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An analysis is presented of the suspensions of small, electrified particles in a gas. Two
limits of interest for the electrodynamic particulate suspension technique are considered,
corresponding to large and small values of the ratio tcoll/ts of the mean time between
particle collisions to the viscous adaptation time required for the particles to reach their
terminal velocities. The effect of the particle inertia can be neglected when this ratio
is large, and only the distribution of particle charges at each point of the suspension
needs to be computed. The way this distribution approaches an equilibrium form,
determined elsewhere in the continuum regime when the mean free path of the particles
is small compared with the suspension size, is described, as well as the connection
between continuum regime and quasi-neutrality of the suspension. In the opposite case
when tcoll/ts is small, the inertia of the particles plays an important role, and the joint
distribution of particle charges and velocities is required. A Boltzmann equation is
proposed for this distribution function, taking advantage of the fact that the charges
of the particles have little effect on the redistribution of momentum and energy in the
collisions. The equilibrium distribution function in the continuum regime is computed
approximately, and hydrodynamic equations for the particle phase analogous to the Euler
equations for a monoatomic gas are derived. The simplification of these equations when
the particle inertia is negligible at the scale of the suspension is worked out.

Key words: electrohydrodynamic effects, dry granular material, particle/fluid flow

1. Introduction

1.1. Electrodynamic particulate suspension
Electrodynamic particulate suspension (EPS) is a method of generating suspensions of
electrically conducting particles using electric forces instead of hydrodynamic forces to
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lift the particles (Colver 1980; Yu & Colver 1987; Colver & Ehlinger 1988; Shoshin &
Dreizin 2002). In the simplest case, a suspension of high electrical conductivity particles
is formed in the gap between two horizontal electrodes set at different electric potentials.
The particles in contact with the lower electrode are instantly charged to the potential of
this electrode, and experience a vertical force that may detach them from the electrode
and push them upwards across the gap. When these particles hit the upper electrode, they
get charged to this electrode potential, which reverses the polarity of their charge and the
direction of the electric force, so they fall until they hit the lower electrode and the cycle
repeats.

Numerical simulations of dilute suspensions of monodisperse particles of high electrical
conductivity with negligible inertia were carried out by Zhebelev (1992) taking into
account the collisions between the particles and the electric field induced by their charges.
This author proposed the so-called field mechanism, according to which the maximum
number of particles that can be suspended per unit electrode area for a given interelectrode
voltage is determined by the condition that the space charge induced field reduces the net
field at the lower electrode to the minimum value required for the electric force to balance
the weight of the particles. A different, recombination mechanism, limiting the number of
suspended particles to a value independent of the voltage, was proposed by Bologa, Grosu
& Kozhukhar (1977), Myazdrikov (1984) and Zhebelev (1992), while Zhebelev (1991,
1993) and Higuera (2023) carried out simulations for suspensions of finite conductivity
particles, for which the electric relaxation time is not small compared with the contact
time in collisions with the electrodes or among particles.

In applications, a spray is generated by blowing a gas through the suspension. This
allows controlling the spray velocity independently of the spray density, which is
controlled by the voltage between the electrodes. The existence of two control parameters
makes for a flexible technique, which has been used for surface treatments, deposition of
coatings and catalytic layers, powder metallurgy (Myazdrikov 1980), and powder spray
combustion (Bologa, Solomyanchuk & Berkov 1988; Kim 1989; Colver, Kim & Yu 1996;
Shoshin & Dreizin 2002, 2003, 2004, 2006; Colver et al. 2004). Other applications include
acceleration of iron microparticles for impact studies (Shelton, Hendricks & Wuerker
1960), beneficiation of iron ores and other fines (Inculet, Bergougnou & Bauer 1972;
Kiewiet et al. 1978), dust cleaning (Melcher & Sachar 1974), trapping of particulate
contaminants in high voltage systems (Cooke 1980), and enhanced heat transfer (Dietz
& Melcher 1975; Bologa, Pushkov & Berkov 1985; Estami & Esmaelzadeh 2017).

Despite its long history, EPS abounds with complex issues that are not fully understood.
Among the important questions that will not be addressed in this work are: (i) adhesion
forces, which play an important part in particle/electrode interactions and may increase the
interelectrode voltage required to first suspend particles to values well above those needed
to keep an already established suspension; (ii) effects of finite bulk and surface electrical
conductivity of the particles, which may be difficult to estimate in cases when transfer of
charge across a layer of oxide on the surface of the particles is involved, and introduce
electrical relaxation times into the problem; (iii) inelastic effects in particle collisions; (iv)
electric discharges in the gas surrounding the particles; and (v) electric forces on deposited
particles in the presence of other nearby particles.

1.2. Scope of this work
We consider a dilute suspension of solid spherical particles of mass m, radius a, and high
electrical conductivity in a gas. The electric charge of each particle is conserved in its drift
and is instantly redistributed in particle collisions. Only binary collisions are relevant for

1014 A38-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
18

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10187


Journal of Fluid Mechanics

dilute suspensions, with a number density of particles n satisfying na3 � 1. The volume
fraction of the particles is assumed to be very small.

Let q1 and q2 be the charges of two colliding particles. If the collision occurs at a point
where the electric field induced by an externally applied voltage and the charges of other
suspension particles is E, then the particles emerge from the collision with charges (q1 +
q2)/2 ± qE , with qE = γ ε0a2 Elc. Here, γ = 2π(8 ln 2 − π2/3)≈ 14.17 (Ling & Higuera
2022), ε0 is the electrical permittivity of the gas surrounding the particles, and Elc is the
component of E in the direction of the line joining the centres of the colliding particles.
The upper sign is for the particle facing the field, which acquires the excess of charge qE

above the average value (q1 + q2)/2, and the lower sign is for the rearing particle, which
emerges with an equal defect of charge.

The momentum and the kinetic energy of the particles are assumed to be conserved
in the collisions, leaving out dissipation due to mechanical friction or inelastic effects.
Calling qc the characteristic charge of a particle, the order of the electric force between two
particles spaced at a distance of order a is q2

c /(4πε0a2) (larger than this by a logarithmic
factor when the distance between the particle surfaces is small compared with a; see
Lekner 2011), while the force that the electric field due to the applied voltage and the
charge of the whole suspension (of order Ec say) exerts on a particle is of order qc Ec.
The two forces are of the same order if qc = γ ε0a2 Ec (see below). However, the first
force rapidly decreases when the distance between the colliding particles becomes large
compared with a (in a time of order a/vc, where vc is the typical velocity of the particles),
while the second force persists longer and leads to particle velocities vc = qc Ectacc/m,
where tacc is the smaller of the time between particle collisions tcoll (the inverse of
the collision frequency) and the viscous adaptation time ts = m/c f . Here, the Reynolds
number of the flow of the gas around the particle is assumed to be small, so the friction
coefficient is c f = 6πμga, with μg the viscosity of the gas. Thus in first approximation,
the charges of the particles play no role in the redistribution of momentum and kinetic
energy in the collisions, which are as for the collisions in a gas of neutral rigid spheres.

