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1. Introduction

Let G be a group and R a (non-trivial, commutative, unital) ring. A number of finiteness
conditions for the pair R and G have played a role in homological group theory and in
algebraic topology. Classical examples include the conditions FP and FL. Both FP and
FL are defined purely algebraically, although in the case when R = Z and G is finitely
presented both have topological interpretations, discovered by Wall [33, 34]. Recently,
Bestvina and Brady introduced a topological condition, FH, at least as strong as FL, in
the course of their work exhibiting non-finitely presented groups of type FL over Z [5].
(In fact, they show that their groups are FL by showing that they are FH.)

Roughly speaking, the difference between FL and FP is measured by an element E(G)
in K0(RG), which we shall call the Euler class of G. More precisely, if G is FP, then
the image of E(G) in the reduced K-group K̃0(RG) is zero if and only if G is FL. This
image will be denoted Ẽ(G) and referred to as Wall’s finiteness obstruction. As general
references we recommend [24,30] for K0 and Wall’s finiteness obstruction, and [8] for
finiteness conditions for groups.

We introduce a new finiteness condition FPP, defined algebraically, and lying between
FP and FL. (The extra ‘P ’ stands for ‘permutation’.) Just as every known torsion-free
group of type FP is of type FL, it seems to be the case that every group of type FP is
of type FPP. We show that the Euler class of an odd-dimensional orientable Poincaré
duality group of type FPP has order at most two. In cases when K0 has no 2-torsion,
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it follows that such a group is necessarily of type FL. We exhibit groups G such that
K0(QG) contains torsion which is mapped to zero in K0(CG). For some of these groups,
we show that E(G) is a non-zero element of this kernel, and hence exhibit groups of type
FP over Q that are FL over C but not FL over Q. We deduce that over C, FH is strictly
stronger than FL.

Some of the techniques used for computing K0 also apply to the abelian monoid P of
isomorphism types of finitely generated projective modules. Hence we are able to give
examples of non-free stably free projective modules for certain group algebras.

Most of our calculations of K-groups (and the monoid P) rely on work of Waldhausen,
or of Bergman and Dicks [2,12,32], but we do give a self-contained and comparatively
elementary proof that there are groups that are FL over C but not FL over Q. The
definitions of all of the finiteness conditions mentioned above, and statements of our
main results, are contained in the next section.

2. Definitions and statements

For G and R as above, recall that G is said to be of type FP over R if there is a finite
RG-projective resolution of R (viewed as an RG-module by letting each g ∈ G act as the
identity) in which each term is finitely generated, i.e. an exact sequence

0 → Pm → Pm−1 → · · · → P1 → P0 → R → 0 (2.1)

in which each Pi is a finitely generated projective module [8, VIII.6]. Similarly, G is said
to be of type FL over R if there is an exact sequence as in (2.1) in which each Pi is a
finitely generated free module.

We define G to be of type FPP over R if there exists a sequence as above in which
each Pi is a finitely generated projective permutation module, i.e. a finite direct sum of
modules of the form RG/H, where H is a finite subgroup of G whose order is a unit in R.
Clearly, for any G and R, FL ⇒ FPP ⇒ FP, and if G is R-torsion-free, then FL ⇔ FPP.
The author is not aware of any G and R such that FP �⇒ FPP. The existence of such
G and R is a generalization of the question of whether there exists torsion-free G and R

such that FP �⇒ FL. Examples of groups of type FP include any group G acting on an
R-acyclic simplicial complex X with finitely many orbits of simplices, in such a way that
the stabilizer of any simplex has order a unit in R. Every such G is FPP over R.

For any G of type FP over R, the Euler class E(G) is the element of K0(RG) repre-
sented by the alternating sum

E(G) =
m∑

i=0

(−1)i[Pi] ∈ K0(RG),

where Pi is the ith module occurring in the projective resolution (2.1), and [Pi] stands
for the corresponding class in K0(RG). The Euler class depends only on (G, R) and not
on the choice of resolution. It may be shown that E(G) is in the subgroup of K0(RG)
generated by [RG], the class of the free module, if and only if G is FL over R. Similarly,
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G is FPP over R if and only if E(G) is in the subgroup of K0(RG) generated by elements
of the form [RG/H].

G is said to be a Poincaré duality group of dimension n over R (or a PDn group over R)
if G is FP over R and as R-modules,

Hi(G, RG) ∼=
{

R, for i = n,

0, for i �= n.

For any G, the RG-bimodule structure on RG gives rise to a right RG-module structure
on H∗(G, RG). A PDn group G over R is said to be orientable if each element of G acts
as the identity on Hn(G, RG). These definitions are equivalent to those of Bieri [6] and
of Johnson and Wall [17], except that Johnson and Wall only consider finitely presented
groups. Davis has recently given examples of PDn groups over the integers, for each n � 4,
that are not finitely presented [11]. If a group G acts on an R-acyclic simplicial complex
X in the manner described above, and, moreover, X is an R-homology n-manifold, then
G is PDn over R. (A simplicial complex is an R-homology n-manifold if the link of every
i-simplex has the same R-homology as an (n − i − 1)-sphere.)

