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An algebra A factors if, for each a a A, there exist b, c eA with a = be. A bounded
approximate identity for a Banach algebra A is a net (ea) <= A such that aea —» a and
eaa -» a for each a eA and such that sup \\ea\\ < °°. It is well known [2, 11.10] that if A
has a bounded approximate identity, then A factors. But a Banach algebra may factor
even if it does not have a bounded approximate identity: an example which is
non-commutative and separable, and an example which is commutative and non-
separable, are given in [3, §22]. However, we do not know an example of a commutative,
separable Banach algebra which factors, but which does not have a bounded approximate
identity. See [4] for related work.

In this note, we show that, for a certain class of commutative, separable Banach
algebras, an algebra factors if and only if it has a bounded approximate identity.

A real-valued function a> defined on IR+ is a weight function if co is Lebesgue
measurable, if co(t) > 0 (t e U+), and if

a)(s + t ) ^ (o(s)a)(t) ( s , t e U + ) .

Let a) be a weight function on U+. We denote by V{(o) the set of complex-valued,
measurable functions on U + such that

As usual, we equate functions which are equal almost everywhere. Then //(cw) is
a Banach space with respect to pointwise addition and scalar multiplication. For
f, ge Lx(a>), we define / * g by setting

(f*g)(t)=\'f(t-s)g(s)ds (teU+).
Jo

Then / * g is finite almost everywhere and defines an element of L^w). With respect to
this convolution multiplication, Ll{a>) is a commutative Banach algebra, and clearly
Ll(a)) is separable. The algebras Ll{a>) are discussed in [1], for example.

In the theorem below, we write m for Lebesgue measure on R+ and supp/for the
support of a function /. If A is an algebra, then A2 denotes the linear span of the set of
products of two elements of A.

THEOREM. Let m be a weight function on IR+. Then the following conditions on a> are
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equivalent:
(1) there exists M>0 such that, for each 6>0, m{te[0, 6]:co(t)<M} is greater

than 0;
(2) Ll{a>) has a bounded approximate identity;
(3) L\(o) factors;
(4) [L\a>)Y = L\a>).

Proof. (1) => (2). Let En = {te (0, 1/n] : w(r) =£ M}. By hypothesis, m{En) > 0. Let Xn
be the characteristic function of En, and let en = xJm(En). Clearly, ||en|| s£ M, and so (en)
is a bounded sequence in L'(to).

A standard argument using the uniform continuity of a continuous function with
compact support shows that (en) is a bounded approximate identity for L\co).

(2)=>(3). This is Cohen's factorization theorem [2, 11.10].
(3)=>(4). Immediate.
(4)^>(1). To obtain a contradiction, suppose that (4) holds but that (1) fails. Define

a function (h on U + by setting

Then 6) is measurable onR + , and cb(t) =s co(t) for almost all t > 0. Take s, t > 0 and £ > 0.
Then there are sets 5 c (0, s) and T c (0, t) such that 5 and T have positive measure and
such that

co(s')^cb(s) + E (s'eS), (o(t')^d)(t) + e (t'eT).

Then 5 + T is a subset of (0, s +1) which has positive measure, and

co(s' +1') ^ (o(s')co(t') =£ (cb(s) + e)((b(t) + e ) (s' e S , t ' e T).

Thus co(s +1) «= (<5>(.s) + e)(d)(t) + e). This is true for each e > 0 , and so d)(s + f)=s
<b(s)a>(t). Hence ft) is a weight function on U + , because (a is measurable. Further <y is
decreasing.

Define a function Q on (0, °o) by

Clearly, Q is monotonically increasing on (0, <»). Since (1) fails, d>(/) -» » as t —> 0+, and
s o Q ( 6 ) ^ 0 a s < 5 ^ 0 + .

For t > 0, set

Then 5, has positive measure, and co(s)^2cb(s) (seS,). We can inductively define a

sequence («5n) such that 0 < dn+l < 8n, such that £ Q(6n) < oo, and such that w(/4,,) > 0,
where An = S6nn(6n+u 6n).

 n = l
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Set

Then Jj \f(t)\ co(t) dt = E Q(5B) < «, and so / e L^©).
n = l

We shall show that / ^ [L^tw)]2. To obtain a contradiction, suppose that

/ = E g, * /i,, where gu . . . , gk, h1,...,hke L\co). Then

Since cb(t) =£ co(t) for almost all t and (o(t) =£ 2a>{t) for t e supp/, we have

Q(<5n)=[ /(f)cu(0*«2Q(6n)A:n,

where

V f f
i = \ JAn Jo

Thus #„ 2* 1/2 (n e N). However,

\(o(s)dsdt
n = \ i = l Jo Jo

and so /£„ —> 0 as n —» °o. This is the required contradiction.
This completes the proof of the theorem.

REMARK. If (o is bounded in a neighborhood of 0, then clearly the conditions of the
theorem are satisfied. However, it is easy to give a weight function a> for which
ess lim sup w(t) = oo, but which satisfies the conditions of the theorem.

r—-0+

In the above proof, we introduced a new weight function a>. This was necessary
because there are weight functions a> for which (1) fails, but which are such that

inf ess sup —7-—77: s, t > 0, s + 1 « d \ > 0.
6>o lo)(s)o)(0 J

To exemplify these two remarks, we give one construction.
Let (cn), (6n) be sequences with cx = 0, c n + 1 > cn, 6j = 1, and 0 < 8n+1 < 8n for n e N

and 8n -*• 0 as n -» 00. Let ??„(/) = (cn + 1 - cn)/ (f e [0, <5n]) and let rjn(t) = 0(t> 8n). Then
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rjn(s + 0 « r)n(s) + r\n{t) for 5, t e U+. Let r?(0 = E i?«(0. and let <o(t) = exp ij(f) (f e U+).
Then a> is a weight function on U+, and i](t) = cn+lt (t e (6n+1, 6n]). Suppose further that
dn+l<8n/n and that cn+l = n/8n (neN). On [6Jn, 26Jn], rj(t)^2, and so a) satisfies
condition (1), above. However, on [6J2, 6n], r)(t) =* n/2, and so ess lim sup m{t) = °°.

o
Secondly, take a> as above, choosing 8n+1<6n/4 and cn = nl6n (neH). Then

co(s + t) = (o(s)(o(t) for s, t e (\6n, \dn). However, rj(t) 3= c n + A+i for t e (0, 6n], and so
(1) fails.
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