Two limiting cases may be considered, depending on the value of the ratio tcoll/ts of
the mean time between collisions to the viscous adaptation time. If this ratio is large, then
viscous friction with the gas rapidly changes the velocity of a particle emerging from a col-
lision with charge q. The particle reaches the terminal velocity v = vg + (q E + m g)/c f ,
with vg the velocity of the gas, and g the acceleration of gravity, in a time of order ts , and
the effect of the particle inertia is negligible in the rest of the particle streaming. This short
viscous adaptation stage can be considered part of the collision, which then conserves the
number and charge of the particles but does not conserve momentum and energy. Taking
this view, the trajectories of the particles consist of streaming periods in which the particles
move at the terminal velocity corresponding to the local instantaneous values of vg and
E, punctuated by nearly instantaneous binary collisions that redistribute the charges of the
colliding particles and leave them moving with the terminal velocities corresponding to
their new charges. The system can be described using a reduced distribution function of
the form F(q, E, x, t), where the dependence on E is brought in by qE .

This viscosity-dominated regime has been discussed elsewhere, e.g. Higuera (2018)
and Ling & Higuera (2022). The first of these papers introduced a kinetic equation for
the distribution function F (see (2.1) below), and the second computed the equilibrium
distribution function in the continuum regime when the mean free path between particles
collisions, λ∼ 1/(nca2) with nc the typical number of particles per unit volume, is small
compared with the characteristic size of the suspension, denoted by L in what follows.
This regime will be revisited in § 2 to: (i) establish a connection between the continuum
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regime and quasi-neutrality of the suspension, and (ii) investigate the non-uniform manner
in which the continuum regime is approached for high voltages and high values of the
number of suspended particles per unit electrode area in an EPS cell.

In the opposite case when tcoll/ts is small, the effect of the particle inertia must be
accounted for in streaming between collisions. The description of the suspension must rely
on a full distribution function f (v, q, E, x, t), which gives the mean number of particles
moving with velocities in the range between v and v + dv, and bearing charges between
q and q + dq per unit volume, about a point x at a time t as f (v, q, E, x, t) dv dq. This
distribution function obeys a Boltzmann equation. However, the redistribution of charge in
collisions described above has an irreversible contractive character (more evident if qE is
left out) that invalidates the principle of detailed balance for the equilibrium distribution
function (see e.g. Vincenti & Krueger 1965, Lifshitz & Pitaevskii 1981, and below). The
condition that the charge of the particles does not affect the redistribution of momentum
and energy in collisions implies that the marginal distribution function fv(v, E, x, t)=∫∞
−∞ f (v, q, E, x, t) dq approaches a Maxwellian in the continuum regime λ� L . The

variance of the Maxwellian depends on E , in general. The equilibrium distribution
function will be computed approximately in § 3, and hydrodynamic equations for the
particle phase analogous to the Euler equations for a monoatomic gas will be derived.
Viscous friction may come into play at time scales that are large compared with the mean
time between collisions tcoll , leading to a simplification of these equations that will also
be worked out.

To set a context for this work, we note that in broad terms, there are three possible
regimes for electrified suspensions of high conductivity particles. (i) A collision-free
regime in which λ/L � 1 and collisions between particles are rare events. In their trip
across the gap, the particles conserve the charge that they acquired in their last contact
with an electrode, so there are only two states of charge for the particles in the suspension.
This regime was analysed by Shoshin & Dreizin (2002). It is expected to be realised for
values of the voltage close to the onset for particle suspension (see below). (ii) A transition
regime with λ/L = O(1), which is expected for values of the voltage of the order of the
onset voltage but higher than it; see estimations in § 2.2. An Eulerian treatment of this
regime should rely on (2.1) for inertialess particles and (3.1) for inertial particles, the latter
being very difficult to handle. (iii) The continuum regime discussed here, for higher values
of the voltage, probably limited by the appearance of electric discharges, if these cannot be
postponed by acting on the nature and pressure of the gas where the suspension is formed.

As an example of the bearing of this classification and the distinction between inertialess
and inertial suspensions in real cases, the values of the ratios λ/L and tcoll/ts can be
estimated for some of the experiments of Shoshin & Dreizin (2002). These authors
electrically suspended aluminium particles (ρ = 2700 kg m−3) of diameters ranging over
10–30 μm in the gap between two horizontal disks spaced a distance L = 6 mm apart,
and set at voltage differences V = 1.5 and 3 kV. The suspended particles leave the gap
through a nozzle of diameter ranging from 0.8 mm to 1.6 mm at the centre of the upper
disk, being pushed by a radially inward gas flow fed through the periphery of the gap.
The lower disk is slightly concave to host a batch of deposited particles. The gap is
open at the edges of the disks, but the concavity of the lower disk intensifies the electric
field at the periphery, which, along with the inward gas flow, prevents the aerosolised
particles from escaping. Consider particles of radius a = 10 μm (m = 1.13 × 10−11 kg).
The mass density of the aerosol (mn) measured at the nozzle is approximately 4 kg m−3

for V = 1.5 kV, and 12 kg m−3 for V = 3 kV. These values provide estimations of
the number density of particles in the gap as n = 3.88 × 1011 m−3 for V = 1.5 kV and
1.17 × 1012 m−3 for V = 3 kV. The mean free path between particle collisions is then
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λ= 1/(4πa2n)= 2.05 × 10−3 m and 6.80 × 10−4 m for these two voltages. The first
value is approximately one-third of the gap width, placing this case in the transition
regime of the previous paragraph. The second is approximately one-tenth of the gap
width, nearly in the continuum regime. The friction coefficient for these particles in
air is c f = 6πμaa = 3.40 × 10−9 N s m−1, leading to a viscous adaptation time ts =
m/c f = 3.32 × 10−3 s. The time between particle collisions can be estimated using
�vp = γ ε0a2(V/L)2/c f as a typical relative velocity between particles with different
charges. This has the values 0.23 m s−1 and 0.92 m s−1 for the two voltages considered,
leading to tcoll = λ/�vp = 8.91 × 10−3 and 7.39 × 10−4 s. The ratio tcoll/ts is thus 2.68
for V = 1.5 kV, and 0.22 for V = 3 kV, which approximately amount to inertialess and
inertial suspensions, respectively.

2. Inertialess particles

2.1. Kinetic equation and equilibrium distribution function
The reduced distribution function of a viscosity-dominated suspension obeys the equation
(Higuera 2018)

∂F

∂t
+ ∇· (vF)= C, (2.1)

where v = vg + (q E + m g)/c f , and the collision term on the right-hand side satisfies∫∞
−∞ C(q) dq = ∫∞

−∞ q C(q) dq = 0, expressing the conservation of the number and charge
of the particles in collisions. The collision term can be decomposed as C(q)= C−(q)+
C+(q), with

C−(q)= −4πa2 E

c f
F(q)

∫ ∞

−∞
|q − r | F(r) dr (2.2)

and

C+(q)= 1
2

∫ ∞

−∞

∫ ∞

−∞

∫ 2a

0

|q1 − q2| E

c f
F(q1) F(q2)

×
[
δ

(
q1 + q2

2
+ qE − q

)
+ δ

(
q1 + q2

2
− qE − q

)]
2πe de dq1 dq2, (2.3)

where E = |E| and, for brevity, only the first argument of F is explicitly indicated.
In (2.2), C− is the rate at which collisions between particles with charge q and with any

other charge r deplete the population of the former. Here, E |q − r |/c f = |v(q)− v(r)|
is the relative velocity of these particles, and 4πa2 is the collision cross-section, so the
factor 4πa2 E |q − r |/c f is the volume swept per unit time by a particle with charge q in
its motion relative to particles with charge r . The product of this factor and F(r) is the
mean number of collisions of this type that a particle with charge q undergoes per unit
time, and the factor F(q) accounts for the collisions of all the particles with charge q in
the unit volume.