Our first main result is the following theorem.

Theorem 2.1. Let G be an orientable PDn group over R for some odd n, and suppose
that G is of type FPP over R. Then E(G) ∈ K0(RG) has order at most two.

This theorem should be compared with the familiar fact that the Euler characteristic of
a closed odd-dimensional manifold is zero. There are examples satisfying the hypotheses
of the theorem for which E(G) is known to have order two. The first such example was
a crystallographic group, discovered by Kropholler and Moselle, with the property that
E(G) is an element of order two in K0(kG) for any field of characteristic zero [18]. The
proof of Theorem 2.1 uses a generalization of an argument presented in [18].

Theorem 2.1 leads naturally to the study of torsion in K0 of group algebras. One class
of groups for which K0 can be explicitly computed is the class of virtually free groups,
to which work of Bergman, Dicks and Waldhausen applies [2, 12, 31, 32]. Using these
results we are able to give examples as in the following statement, which will be proved
in § 6.

Theorem 2.2. For every integer n, and every field k of characteristic zero, there is a
virtually free group G for which K0(kG) contains an element of order n. For every prime
p, there is a virtually free group G for which K0(QG) contains an element of order p,
which is mapped to zero in K0(CG).

The only published examples of torsion in K0(kG) seem to be the examples due to
Kropholler and Moselle [18], those contained in a recent paper of Lorenz [22], and our
example in [19]. In [18,22], crystallographic groups are given for which K0(kG) contains
2-, 3- and 4-torsion, for any field k of characteristic zero. In [19], a virtually cyclic group
G was exhibited, for which there is an element of order two in K0(QG) mapping to zero
in K0(CG).
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Of course, virtually free groups are rarely Poincaré duality groups, but virtually free
quotients of a Poincaré duality group G can be used to detect elements of K0(kG).
Moreover, a relative version of Theorem 2.1 can be given (see Theorem 8.2 for an exact
statement), which is applicable to some virtually free groups. Using these ideas we prove
the following statement, in §§ 5, 7 and 8.

Theorem 2.3. The following classes contain examples of groups that are FL over the
complex numbers but not FL over the rationals:

(a) orientable crystallographic groups of dimension three;

(b) orientable PD3 groups over the rationals containing non-cyclic free subgroups; and

(c) virtually free groups.

A ‘suspension lemma’, stated and proved as Corollary 7.3, allows one to deduce the
following corollary.

Corollary 2.4. For each n � 3 there are PDn groups over the rationals that are FL
over the complex numbers but not FL over the rationals.

In both Theorems 2.2 and 2.3, more information concerning the behaviour under field
extensions can be given, and will be given below. The simplest of the examples in The-
orem 2.3 is the index-two orientable subgroup of the group of reflections in the sides of
a right regular triangular prism in R3. For this G, and any field k of characteristic not
equal to 2 or 3, we compute K0(kG) in Theorem 5.2. It transpires that G is of type FL
if and only if k contains a primitive cube root of 1. The calculation for this example is
modelled on the one in [18], but is complicated by the fact that we need to use Moody’s
Theorem [25] (as well as [2,12,31]).

In the proof of parts (a) and (b) of Theorem 2.3, the dependence on the work of
Bergman, Dicks and Waldhausen can be reduced to showing that a certain projective
module for a certain algebra (a quotient of each of the relevant group algebras) is not
stably free. In [19] we gave an elementary proof of this fact using well-known facts
about topological K-theory. In § 10 we give a similar but more algebraic proof of this, by
reducing to a computation in K0 of a Dedekind domain.

Groups having similar properties to the examples given in Theorems 2.2 and 2.3 were
obtained by Moselle using different methods. Moselle’s thesis contained a detailed study
of K0 of the rational group algebras of groups of the form IG : G, where G is finite and
IG is the augmentation ideal in ZG, viewed as a G-module [26]. Using a theorem of
Quinn, given in [29], Moselle exhibited groups of type FL over C but not of type FL over
Q, and groups for which E(G) ∈ K0(QG) has order p for any prime p [26]. No full proof
of Quinn’s theorem has appeared, and we consider it an advantage that our results do
not depend upon it.

Bestvina and Brady say that G is of type FH over R if there is an R-acyclic simplicial
complex upon which G acts freely with finitely many orbits [5]. For any G and R,
FH ⇒ FL. In § 9 we point out that FH is insensitive to field extensions, and hence
that the groups listed in Theorem 2.3 cannot be of type FH over the complex numbers.
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In contrast, we show that over the rationals, FL ⇔ FH for groups having finite-type
Eilenberg–Mac Lane spaces.

The techniques that we use to compute K0 for virtually free groups also allow one
to describe the abelian monoid of finitely generated projective modules. In § 11 we use
these techniques to exhibit virtually free groups G for which there are non-free stably
free kG-modules for any field k of characteristic zero.

