 2'824
2000 563 1'450 1'575 1'603 1'654 1'654 1'675
2001 417 1'006 1'034 1'049 1'049 1'050
2002 322 836 1'046 1'123 1'143
2003 1'047 1'656 1'689 1'779
2004 497 843 877
2005 1'021 1'237
2006 302
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BU F
dev.year

acc. year 0 1 2 3 4 5 6 7 8
1986 18 64 64 64 64 64 64 64 64 
1987 20 73 103 153 155 155 155 155 155 
1988 20 70 318 328 328 328 328 328 328 
1989 88 133 133 133 133 133 133 133 133 
1990 3 180 214 214 215 215 215 215 215 
1991 11 79 80 82 81 81 81 81 81 
1992 17 66 105 172 172 172 188 188 188 
1993 73 216 218 218 218 218 218 218 218 
1994 48 213 253 386 400 400 317 304 304 
1995 98 153 153 158 158 158 158 158 158 
1996 38 529 557 632 639 639 639 639 639 
1997 42 140 141 141 141 141 141 141 141 
1998 64 95 95 102 102 102 102 102 102
1999 57 144 169 178 178 178 178 178
2000 85 178 188 186 186 186 186
2001 212 341 357 371 371 371
2002 56 152 187 246 246
2003 25 44 103 178
2004 19 137 140
2005 25 45
2006 7
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