In (2.3), C+ is the rate at which collisions replenish the population of particles with
charge q. The collision of two particles with charges q1 and q2 generates two particles
with charges (q1 + q2)/2 + qE and (q1 + q2)/2 − qE , with qE = γ ε0a2 E

√
1 − (e/2a)2

in terms of the impact parameter e in figure 1. Integration over q1 and q2 accounts for
all possible collisions, while the δ functions select those for which one of the particles
emerges with charge q, and the factor 1/2 prevents counting each collision twice.
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Figure 1. Charge redistribution in a collision.

Using again a subscript c to denote characteristic values of the variables, calling L the
characteristic size of the suspension (the interelectrode distance in the EPS cell described
below), and assuming that the electric force plays a relevant role in the streaming of the
particles so the estimation vc = qc Ec/c f can be used, the orders of magnitude of the
transport term on the left-hand side of (2.1) and each part of the collision term on the
right-hand side are ∇·(vF)∼ qc Ec Fc/(c f L) and C± ∼ a2 Ecq2

c F2
c /c f , so C±/∇·(vF)∼

a2Lnc, with nc = qc Fc. This is also the order of the ratio of the characteristic size of the
suspension to the mean free path of the particles between collisions, λ∼ 1/(nca2).

In the continuum regime when this ratio is large, a typical particle collides many
times with its neighbours before travelling a distance of order L , approaching a state of
equilibrium with them. Each of C−(q) and C+(q) is large compared with the transport
term on the left-hand side of (2.1), so the equation reduces to C−(q)+ C+(q)= 0 at
leading order in a Chapman–Enskog expansion of the distribution function of the form
F = Feq [1 + O(λ/L)]. This is an integral equation whose solution (the equilibrium
distribution function) can be computed for given values of the electric field and the
number and charge densities, n = ∫∞

−∞ F(q) dq and ρe = ∫∞
−∞ q F(q) dq, which are the

magnitudes conserved in the collisions. In terms of the mean particle charge q = ρe/n,
the solution is of the form (see Ling & Higuera 2022)

Feq(q; E, n, q)= n

γ ε0a2 E
G

(
q − q

γ ε0a2 E

)
, (2.4)

where the function G, computed by discretising and numerically solving the integral
equation, is shown by the dashed curves in figure 2 below.

2.2. The EPS cell
As was mentioned in the Introduction, the core of an EPS cell is the gap between
two parallel horizontal electrodes spaced a distance L apart. The gap contains a certain
number of small particles of large electrical conductivity, N per unit electrode area, and
a direct current voltage V is applied to the lower electrode relative to the upper one.
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The electric field at the lower electrode, E(0) say, induces a charge q+ = αε0a2 E(0) at
each particle in contact with the electrode (Maxwell 1881), and exerts a vertical force
βε0a2 E(0)2 on the particle (Lebedev & Skal’skaya 1962). Here, α = 2π3/3 ≈ 20.67
and β ≈ 17.20. The particle detaches from the electrode when this force overcomes
the sum of its weight mg and its adhesion force to the electrode A. This condition
determines the minimum value of E(0) required for particle suspension, E(0) > Em =√
(mg + A)/(βε0a2), which in turn determines the minimum required voltage Vm = Em L ,

because the electric field is uniform in the gap at the onset of particle suspension.
If this condition is satisfied, then, as mentioned above, the particles detach from the
electrode, drift across the gap, and eventually hit the upper electrode. There, calling
E(L) the electric field at this electrode, the particles instantly acquire the negative charge
q− = −αε0a2 E(L) and experience the (downward) force −βε0a2 E(L)2, which, together
with their weight, makes the particles fall.

The forces acting on a flying particle with charge q include the electric force q E (when
the distance to the electrodes is large compared with the particle radius), the weight m g,
and the hydrodynamic drag of the gas, −c f (v − vg). In the absence of particle inertia, the
balance of these forces determines the particle velocity mentioned above.

In stationary conditions, and in the absence of inflow or outflow of particles to the
gap, the flux of particles moving upwards across any horizontal section of the gap must
equal the flux of particles moving downwards. Owing to their weight, the upward moving
particles, which necessarily bear positive charges, move more slowly and therefore are
more numerous than the downward moving particles, which bear smaller or negative
charges. This leads to a space charge density in the gap with the polarity of the lower
electrode (positive if V > 0). The electric field induced by this charge points downwards
in the lower part of the gap, opposing the field due to the applied voltage, and upwards in
the upper part, enhancing the field of the applied voltage.

The space charge sets an upper bound to the number N of particles that can be suspended
per unit electrode area for a given voltage (Zhebelev 1992). The space charge induced field
increases with N , which reduces the net field at the lower electrode, until it falls to Em and
the electric force on the particles in contact with this electrode can no longer overcome the
particle weight and the adhesion force. Thus for a given voltage higher than Vm , the value
of N may range between zero and a certain maximum Nmax . The maximum N is attained
in the normal operation of the device, when there is an excess of particles deposited on the
lower electrode. It increases when the voltage is increased. A limit to the voltage, and thus
to N , is due to the onset of electric breakdown of the gas in the regions of highest electric
field, though this issue will not be discussed here.

Using N/L as a coarse estimation of the number density of particles, the mean free path
of the suspended particles is λ∼ L/(Na2). This becomes of the order of the interelectrode
distance for N ∼ a−2, a value that, up to numerical factors, would amount to full coverage
of the lower electrode by a monolayer of particles, should these particles be deposited on
it. But such values of N are still compatible with the assumption of a dilute suspension if
the particles are suspended and L � a.

The electric field induced by the charged particles can also be estimated. Consider first
the suspension in the absence of particle collisions. Each particle conserves the charge
that it acquired in its last contact with an electrode, which was of order ε0a2V/L up to
a numerical factor. In these conditions, the charge density in the gap can be expected to
be ρe ∼ (N/L)ε0a2V/L , and the electric field induced by this charge is Esc ∼ Na2V/L
(from Gauss’ law ∇·E = ρe/ε0). The condition that this field be of the order of the field
V/L due to the applied voltage provides the estimation Nmax ∼ a−2 for the maximum
value of N . This voltage-independent estimation coincides with the one above for the mean
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free path to be of the order of the interelectrode distance, and suggests that the condition
λ� L is never attained.