3. Duality and Euler classes

If M is an RG-module, the RG-bimodule structure on RG gives rise to a right RG-
module structure on HomRG(M, RG). Define M∗ to be the RG-module obtained from
N = HomRG(M, RG) by defining gn = ng−1 for any g ∈ G and n ∈ N . The assignment
M �→ M∗ is a contravariant functor. If M is a finitely generated projective module, then
M∗∗ is naturally isomorphic to M .

Proposition 3.1. Let H be a finite subgroup of G. Then (RG/H)∗ ∼= RG/H.

Proof. It suffices to show that HomRG(RG/H, RG) ∼= RH\G, the right permutation
module on the right cosets of H. But an element f in HomRG(RG/H, RG) is determined
uniquely by f(1.H) =

∑
g rgg, and this can be any element of RG fixed by the action

of H, i.e. any element such that rg = rhg for all h ∈ H and g ∈ G. Let T be a right
transversal to H in G. The set of elements of this form is right RG-isomorphic to RH\G

via the map ∑
g∈G

rgg �→
∑
t∈T

rtHt, with inverse
∑
t∈T

rtHt �→
∑
t∈T

∑
g∈Ht

rtg.

�

Lemma 3.2. Let G be a group of type FPP over R. Then there is a resolution of
R over RG by projective permutation modules of length equal to the cohomological
dimension of G over R.

Proof. Let n denote the cohomological dimension of G over R. Since G is FPP over
R, there is a resolution

0 → Pm → Pm−1 → · · · → P1 → P0 → R → 0

for the trivial RG-module in which each Pi is a finitely generated projective permutation
module. Necessarily, m � n, but equality need not hold. However, since {0} is a projective
permutation module, we may assume that m−n is even, which will simplify the notation
in the remainder of the proof.

The image of the map from Pn to Pn−1 is a finitely generated projective, Qn, and
there are long exact sequences

0 → Pm → Pm−1 → · · · → Pn → Qn → 0, (3.1)

0 → Qn → Pn−1 → · · · → P1 → P0 → R → 0. (3.2)
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It will suffice to show that Qn is stably a projective permutation module in the sense
that there is a finitely generated projective permutation module P ′ such that P ′ ⊕ Qn is
also a projective permutation module, since then the direct sum of sequence (3.2) and an
exact sequence consisting of two copies of P ′, in degrees n− 1 and n, will be a resolution
with the required properties.

Each term in sequence (3.1) is projective, so the sequence splits, and hence there is an
isomorphism

Qn ⊕
(m−n)/2⊕

i=1

Pn−1+2i
∼=

(m−n)/2⊕
i=1

Pn+2i.

The module P ′ =
⊕(m−n)/2

i=1 Pn−1+2i therefore has the properties that both P ′ and P ′ ⊕
Qn are finitely generated projective permutation modules as required. �

Proof of Theorem 2.1. By Lemma 3.2 we may take a length n resolution of R by
finitely generated projective permutation modules:

0 → Pn → Pn−1 → · · · → P1 → P0 → R → 0. (3.3)

Since G is an orientable Poincaré duality group of dimension n over R, applying (−)∗ to
this resolution gives rise to an exact sequence

0 → P ∗
0 → P ∗

1 → · · · → P ∗
n−1 → P ∗

n → R → 0. (3.4)

By Proposition 3.1, Pi
∼= P ∗

i for each i. Sequence (3.3) gives the expression

E(G) =
n∑

i=0

(−1)i[Pi]

for E(G). On the other hand, sequence (3.4) gives

E(G) =
n∑

j=0

(−1)j [P ∗
n−j ] =

n∑
i=0

(−1)n−i[Pi].

Since n is odd, it follows that E(G) = −E(G), as required. �

Theorem 2.1, and its proof, are closely related to Theorem 1.3 of Wall’s paper [35].
Wall mentions only the case R = Z, but the generalization to any R is immediate. On the
other hand, Wall does not impose any condition corresponding to our FPP, so obtains a
weaker conclusion.

Under certain circumstances Theorem 2.1 may be used to show that a Poincaré duality
group is of type FL.

Corollary 3.3. Let G contain only finitely many conjugacy classes of finite subgroups,
let k be a field which is a splitting field for every finite subgroup of G, and suppose that
G contains no element of order two. Suppose also that either (a) G is polycyclic-by-finite
or (b) k has characteristic zero. If G is an orientable PDn group over k of type FPP for
some odd n, then G is FL.
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Proof. First, note that the condition that G be of type FPP over k implies that the
order of every finite subgroup of G is invertible in k. For any G, let Φ(G) be the Frobenius
category of G. The objects of Φ are the finite subgroups of G, and the morphisms from H

to H ′ are those group homomorphisms from H to H ′ that are expressible as conjugation
by some element of G. For any k, the natural maps K0(kH) → K0(kG) induce a map

ι : colimH∈Φ K0(kH) → K0(kG).

If G is of type FPP over k, the Euler class of G is in the image of ι.
Now suppose that G and k satisfy the hypotheses of the first sentence of the statement.