However, the estimation of the charge density used above breaks down when collisions
between particles are frequent events. The exchanges of charge in the collisions drive the
suspension toward quasi-neutrality in most of the gap (keeping a dispersion of particle
charges of order qE ), which makes the charge density smaller than estimated, and allows
larger values of N to be attained before the space charge induced field becomes of
order V/L . Thus quasi-neutrality of the suspension opens the way to a continuum regime,
which can be expected for values of V large compared with Vm and values N � a−2.
When V � Vm , the condition that the field at the lower electrode should approach Em
when N approaches its maximum value implies that the space charge induced field is
largely offsetting the field due to the applied voltage. The field in most of the gap is still
of order V/L � Em (actually larger than V/L in the upper part of the gap). The charges
that individual particles acquire in collisions with other particles are therefore of order
qE = O(ε0a2V/L). Since collisions are very frequent in the continuum regime, a particle
that emerges from a collision with an excess of charge of order qE may emerge from
another with a defect of charge of order −qE . Quasi-neutrality of the suspension is due
to the near cancellation of the contributions of positive and negative particles to the mean
particle charge, not to the charges of individual particles being small.

An order-of-magnitude estimation of the charge density is not easy to obtain in these
conditions (V/Vm � 1 with E = O(Em) at the lower electrode), because the charge
density is then far from uniform across the gap (see Shoshin & Dreizin 2002). This, in
turn, precludes an estimation of the maximum N that can be attained for a given voltage.
To assess the extent to which quasi-neutrality and the continuum regime are realised,
and to compute the maximum N , stationary one-dimensional solutions of (2.1), together
with the Poisson equation ∇2φ = −ρe/ε0 for the electric potential φ, with E = −∇φ,
have been computed numerically in the gap between two infinite horizontal electrodes
for various values of the voltage well above the minimum required for electric forces to
suspend particles, and values of N well above the value a−2 for which collisions between
particles first come into play according to the estimations of the previous paragraphs.
These solutions are compared with the equilibrium distribution function (2.4) to quantify
the approach to equilibrium.

Calling x the distance measured upwards from the lower electrode, the solutions sought
are of the form F(q, x), φ(x). The gas in the closed gap is quiescent in these conditions,
the electric force transferred to the gas by the inertialess particles being balanced by a
vertical pressure gradient. The velocities of the particles are also vertical, of value vx =
(q E − mg)/c f .

The following boundary conditions are imposed:

F(q, 0)= F+δ(q − q+) for vx > 0, with F+
q+E − mg

c f
= −

∫
vx<0

vx F dq,

φ = V,

⎫⎬⎭
(2.5)

at the lower electrode x = 0,

F(q, L)= F−δ(q − q−) for vx < 0, with F−
q−E − mg

c f
= −

∫
vx>0

vx F dq,

φ = 0,

⎫⎬⎭
(2.6)
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at the upper electrode x = L , and∫ L

0

∫ ∞

−∞
F(q, x) dq dx = N . (2.7)

The first lines of (2.5) and (2.6) express the conditions that the particles reaching each
electrode are re-emitted with charges q+ = αε0a2 E(0) and q− = −αε0a2 E(L), and the
velocities corresponding to these charges, in such a manner that the total number of
particles per unit electrode area is conserved, equal to the value of N in (2.7).

It may be noted that the parameter β and the adhesion force A do not appear in this
formulation. Apparently a solution may exist whenever vx (q+)= (q+E(0)− mg)/c f > 0,
a condition that can be satisfied for sufficiently small values of N provided that V >

(mg/αε0)
1/2L/a. A more detailed analysis of the rebound of the particles at the lower

electrode might modify this conclusion. While an account of the particle–electrode
interaction may be very complex and is beyond the scope of this work, two limiting cases
are briefly discussed here. In the absence of inertial effects, lubrication theory determines
the hydrodynamic force retarding the motion of a falling particle at a distance x � a
from the lower electrode as Fp = 3πμga2vp/8x , due to the squeezing of the gas film
between particle and electrode. Here, vp is the instantaneous velocity of the particle.
The balance of this force and the attractive van der Waals force Ha/(24x2), where H
is the Hamaker constant (Israelachvili 1992), gives vp = H/(9πμgax), suggesting that
the particle will be trapped by the electrode and can be resuspended only if the electric
field at the electrode surface is larger than Em . On the other hand, if the inertia of the
particle matters in the last stage of its approach to the electrode (or in a longer stage in the
case tcoll/ts � 1 discussed in the following section), then the particle may rebound even
in the absence of electric forces. Calling vpi the velocity of the falling particle before
it enters the range of attractive forces, an energy balance (see e.g. Friedlander 2000)
determines the condition for the particle to rebound as v2

pi
> v2

cr = 2(1 − e2
r )(−Φ0)/me2

r ,
where er is a restitution coefficient, and Φ0 < 0 is the potential of the attractive forces at
the electrode surface. When this condition is satisfied, the particle rebounds with velocity
vpo = vpi er (1 − v2

cr/v
2
pi
)1/2. Later, the drag of the gas, whose effect has been left out in

the rebound, slows down the particle, and would force it to fall back on the electrode if the
electric field is smaller than the value mg/q+ required for the electric force to overcome
the particle weight. This field is smaller than Em and does not depend directly on the
adhesion force.

Coming back to the stationary one-dimensional problem posed in the
previous paragraphs, the variables (x, vx , φ, q, F) are non-dimensionalised with
[L ,mg/c f , E0L , q0, 1/(αLa2q0)], where E0 =√mg/αε0a2 and q0 E0 = mg, so N is
scaled with 1/(αa2). These dimensionless variables are denoted with the same symbols
used before for their dimensional counterparts.

Note, in particular, that the dimensionless voltage V in the dimensionless form of (2.5)
is the ratio of the interelectrode voltage to the minimum value E0L for which the particles
can be kept suspended in the absence of adhesion forces. And up to a factor α, N is the
ratio of the number of suspended particles per unit electrode area to the value a−2 of this
magnitude for which λ∼ L and collisions between particles first come into play.

The variables q and x are discretised using finite differences, and the discretised
equations are solved with a pseudo-transient iteration. The numerical method was
described in Higuera (2018).

Figure 2 shows some results of these computations. The computed distribution function
is rescaled as Feq in (2.4), using the local values of n(x)= ∫∞

−∞ F(q, x) dq, q̄(x)=
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Figure 2. Distribution function scaled with the local values of n(x), q(x) and E(x), for (a,b) (V, N )= (4, 9),
(c,d) (V, N )= (8, 43), and (e, f ) (V, N )= (10, 75). (a,c,e) The scaled distribution function at nine equispaced
values of x between 0.1 and 0.9. (b,d, f ) The same function at the lower electrode (x = 0, solid) and the upper
electrode (x = 1, dashed). In (a), x increases as indicated by the arrows. In (c) and (e), the results for different
values of x are very close to each other for most values of x , except for x = 0.8 and 0.9, which are marked by
arrows. The dashed curves in (a,c,e) show the equilibrium distribution function scaled as in (2.4).

n(x)−1 ∫∞
−∞ q F(q, x) dq and E(x). It is displayed in figure 2(a,c,e) for nine equispaced

values of x between 0.1 and 0.9, for V = 4, N = 9 (figure 2a), V = 8, N = 43 (figure 2c),
and V = 10, N = 75 (figure 2e). The dashed curves in these graphs show the scaled
equilibrium distribution function G in (2.4). The rescaled distribution function at the
electrodes, x = 0 and 1, is shown separately in figure 2(b,d, f ). The largest values of N
for which a numerical solution has been obtained are approximately 10.5 for V = 4, 44 for
V = 8, and 77 for V = 10. The electric field at the lower electrode is rapidly approaching its
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Figure 3. Distribution of mean charge q = ρe/n across the gap for (V, N )= (4, 9), (8, 43) and (10, 75),
from top to bottom.

minimum possible value, which is unity in dimensionless variables, when N is increased
to these values.

As can be seen, the distribution function at the electrodes always differs from
the equilibrium distribution function. The sharp peaks in the figures, specially at the
electrodes, are due to the δ functions in (2.5) and (2.6), which are discretised on the
numerical mesh. The slight shifts of the locations of these peaks are due to the variation
of q with x . When V = 8 and 10, the peaks smooth out away from the electrodes (though
the peak originated at the upper electrode is significant in figure 2(c,e) for x larger than
approximately 0.7 and 0.8, respectively), and the distribution function approaches the
equilibrium one in most of the cell. Some asymmetry is left, however, probably a remnant
of the slow upward moving particles outnumbering the faster downward moving particles,
as mentioned above. When V = 4, on the other hand, the peaks persist longer, and the
distribution function nowhere approaches the equilibrium one.

These results are in line with the estimation above, that C±/∇·(vF)∼ a2Lnc, as a2Lnc
is the dimensionless N up to a constant factor. Accounting for the scaling factors used
in the non-dimensionalisation, a global Knudsen number K n = α/(4πN ) can be defined,
where 1/N 1/3 plays the role of the mean dimensionless distance between particles (4πa2

being the collision cross-section). Values of this number are 0.18 for (V, N )= (4, 9),
0.038 for (V, N )= (8, 43), and 0.022 for (V, N )= (10, 75).

The mean particle charge q = ∫∞
−∞ q F(q) dq , scaled with αε0a2V/L , is shown in

figure 3 as a function of x for the three pairs of values of the dimensionless parameters
(V, N ) in figure 2. The scaling factor αε0a2V/L is of the order of the charge acquired by
a particle in a collision with another particle or with the upper electrode, so the results
in this figure show the extent of the cancellation of the contributions of positive and
negative particles to the mean particle charge. Clearly, the suspension is approaching
quasi-neutrality in a plateau that covers most of the gap when V increases, with N of the
order of its maximum possible value, Nmax (V ). To the resolution of these computations,
the scaled mean particle charge is small also in the thin Knudsen layers by the electrodes
where the mean free path is not small compared with the distance to the nearest electrode.
These results substantiate the estimations above, linking equilibrium and quasi-neutrality.

Figure 4 shows sample distributions of the dimensionless electric field for two values of
the voltage and various values of the number of particles per unit electrode area. As can
be seen, the electric field is an increasing function of the distance to the lower electrode.
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Figure 4. Distribution of the dimensionless electric field for (a) V = 4, N = 4, 6, 8, 10, 10.5, and (b) V = 8,
N = 25, 37, 43, 44, with N increasing as indicated by the arrows.

It takes values of order V in most of the gap, but rapidly decreases towards its minimum
possible value (here, unity) at the lower electrode when N approaches a certain Nmax (V ).

3. Particle inertia

3.1. Kinetic equation
The analysis of the previous section relies on the assumption that the inertia of the particles
in negligible in their streaming between collisions; i.e. that tcoll � ts with tcoll = λ/vc and
ts = m/c f . Using the coarse estimations in that section for the characteristic values of
the variables involved, we find λ= L/(Na2) and vc = qc Ec/c f = ε0a2(V/L)2/c f , so the
condition tcoll � ts amounts to V 2 N � c2

f L3/(ε0ma4). If this condition is not satisfied,
then the inertia of the particles must be taken into account, and the full distribution
function f (v, q, E, x, t) must be used. The limit tcoll � ts is discussed in this section.

The distribution function satisfies the Boltzmann equation

∂ f

∂t
+ ∇x · (v f )+ ∇v· (a f )= C with a = 1

m

[
m g + q E − c f (v − vg)

]
, (3.1)

where ∇x ·(•) and ∇v·(•) are the divergence operators in the x and v spaces. The
expression of the collision term on the right-hand side of (3.1) can be written by analogy
with a gas of rigid spheres, but taking into account the redistribution of charge in the
collisions and the condition that the charge of the particles does not affect the redistribution
of momentum and energy; cf. the discussion of these issues in § 1.2. As before, the
collision term can be split into depleting and replenishing collisions, C = C− + C+. The
expressions of each part are (see e.g. Vincenti & Krueger 1965 for details)

C−(v, q)= − f (v, q)
∫

f (w, r) |v − w| e de dψ dw dr (3.2)

and

C+(v, q)=
∫

f (v′, q ′) f (w′, r ′) δ
(

q ′ + r ′

2
+ qE − q

)
|v − w| e de dψ dw dq ′ dr ′,

(3.3)
where, again to simplify the notation, only the first two arguments of the distribution
function are indicated explicitly.
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In (3.2), for depleting collisions, a particle with velocity v and charge q collides with
a particle of velocity w and charge r , generating two particles with velocities v′ and w′
and charges (q + r)/2 − qE and (q + r)/2 + qE , respectively, where qE = γ ε0a2 Elc, with
Elc the projection of the electric field in the direction of the line of centres, which is
oriented now from the centre of the particle with velocity v to the centre of the particle with
velocity w, so Elc may be positive or negative. Here, e is the impact parameter sketched in
figure 1, which ranges from 0 to 2a, but the direction of the relative velocity v − w need
not coincide now with that of the electric field. For each direction of v − w, ψ is the angle
around the line with this direction through the centre of the particle with velocity v, which
defines the position of the point of contact of the two particles in their collision. This angle
ranges from 0 to 2π, and for convenience, it is taken to be zero when the point of contact
is in the plane defined by the centre of this particle and the direction of the electric field.
The integrals over w and r extend from −∞ to ∞. The value of Elc in qE depends on e
and ψ for each direction of v − w.

The velocities v′ and w′ with which the particles emerge from the collision are known
functions of v and w, e andψ , determined by the conditions of conservation of momentum
and energy in the impact of two rigid spheres.

In (3.3), for replenishing collisions, the mechanical inverse collision of each depleting
collision is considered. The collision of particles with velocities v′ and w′ and the same
values of e andψ as in the (direct) depleting collision restores the initial velocities v and w.
The modulus of the relative velocity |v′ − w′| coincides with |v − w|, and the volume
element dv′ dw′ in velocity space coincides with dv dw (see e.g. Vincenti & Krueger
1965). However, these considerations do not extend to the charges of the particles. The
charges q ′ and r ′ of the particles entering a replenishing collision need not coincide with
the charges with which the particles emerged from the corresponding direct depleting
collision. The only constraint, enforced by the δ function in (3.3), is that the charge of the
particle emerging from the replenishing collision with velocity v must be q. The charge of
the particle emerging with velocity w will be different from r , in general.