In this case, work of Brown and Lorenz shows that C = colimH∈Φ K0(kH) is a finitely
generated abelian group containing no 2-torsion [9, 2.5]. The rank of C (i.e. the dimension
of the vector space C ⊗ Q) is equal to the number of conjugacy classes of elements of
finite order in G (see [9, § 1] or [23, § 8]).

Two different arguments may be used to show that the rank of the image of ι is equal
to the rank of C, depending on whether condition (a) or (b) is satisfied. In the case
when k is of characteristic zero, Hattori–Stallings ranks may be used to show that the
rank of the image of ι is equal to the number of conjugacy classes of elements of finite
order in G. In the case when G is polycyclic-by-finite, Lorenz has shown that G admits
a finite quotient Q such that the induced map of Frobenius categories Φ(G) → Φ(Q) is
full (i.e. is surjective on morphism sets) (see Lemma 1 of [21] and § 1.6 of [9]. In this
case it may be shown that the kernel of map from C to K0(kQ) (which factors through
ι) is finite [9,21]. In each of cases (a) and (b), the kernel of ι is finite, and it follows that
there is no 2-torsion in the image of ι.

Now suppose that G and k also satisfy the hypotheses of the final sentence of the
statement. By Theorem 2.1, E(G) has order at most two, but by the above argument
E(G) cannot have order two, and so G is FL. �

The author is not aware of any group G and field k for which the natural map ι :
colimH∈Φ(G) K0(kH) → K0(kG) described in the above proof is not an isomorphism.

4. Computational techniques

In this section we summarize the techniques for computing K0(RG) that will be used
in the sequel. For the definition of a graph of groups, see [13]. The following theorem is
from [31], but see also [2,12,32].

Theorem 4.1 (Waldhausen). Let G be the fundamental group of a finite graph of
groups, with vertex groups G1, . . . , Gm and edge groups H1, . . . , Hn. Let k be a field and
suppose that each kHj is regular Noetherian. There is an exact sequence

n⊕
j=1

K0(kHj)
ι−→

m⊕
i=1

K0(kGi) → K0(kG) → 0,

where the map ι is induced by the inclusion of each edge group in its initial vertex group
minus the inclusion in its terminal vertex group.
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Remarks on the proof. The conditions on the kHj hold if each Hj is polycyclic-
by-finite and the order of every finite subgroup of every Hj is invertible in k. (This is the
only case in which we shall use the theorem.) The theorem may be proved by induction
on the size of the graph, using §§ 11 and 12 of [32], which cover the cases of a free product
with amalgamation and an HNN (Higman–Neumann–Neumann)-extension, respectively.
The result required for exactness at K0(kG) is not explicitly stated in § 12, but works in
the same way as similar results stated in §§ 11 and 13 of [32]. �

In the case when each Hi is finite, which will serve for all of our calculations except those
in § 5, Theorem 4.1 may be deduced from work of Bergman and Dicks, see in particular
Corollary 2.11 of [2] and Theorem 26 of [12], which cover the case of a free product
with amalgamation and an HNN-extension, respectively. The alternative approach of
Bergman–Dicks also describes the abelian monoid of finitely generated projective kG-
modules. This will be used in § 11 to exhibit non-free stably free modules. A shorter
statement of Theorem 4.1 is the following. Make a category C whose objects are the
vertex and edge groups, with two non-identity morphisms from each edge group, the
homomorphisms to its initial and terminal vertex groups. Then the following map is an
isomorphism:

colimH∈C K0(kH) → K0(kG).

The graphs of groups used below are of a particularly simple type. These graphs are
described by a group J and a family H1, . . . , Hn of (not necessarily distinct) subgroups of
J . There are two vertex groups, J1 and J2, identified with J by some fixed isomorphism,
and edge groups H1, . . . , Hn. Each edge joins the two vertices, and the map from Hi to
Jj is the inclusion of Hi in J . Call the fundamental group of such a graph the double of
J along H1, . . . , Hn.

Proposition 4.2. Let G be the double of a polycyclic-by-finite group J along the
subgroups H1, . . . , Hn. Let k be a field in which the order of every finite subgroup of J

is invertible. Then there are isomorphisms

K0(kG) ∼= K0(kJ) ⊕ coker
(

ι :
n⊕

i=1

K0(kHi) → K0(kJ)
)

and

K̃0(kG) ∼= K̃0(kJ) ⊕ coker
(

ι :
n⊕

i=1

K0(kHi) → K0(kJ)
)

.

Under these hypotheses, G is of type FP over k, and the above isomorphism sends
E(G) ∈ K0(kG) to the element

(
2E(J) −

n∑
i=1

IndJ
Hi

E(Hi), E(J)
)

∈ K0(kJ) ⊕ coker(ι).

Proof. Let A = K0(kJ). By Theorem 4.1, K0(kG) is isomorphic to the quotient
(A ⊕ A)/{(ι(x),−ι(x))}, where x ∈

⊕
K0(kHi). The automorphism of A ⊕ A given by
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(a, a′) �→ (a + a′, a′) induces an isomorphism between this and (A ⊕ A)/{(0,−ι(x))} =
A ⊕ coker(ι).

The augmented chain complex for the G-tree coming from the graph product decom-
position is the following exact sequence:

0 →
n⊕

i=1

kG/Hi → kG/J1 ⊕ kG/J2 → k → 0.

Our hypothesis on the orders of the finite subgroups of J implies that J and all the
Hi are of type FP over k (see [28, 10.3.13]). The above exact sequence implies that G

is also of type FP over k. Moreover, it follows that the Euler class of G is the sum of
the images of E(J1) and E(J2) minus the sum of the images of the E(Hi). Tracing this
element through the isomorphism given in the first paragraph gives the claimed element
of A ⊕ coker(ι). �

It is possible to prove some results concerning doubles without using Theorem 4.1. In
the following proposition we need no condition on J except that it be FP over R.

Proposition 4.3. Let H � J be groups of type FP over R. Let G be the double of
J along H, so that G is FP over R. If E(J) ∈ K0(RJ) is in the image of IndJ

H and
IndJ

H(E(H)) = 2E(J), then E(G) = 0.

Proof. As in Proposition 4.2, consideration of the chain complex for the G-tree coming
from the given splitting shows that

E(G) = IndG
J1

(E(J1)) + IndG
J2

(E(J2)) − IndG
H(E(H)),

where J1 and J2 are the two copies of J in G. If E(J) = IndJ
H(ξ), then

E(G) = IndG
J1

(E(J1)) + IndG
J2

IndJ2
H (ξ) − IndG

H(E(H))

= IndG
J1

(E(J1)) + IndG
H(ξ − E(H))

= IndG
J1

(E(J1) + IndJ1
H (ξ − E(H)))

= IndG
J1

(2E(J1) − IndJ1
H (E(H))).

�

There is an argument similar to that used in the proof of Theorem 2.1 to exhibit
some cases in which IndJ

H(E(H)) = 2E(J). For a Poincaré duality group G over R,
the orientation module, R◦, is the left RG-module corresponding to the right module
H∗(G; RG). In every known case, the action of G on its orientation module has image
contained in {±1} ⊆ AutR(R). We shall say that G is standard if this holds. The question
of whether every Poincaré duality group is standard is posed by Bestvina in § 2.2 of [4].
Note that the topological definition of a Poincaré duality group used in [4] is far more
restrictive than the algebraic definition used in this paper, which is equivalent to the
definition of Bieri [6–8].
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Lemma 4.4. Let G be a standard, non-orientable PDn group over R for some even
n, and let H be the kernel of the orientation map. If G is of type FPP over R, then
IndG

H(E(H)) = 2E(G).

Proof. For an RG-module M admitting a finite resolution by finitely generated pro-
jective modules, we introduce the notation [M ] for the element of K0(RG) represented
by the alternating sum of the modules in such a resolution. For example, when G is of
type FP, [R] is defined and equal to E(G).

Take a projective resolution for R over RH, and apply the exact functor RG ⊗RH −.
Inspection of this long exact sequence shows that IndG

H(E(H)) is equal to [RG/H]. By
the hypotheses on G, there is a short exact sequence of RG-modules:

0 → R◦ → RG/H → R → 0.

It follows that IndG
H(E(H)) = 2E(G) if and only if [R◦] = E(G). This can be proved

using the same trick as in the proof of Theorem 2.1. By Lemma 3.2 there is a resolution
for R over RG

0 → Pn → Pn−1 → · · · → P1 → P0 → R → 0, (4.1)

in which each Pi is a projective permutation module. Applying the functor (−)∗ to this
projective resolution gives rise to a long exact sequence

0 → P ∗
0 → P ∗

1 → · · · → P ∗
n−1 → P ∗

n → R◦ → 0. (4.2)

The claim follows by comparing sequences (4.1) and (4.2). �

A polycyclic-by-finite group G admits a proper, cocompact action on a contractible
manifold (see, for example, the introduction to [29]). It follows that G is of type FP over
R if and only if the order of every finite subgroup of G is a unit in R. Moreover, in this
case, G is of type FPP and is a Poincaré duality group over R, of dimension equal to
that of the manifold. It also follows that G is standard in the sense of Lemma 4.4.

Corollary 4.5. Let J be polycyclic-by-finite, and let k be a field over which J is a
non-orientable PD2n group. Let H be the orientable subgroup of J , and let G be the
double of J along H. Then G is an orientable PD2n+1 group over k, and E(G) ∈ K0(kG)
has order two if and only if E(J) is not in the image of ι : K0(kH) → K0(kJ).

Proof. A spectral sequence argument shows that the direct product of a PDm group
and a PDl group is a PDm+l group, with orientation module the tensor product (over k)
of the orientation modules for the two factors [7, Proposition 9.16].