As can be verified taking advantage of the presence of the δ function to simplify (3.3),
the integral

∫∞
−∞ C dq coincides with the usual expression of the collision term for a gas

of rigid neutral spheres, written in terms of the marginal velocity distribution function
fv(v) =

∫∞
−∞ f (v, q) dq; see Appendix A.

Contrary to the previous section, collisions are understood here in the strict sense of
contacts between particles. They conserve the number of particles, the momentum, the
kinetic energy and the charge. Therefore,∫

C dv dq =
∫

vC dv dq =
∫ |v|2

2
C dv dq =

∫
qC dv dq = 0. (3.4)

3.2. Equilibrium distribution function
No attempt is made here to directly solve (3.1). Instead, the equilibrium distribution
function that solves C( feq)= 0 for given values of the electric field and the conserved
magnitudes

n =
∫

f dv dq, p =
∫

v f dv dq, U =
∫ |v|2

2
f dv dq, ρe =

∫
q f dv dq, (3.5)

is computed approximately using a direct simulation Monte Carlo method; see e.g. Garcia
(1999).

In conditions of near equilibrium, the collision-conserved moments (3.5) vary only over
distances and times that are large compared with the mean free path λ= 1/(4

√
2πna2) and
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the mean time between collisions tcoll , respectively. The same is true of the electric field,
which is induced by the slowly varying charge density ρe and the constant interelectrode
voltage. Thus it suffices to consider a uniform electric field to compute the equilibrium
distribution function.

Note that by addressing the problem C( feq)= 0, we are leaving out the effects of gravity
and viscous friction, which appear in the transport operator (the left-hand side of (3.1)) but
not in the collision operator. The distribution feq pertains to the double limit K n = λ/L →
0 and tcoll/ts → 0. The effects of the non-zero values of both parameters are taken care of
by the transport operator in (3.1), not by the functional form of feq .

A square two-dimensional numerical domain of side Lb � λ in the direction of the
electric field and in a direction perpendicular to it suffices for these computations, though,
of course, the motion of the simulated particles is three-dimensional. Conditions of
periodicity are used, reinjecting the particles that cross a side of the domain with the same
velocity through the opposite side. The charges and velocities of the particles are written in
the form q j = q + q ′

j and v j = v + v′
j , with q = ρe/n and v = p/n, which are conserved

in the collisions. The effect of q is to cause a uniform acceleration q E to the system of
particles, which is removed by imposing the condition q = 0 on the initial charges of the
particles. Galilean invariance implies that the value of p, which is conserved, does not
change the functional form of the distribution function. The presence of p is removed by
choosing initial velocities of particles with a zero mean value.

Two more comments are in order. First, dimensional analysis shows that the width of
the q ′ distribution scales with qE = γ ε0a2 E , where E is the strength of the uniform field
acting on the particles. Second, anticipating the results of the computations displayed in
figure 5 below, a correlation exists between q ′ and the component u′ of the particle velocity
v′ in the direction of the electric field. This implies that particles with a positive q ′ are
more likely to move in the direction of the electric field, and particles with a negative
q ′ in the opposite direction. Owing to this correlation, the electric field continuously
does work on the system of particles. While this energy input keeps the particles in a
real EPS cell suspended despite the damping effect of the viscous friction with the gas,
it must be artificially removed from the statistically homogeneous system used in the
computations, or else the velocities of the particles would continuously increase with time.
This is prevented by adding the fictitious drag force −mv/σ , with σ constant, during
the streaming of the particles between collisions. Once the system of particles settles
to a statistically stationary state, the mean rate at which the electric field does work on
a particle, of order q ′

c Eu′
c, where q ′

c = qE and u′
c is the characteristic width of the u′

distribution, must be balanced by the rate of energy removal, of order mu′2
c /σ . This balance

determines the characteristic width of the u′ distribution as u′
c ∼ σqE E/m.

The particles in the domain are grouped in superparticles. Each superparticle obeys
the same equations as individual particles (see (3.6) below), but it counts for as many
particles as it represents in computing averages. In the computations of this section, 105

superparticles were used with 100 particles per superparticle, and Lb/λ= 1110.
The superparticles are marched in time. Each time step consists of streaming and colli-

sion phases. In the streaming phase, the three components of each particle ( j) velocity and
position are updated using a leapfrog scheme; i.e. adding to them�v j and�x j given by

m �v j = (q j E − mv j/σ
)
�t and �x j = (v j +�v j

)
�t, (3.6)

with �t chosen for the mean displacement of the superparticles in a time step to be of the
order of their mean free path.
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Figure 5. Nine equispaced contours of the joint equilibrium distribution function of the particle velocity
component parallel to the electric field and the particle charge for (a) σ̃ ≈ 33.32 and (b) σ̃ ≈ 166.59, showing
the correlation between these variables. (c) The results are superimposed (solid for σ̃ ≈ 33.32, dashed for
σ̃ ≈ 166.59), showing that the width of the u′ distribution is proportional to σ within the numerical error.

In the collision phase, the domain is split into N 2
cell equal cells of size comparable to

the mean free path of the superparticles. A representative number of superparticle pairs
is selected in each cell on the basis of the number of superparticles present in the cell
and their relative velocities, but disregarding their positions (see Garcia 1999 for details).
Collisions are assumed to occur between pairs of these superparticles, instantaneously
changing their velocities and charges in accordance with the conditions of conservation
of momentum, energy and charge in each collision, and assuming a random uniform
distribution of the contact point on the particle surface.

Histograms of the velocity and charge of the system of particles are computed by
accumulating the velocities and charges of the particles over a large number of time steps,
after the system has been left to evolve from an arbitrary initial state for a sufficiently long
time for the initial conditions to be obliterated.

Scaling charges and velocities with qE = γ ε0a2 E and vλ = (qE Eλ/m)1/2, and the time
with tλ = λ/vλ (which differs from the inverse of the mean collision frequency by a factor
2
√

2/π), the equilibrium solution depends only on σ̃ = σ/tλ, which is the ratio of the
energy removal time to the mean time between particle collisions. This ratio has to be
large for the energy removal not to inhibit the interaction between particles.

As far as this condition is satisfied, numerical results for different values of σ̃ show
that, within the accuracy of the computations, the shape of the distribution function is
independent of σ̃ , while the width of the velocity distribution is proportional to it. This is
in agreement with the previous estimation u′

c ∼ σqE E/m, which amounts to (u′
c/vλ)∼ σ̃

in dimensionless variables.
Figure 5 shows the joint equilibrium distribution function feq(u,q) (u, q)=∫
feq(v, q) dv dw computed for two values of σ̃ . Here, v and w are the velocity

components perpendicular to the electric field. The two results are superimposed in
figure 5(c), revealing the universal form of the joint distribution when u′ and q ′ are scaled
with σ̃ vλ and qE , respectively. Results for other large values of σ̃ support this conclusion.