The first claim follows from the fact that G is the orientable index-two subgroup of the
product of J and the infinite dihedral group. To see this, note that the infinite dihedral
group D is the free product C2 ∗ C2 of two cyclic groups of order two. Thus there is a
decomposition of J × D as a free product with amalgamation:

J × D = J × (C2 ∗ C2) = (J × C2) ∗J×{1} (J × C2).
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For the orientation action of (J × C2) ∗J (J × C2) on k, the generators for the two copies
of C2 act non-trivially, and each of the copies of J acts via the orientation action for J .
Standard techniques for computing subgroups of graphs of groups [13, Chapter 1] show
that the kernel of the orientation action is isomorphic to J ∗H J as required.

The second claim follows from Proposition 4.2 and Lemma 4.4. �

To apply the above, a method for calculating K0 for some polycyclic-by-finite groups
is needed. The following theorem is from [25].

Theorem 4.6 (Moody). Let G be polycyclic-by-finite, and let Φ(G) be the Frobenius
category of G, as described in the proof of Corollary 3.3. Let R be regular Noetherian
and suppose that the order of every finite subgroup of G is invertible in R. Then the
natural map

ι : colimH∈Φ K0(RH) → K0(RG)

is a surjection.

In fact, Moody proves a similar result for G0(RG) (the Grothendieck group of all
finitely generated RG-modules) for any Noetherian R. The extra conditions that R be
regular and that the order of each finite subgroup of G be invertible in R allow one to
state the result for K0 instead, since they imply that K0(RG) is naturally isomorphic to
G0(RG).

Quinn’s Theorem [29] states that in the case when R = Q, the map ι as above is an
isomorphism. We shall not need to use this, however.

5. The prism group

In this section we study a single example, namely the group G defined to be the orientable
subgroup of the group generated by reflections in the sides of a right regular triangular
prism in R3. For this G, and for any field k of characteristic not equal to 2 or 3, we
compute K0(kG), and show that E(G) ∈ K0(kG) has order two if and only if k does not
contain a primitive cube root of unity.

Let J be the (3, 3, 3)-triangle group, i.e. the group generated by the reflections in
the sides of a regular triangle in the Euclidean plane [16, p. 89]. The group J has the
presentation

J = 〈a, b, c|a2, b2, c2, (ab)3, (bc)3, (ca)3〉.

The group G is the orientable subgroup of the product of J and the infinite dihedral
group. As in the proof of Corollary 4.5, G may also be viewed as the double of J along
H, its orientable subgroup of index two. Before starting our calculations, we record some
facts about J and H.

The group J is expressible as an extension with kernel Z2 and quotient the dihedral
group D3 of order six. J has three conjugacy classes of maximal finite subgroup, each
isomorphic to D3. All elements of J of order two are conjugate. Every element of J of
order three is conjugate to its inverse, and there are three conjugacy classes of subgroup
of J of order three, one contained in each conjugacy class of D3. The group H has three
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conjugacy classes of maximal finite subgroup, each cyclic of order three, and has six
conjugacy classes of elements of order three. All of these facts may be verified easily
by considering the action of J on the Euclidean plane, bearing in mind that any finite
subgroup K of J must have a fixed point (for example, the centroid of any K-orbit).

Lemma 5.1. Let J , H and k be as above, and let ω be a primitive cube root of unity
in some extension of k. Then K0(kJ) ∼= Z⊕5,

coker(IndJ
H) =

{
Z, if ω ∈ k,

Z ⊕ (Z2)⊕3, otherwise,

and E(J) is in the image of IndJ
H if and only if ω ∈ k.

Proof. First we compute the limit of K0(k−) over the Frobenius category of J . Since
J is abelian-by-finite, and all maximal finite subgroups of J map isomorphically to a
fixed finite quotient of J , this limit is easy to describe. It is isomorphic to the quotient of
three copies of K0(kD3) in which the three images of IndD3

C2
have been identified. (Here

C2 denotes a subgroup of D3 of order two.) Since the characteristic of k is not equal to
two or three, there are three irreducible kD3-modules, the trivial module (denoted ‘1’),
a non-trivial one-dimensional module ε, and a two-dimensional module α. The image of
the induction from C2 is generated by 1+α and ε+α. Listing the three kD3-modules in
the order 1, ε, α for i = 1, 2, 3, the limit over the Frobenius category is Z⊕9 modulo the
subgroup generated by the rows of matrix (5.1), in which blank entries are zeros omitted
for clarity:

1 0 1 −1 0 −1
0 1 1 0 −1 −1

1 0 1 −1 0 −1
0 1 1 0 −1 −1

(5.1)

This is isomorphic to Z⊕5 as claimed.
By Moody’s Theorem, quoted as Theorem 4.6, there is an epimorphism ι from the

limit (as computed above) to K0(kJ), and by Proposition 1.8 of [9], the kernel of ι

is finite. Since in this case the limit is torsion free, it follows that Moody’s map is an
isomorphism.

Let C3 denote a cyclic group of order three. If ω /∈ k, there are two irreducible kC3-
modules, the trivial module and a two-dimensional module. The images of these under
IndD3

C3
are 1 + ε and 2α, respectively. On the other hand, if ω ∈ k, there are three irre-

ducible kC3-modules, each of dimension one, and their images under IndD3
C3

are 1 + ε, α,
and α, respectively.

Applying Moody’s Theorem to H, the image of IndJ
H is equal to the sum of the

images of IndJ
K , where K ranges over the maximal finite subgroups of H. Representing

K0(kJ) as the quotient of Z⊕9 by the rows of (5.1), the image of IndJ
H is generated
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by
1 1 0
0 0 2 ∗

1 1 0
0 0 2 ∗

1 1 0
0 0 2 ∗

(5.2)

if ω /∈ k. In the case when ω ∈ k, the matrix (5.2′) representing the image of IndJ
H is

similar to (5.2), except that the three rows of (5.2) marked with an asterisk are divided
by two. The cokernel of IndJ

H is isomorphic to the quotient of Z⊕9 by the subgroup gen-
erated by the rows of (5.1) and (5.2) if ω /∈ k (respectively, (5.1) and (5.2′) if ω ∈ k).
The claimed description of this cokernel follows.

The Euler class of J may be computed by considering the chain complex for the J-
equivariant tessellation of the plane by triangles. The triangular 2-cells are permuted
freely, transitively. There are three orbits of 1-cell, each with stabilizer of order two, and
there are three orbits of 0-cell, with stabilizers the three conjugacy classes of the D3

subgroup. Hence the Euler class of J is represented by the vector

(1, 1, 2, 0, 0, 0, 0, 0, 0) − 3(1, 0, 1, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 1, 0, 0, 1, 0, 0)

= (−1, 1,−1, 1, 0, 0, 1, 0, 0).

It may be checked that this vector is in the subgroup generated by the rows of (5.1)
and (5.2′) but not in the subgroup generated by the rows of (5.1) and (5.2). �

Theorem 5.2. Let J , H and k be as in the introduction to this section, and let ω be
a primitive cube root of unity in some extension of k. Let l be the degree of k[ω] over k,
and let G be the double of J along H. Then G is an orientable PD3 group over k of type
FPP,

K0(kG) ∼= Z⊕6 ⊕ (Zl)⊕3,

and E(G) ∈ K0(kG) has order l. In particular, G is FL over k if and only if l = 1.

Proof. This follows from Corollary 4.5 and Lemma 5.1. �

One can also obtain some information for integral domains. Suppose R is any integral
domain in which 6 is a unit. Then E(G) ∈ K0(RG) is defined and has order at most
two by Theorem 2.1. If R contains a primitive cube root of unity, it may be shown that
E(G) = 0. On the other hand, if the field of fractions of R does not contain a primitive
cube root of unity, the order of E(G) is two.

6. Virtually free groups

In this section we show how computations in the K-theory of coproducts can be used to
construct virtually free groups with torsion in K0 of their group algebras. Perhaps the
most surprising examples are groups G and field extensions K � k such that the map
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from K0(kG) to K0(KG) has non-trivial kernel. Simpler such examples can be given that
are not group algebras, so we discuss these first.

Suppose that K is a separable field extension of k of degree n. The action of K on
itself gives a k-algebra embedding of K in the matrix ring S = Mn(k). Now K0(K) is
isomorphic to Z, with generator the free module of rank 1, and K0(S) is isomorphic to
Z, generated by the module of column vectors, kn, so that the free module represents
n times a generator. Let R be the coproduct of two copies of S, amalgamating K. The
results of Bergman or Waldhausen, stated in a special case as Theorem 4.1, give an exact
sequence

K0(K) → K0(S) ⊕ K0(S) → K0(R) → {0}.

It follows that K0(R) is isomorphic to Z ⊕ Zn. On the other hand, if k̄ is the algebraic
closure of k, then k̄ ⊗k K ∼= k̄ × · · · × k̄ = k̄n, k̄ ⊗k S ∼= Mn(k̄), and the image of any
of the n simple projective modules for k̄n maps to a generator for K0(Mn(k̄)). Hence
K0(k̄ ⊗k R) is isomorphic to Z, generated by the free module.

The ring R is not a group algebra, but there is a case in which R can be viewed as
a skew group algebra: if K is a Galois extension of k, with Galois group G, then the
natural skew group algebra K ∗ G is isomorphic to Mn(k) (see [10, p. 590]). Hence R

may be viewed as the skew group algebra of the free product G ∗ G with coefficients K,
where each factor acts in the natural way on K. In this case k̄ ⊗k R is the skew group
algebra with coefficients k̄n, where each of the two copies of G acts by freely permuting
the n copies of k̄. The special case of this construction in which k = R and K = C will
be discussed in detail in § 10. The group algebras given below in Propositions 6.1 and 6.2
are modelled on these examples.

Proposition 6.1. Let p and q be distinct primes, with q dividing p − 1, and let J be
a non-abelian group of order pq. Let G be the double of J along H, the order p subgroup
of G. Then K0(QG) contains an element of order q, which maps to zero in K0(CG).