No correlation exists between the charge and the velocity components perpendicular to
the electric field (results not displayed). The variance is the same for the three velocity
components, reflecting that collisions rapidly redistribute the energy supplied by the
electric field.
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The marginal velocity distribution feqv (v)=
∫∞
−∞ feq dq is a Maxwellian, in accordance

with the fact that
∫∞
−∞ C dq coincides with the collision term for a gas of neutral rigid

spheres:

feqv (v)=
1

n3/2(2kT/m)3/2
exp

[
−(u − u)2 + (v − v)2 + (w−w)2

2kT/m

]
, (3.7)

where u, v, w are the Cartesian components of the particle velocity, u, v, w are their mean
values, which are zero in these computations, and the standard notation kT/m, with T the
granular temperature, is used for the variance of the velocity.

The marginal charge distribution feqq
(q)= ∫ feq dv is not a Maxwellian. It can be

better fitted by

feqq
(q)= A exp

[
−0.55

(
q − q

γ ε0a2 E

)2

− 0.075
(

q − q

γ ε0a2 E

)4
]
, (3.8)

with q = 0 in these computations.
The joint distribution function feq(u,q)(u, q) is not a Maxwellian, but its shape is

universal when the variables u′ = u − u and q ′ = q − q are scaled with
√

kT/m and qE ,
respectively.

3.3. Hydrodynamic equations
Multiplying the Boltzmann equation (3.1) by 1, v, |v|2/2 or q, integrating over v and q,
taking into account (3.4), and integrating by parts the contribution of the term ∇v·(a f ) of
(3.1), we obtain the conservation budgets (see Appendix B)

∂n

∂t
+ ∇· p = 0, (3.9)

∂ p
∂t

+ ∇·𝝥= 1
m

[
mn g + ρe E − c f

(
p − nvg

)]
, (3.10)

∂U

∂t
+ ∇· Q = 1

m

[
m g· p + j ·E − cg

(
2U − vg· p

)]
, (3.11)

∂ρe

∂t
+ ∇· j = 0, (3.12)

where, in addition to the moments already defined in (3.5),

𝝥=
∫

vv f dv dq, Q =
∫ |v|2

2
v f dv dq, j =

∫
qv f dv dq. (3.13)

These moments of the distribution function can be computed approximately in
conditions of near equilibrium when f = feq at leading order in an expansion of the
distribution function in powers of the Knudsen number K n = λ/L � 1, where L is again
the characteristic size of the suspension.

The moments U , 𝝥 and Q are the same as for a monoatomic gas, because the integrals
over q can be done beforehand, and these moments depend only on the marginal velocity
distribution feqv (v). Thus

U = | p|2
2n

+ 3
2

nkT

m
, 𝝥= p p

n
+ nkT

m
I, Q =

( | p|2
2n2 + 5

2
kT

m

)
p, (3.14)

where I is the unit tensor.
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The components of the current density j perpendicular to the electric field, j⊥ say, can
also be simply evaluated as j⊥ = ρe p⊥/n, because the variables v⊥ and q are statistically
independent.

Finally, the component of j parallel to the electric field can be written as

j‖ =
∫

qv‖ f dv dq = ρe p‖
n

+
∫ (

q − ρe

n

) (
v‖ − p‖

n

)
f dv dq, (3.15)

where only the second term requires using the full distribution function computed
approximately in the previous section. Since this function is known only numerically, the
integral must also be evaluated numerically. The result is 0.45 n

√
kT/m γ ε0a2 E , where

the universal shape of the joint distribution function has been used, and the factor 0.45 is
known only to the accuracy of the previous computations.

Carrying these results to (3.9)–(3.12), introducing the notation v = p/n, q = ρe/n,
and then suppressing the bars in v and q, which are no longer necessary, we obtain
conservation equations analogous to the Euler equations for a monoatomic gas:

∂n

∂t
+ ∇· (nv)= 0, (3.16)

∂

∂t
(nv)+ ∇· (nvv)+ ∇nkT

m
= n

m
[m g + q E − c f (v − vg)], (3.17)

∂

∂t

(
n
|v|2

2
+ 3

2
nkT

m

)
+ ∇·

[
n

( |v|2
2

+ 5
2

kT

m

)
v

]
= n

m

{
m g·v + q E·v + 0.45

√
kT

m
γ ε0a2 E2 − c f

[
(v − vg)·v + 3

kT

m

]}
, (3.18)

∂

∂t
(nq)+ ∇·

(
nqv + 0.45 n

√
kT

m
γ ε0a2 E

)
= 0, (3.19)

which must be supplemented with a Poisson equation for the electric potential,

∇2φ = −ρe

ε0
, (3.20)

and the Navier–Stokes equations for the gas. Leaving out compressibility effects, and
taking into account the force that the particles exert on the gas, these equations read

∇·vg = 0,
∂vg

∂t
+ vg·∇vg = −∇ pg

ρg
+μg ∇2vg + nc f (v − vg), (3.21)

for a dilute suspension with very small solid volume fraction.
Equations (3.16)–(3.18) can be transformed much as the Euler equations for a gas. Both

(3.17) and (3.18) can be rewritten in non-conservation form by subtracting from them the
continuity equation (3.16) multiplied by v or |v|2/2 + (3/2)kT/m. The following form of
the energy equation is obtained by subtracting from the non-conservative form of (3.18)
the dot product of v with the non-conservation form of (3.17):

n
∂

∂t

(
3
2

kT

m

)
+ nv·∇

(
3
2

kT

m

)
+ nkT

m
∇·v = n

m

(
0.45

√
kT

m
γ ε0a2 E2 − 3c f

kT

m

)
.

(3.22)
This equation will be used in the next subsection instead of (3.18).
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3.4. Simplification of the particle phase equations when viscous friction dominates
The effect of the viscous friction of the particles with the gas is small during the streaming
of the particles between consecutive collisions because the viscous adaptation time is large
compared with the mean time between collisions, ts � tcoll . However, viscous friction may
play an important role in longer time scales. In an EPS cell, ts is typically short compared
with the transit time of a typical particle across the cell, tr = L/vc.

In these conditions, assuming that the macroscopic state of the suspension changes in
times of order tr or larger, the first two terms on the left-hand side of the momentum
equation (3.17) are of order ncvc/tr = ncv

2
c/L . Now, the velocity of the gas, vg in the

right-hand side of this equation, is at most of the order of the mean velocity of the particles,
because the motion of the gas is due to the drag of the particles. Therefore the last term on
the right-hand side of (3.17) (the friction force) is of order (nc/m)c f vc = ncvc/ts , which
is much larger than the first two terms terms on the left-hand side. The other two terms on
the right-hand side (the gravity and electric forces) are at least of the order of the friction
force, because this force is a consequence of the motion of the particles, which is induced
by the gravity and the electric forces in an EPS cell. In summary, (3.17) reduces to

∇nkT

m
= n

m

[
m g + q E − c f (v − vg)

]
(3.23)

in first approximation for tr � ts . This equation differs from the balance of forces found in
the previous section for inertialess particles only in the pressure-like force on its left-hand
side.

The ratio of the order-of-magnitude of each of the three terms on the left-hand side of
(3.22) to the order-of-magnitude of the last term on the right-hand side is ts/tr � 1, so
(3.22) reduces to

0.45 γ ε0a2 E2 = 3c f

√
kT

m
, (3.24)

which is a local balance between the energy supplied to the suspension by the electric field
and the energy lost by viscous friction with the gas.

Summarising, (3.16)–(3.19) simplify to

∂n

∂t
+ ∇· (nv)= 0, (3.25)

∇nkT

m
= n

m
[m g + q E − c f (v − vg)], (3.26)

0.45 γ ε0a2 E2 = 3c f

√
kT

m
, (3.27)

∂

∂t
(nq)+ ∇·

(
nqv + 0.45 n

√
kT

m
γ ε0a2 E

)
= 0, (3.28)

when tcoll � ts � tr .
Equation (3.28) can be further simplified to

∇·
(

nE2 E
)

= 0 (3.29)

by using (3.27) to eliminate
√

kT/m and assuming that the suspension is sufficiently close
to neutrality (q/(γ ε0a2 E)� 1) to leave out the first two terms of (3.28).
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4. Summary and future work
The dynamics of dilute suspensions of small, bipolarly charged particles in a gas
has been analysed for particles of high electrical conductivity in two conditions of
interest.

The inertia of the particles can be neglected when the mean time between particle
collisions, tcoll , is large compared with the viscous adaptation time ts required for the
particles to attain their terminal velocity under the action of electrical, gravity and
viscous drag forces. The suspension approaches a continuum regime when the mean
free path of the particles becomes small compared with the suspension size, which
in an EPS cell occurs for values of the interelectrode voltage that are large compared
with the minimum voltage required to electrically lift the particles, and values of the
number of particles per unit electrode area nearing the maximum possible for the applied
voltage.

The inertia of the particles plays an important role in the opposite limit when tcoll �
ts . The equilibrium distribution function in the continuum regime has been computed
approximately in this case, and hydrodynamic equations analogous to the Euler equations
for a monoatomic gas have been derived for the local number density of particles,
their mean momentum and energy, and their mean charge, which are the magnitudes
conserved in collisions. These equations simplify when the viscous adaptation time is
small compared with the transit time of a particle across the suspension.

Some limitations and future extensions of the work are briefly summarised.
The volume fraction of the particle phase, Φ = (4/3)πa3n ∼ (a/L)/(λ/L), has been

assumed to be small, despite the small value of λ/L in the continuum regime. This is
appropriate for dilute suspensions of small particles. An extension to account for non-zero
values of Φ would be desirable. This would require accounting for effects of the particles
on the motion of the gas beyond the Stokes drag in (3.21), and probably also a modified
kinetic equation for the distribution function.

The electrical conductivity of the particles has been assumed to be sufficiently high for
the transfer of charge in collisions to be effectively instantaneous. This is appropriate for
metallic particles free from an oxide cover. A finite electrical conductivity introduces an
electric relaxation time to characterise this process. This time is to be compared with the
duration of particle contacts, which depends on the elastic properties of the particles and
the electrodes. The problem for values of this time ratio of order unity has been tackled
in Zhebelev (1991, 1993) and Higuera (2023) for inertialess particles using an effective
conductivity model, and the analysis can be extended to account for the particle inertia.
More complex mechanisms of contact charging (Matsusaka & Masuda 2003; Laurentie,
Traoré & Dascalescu 2013) are needed to describe suspensions of less conducting or
insulating materials of interest for other applications.

Inelastic collisions have not been taken into account. These collisions increase the
energy dissipation rate above that due to viscous friction of the particles with the gas,
which amounts to decreasing the dissipation time ts . Strongly inelastic collisions are
incompatible with a condition of the type tcoll/ts � 1, though they can be immediately
accommodated in the analysis of § 2 for tcoll/ts large. Mildly inelastic collisions, leading
to a dissipation rate of the same order as viscous friction, can be expected to fit into an
extended form of the analysis in § 3 for small values of this time ratio.

Funding. This work was supported by grants PID2020–115730GB-C22 and PID2023–150329NB-C22
funded by MCIN/AEI/10.13039, and by ERDF A way of making Europe.
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Appendix A. Collision operator for the marginal distribution function
The term C− in (3.2) is just

C−(v, q)= − f (v, q)
∫

fv(w) |v − w| e de dψ dw, (A1)

so on integrating over q,∫ ∞

−∞
C−(v, q) dq = − fv(v)

∫
fv(w) |v − w| e de dψ dw. (A2)

As for C+, disposing of the δ function in (3.3), we have∫ ∞

−∞
C+(v, q) dq =

∫
f

(
v′, q − qE − r ′

2

)
f (w′, r ′) |v − w| e de dψ dw dr ′ dq,

(A3)
which with the change of variables q̃ = q − qE − r ′/2, r̃ ′ = r ′, becomes∫ ∞

−∞
C+(v, q) dq =

∫
f (v′, q̃) f (w′, r̃ ′) |v − w| e de dψ dw d̃r ′ dq̃

=
∫

fv(v
′) fv(w

′) |v − w| e de dψ dw. (A4)

In summary,
∫∞
−∞ [C−(v, q)+ C+(v, q)] dq coincides with the collision term for a gas

of rigid neutral spheres, written in terms of the marginal distribution function fv(v)=∫∞
−∞ f (v, q) dq .

Appendix B. Equations for conserved moments
Multiplying (3.1) by 1, v, |v|2/2 or q, and integrating over v and q as mentioned in the
text, we have

∂

∂t

∫ ⎛⎜⎜⎜⎝
1
v

|v|2/2
q

⎞⎟⎟⎟⎠ f dv dq + ∇x ·
∫ ⎛⎜⎜⎜⎝

1
v

|v|2/2
q

⎞⎟⎟⎟⎠ a f dv dq +
∫ ⎛⎜⎜⎜⎝

1
v

|v|2/2
q

⎞⎟⎟⎟⎠∇v (a f ) dv dq

=
∫ ⎛⎜⎜⎜⎝

1
v

|v|2/2
q

⎞⎟⎟⎟⎠ C dv dq = 0. (B1)

The last term on the left-hand side can be rewritten as

∫
∇v·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

1
v

|v|2/2
q

⎞⎟⎟⎟⎠ a f

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dv dq −
∫ ⎛⎜⎜⎝

0
a f

v·a f
0

⎞⎟⎟⎠ dv dq

= −

⎛⎜⎜⎜⎝
0

m−1 [m g + ρe E − c f
(

p − nvg
)]

m−1 [m g· p + j·E − c f
(
2U − vg· p

)]
0

⎞⎟⎟⎟⎠ , (B2)
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where the first term is zero, and use has been made of a = m−1[m g + q E − c f (v − vg)]
in (3.1), the definitions of n, p, U and ρe in (3.5), and j in (3.13), to evaluate the integrals
in the second term.

Equations (3.9)–(3.12) are just (B1) with the definitions of the moments in (3.5) and
(3.13) used in the first two terms, the results (B2) moved to the right-hand sides, and the
subscript x in ∇x removed.
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