Proof. The group J has three irreducible rational representations: the trivial repre-
sentation T of dimension one, a (q − 1)-dimensional representation α, faithful on the
order q quotient of J , and a (p − 1)-dimensional representation β. The regular represen-
tation of J is equal to T + α + qβ. The image of induction from H is generated by T + α

and the regular representation, and so the cokernel of this map contains q-torsion. From
Proposition 4.2 it follows that K0(QG) contains q-torsion. In fact, K0(QG) ∼= Z4 ⊕ Zq.

On the other hand, J has q distinct one-dimensional irreducible complex representa-
tions, each containing H in its kernel, and (p − 1)/q distinct q-dimensional irreducible
complex representations, each of which is induced up from H. It follows that the image
of K0(CH) in K0(CJ) is a direct summand, and hence K0(CG) is free abelian (of rank
2q − 1 + (p − 1)/q). �

We give more information in the special case of dihedral groups.

Proposition 6.2. Let p be an odd prime, and let G be the double of the dihedral
group of order 2p along its cyclic subgroup of order p. Let k be a field of characteristic
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zero, and let ζ be a primitive pth root of 1 in some extension of k. Finally, define m to
be the degree of the field extension m = |k[ζ + ζ−1] : k|, and let r = (p − 1)/2m. Then

K0(kG) ∼=
{

Z⊕r+3, if ζ ∈ k[ζ + ζ−1],

Z⊕r+3 ⊕ (Z2)⊕r, otherwise.

Proof. Define l by the equation l = |k[ζ] : k|. The irreducible k-representations of
Cp are the trivial representation of dimension one, and (p − 1)/l others of dimension
l. The irreducible k-representations of Dp are the trivial representation, the orientation
representation of dimension one, and r = (p − 1)/2m others of dimension 2m. In the
case when l = m, or equivalently when ζ ∈ k[ζ + ζ−1], the image of induction from Cp

to Dp is spanned by the sum of the two one-dimensional representations and the other
representations. Hence in this case the cokernel of induction is infinite cyclic. In the case
when l = 2m, each non-trivial irreducible representation of Cp induces up to two copies
of one of the irreducible representations of Dp, and the cokernel of induction is infinite
cyclic direct sum r copies of Z2. The claims follow from Proposition 4.2. �

Proposition 6.3. Let p be a prime and let J be a direct product of m+1 cyclic groups
of order p. Let H1, . . . , Hn be the order p subgroups of J , so that n = (pm+1 −1)/(p−1).
Let G be the double of J along H1, . . . , Hn. For any field k of characteristic not equal
to p, K0(kG) contains elements of order pm.

Proof. As usual, we use the description of K0(kG) given by Proposition 4.2. For i =
1, . . . , n, let Ti (respectively, Ri) denote the trivial (respectively, regular) representation
of Hi, and similarly let T0 (respectively, R0) denote the trivial (respectively, regular)
representation of J . By hypothesis each Ti is projective. By symmetry, there are integers
r and s such that

ι

( n∑
i=1

Ti

)
= rT0 + sR0, (6.1)

where ι is the direct sum of the induction maps as in the statement of Proposition 4.2.
More formally, the automorphism group of J , which is isomorphic to the general linear
group GL(m + 1, p), acts on the system consisting of J and the subgroups H1, . . . , Hn,
permuting the Hi. For this action,

ι :
n⊕

i=1

K0(kHi) → K0(kJ)

is an Aut(J)-equivariant map. The left-hand side of (6.1) is fixed by the action of Aut(J),
and hence so is its image under ι. This image must be as described in the right-hand side
of (6.1), since the fixed subgroup of K0(kJ) for the action of Aut(J) is generated by the
trivial representation and the regular representation.

A comparison of k dimensions and numbers of trivial summands in (6.1) shows that
r = pm and s = (pm − 1)/(p − 1). Since ι(R1) = R0, it follows that pmT0 is in the image
of ι. On the other hand, the index of each Hj in J is pm, so any kJ-module in the image
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of ι has dimension divisible by pm. It follows that the subgroup of coker(ι) generated by
T0 is cyclic of order pm. �

Corollary 6.4. For any positive integer n and any field k of characteristic coprime to
n, there is a virtually free group G such that K0(kG) contains elements of order n.

Proof. Take the free product of examples as in Proposition 6.3 for the distinct prime
powers dividing n. �

These examples answer a question posed in § 2.5 of [9], as do certain examples in
Moselle’s thesis [26]. Lemma 2.2 of [9] shows that our methods will never find p-torsion
in K0(kG) for k of characteristic p.

7. Poincaré duality groups

In this section we combine results of previous sections to exhibit more examples of
Poincaré duality groups over the rationals that are FL over the complex numbers but
not FL over the rationals. Our first such example is the index-two orientable subgroup of
the direct product of a (p, p, p)-triangle group and an infinite dihedral group, for p � 5
a prime. The calculations are very similar to those in § 5, except that we cannot fully
determine K0, since no analogue of Moody’s Theorem (Theorem 4.6) is known.

Higher-dimensional examples could be constructed using similar techniques. It is, how-
ever, easier to apply the ‘Suspension Lemma’, given below as Corollary 7.3, to obtain
higher-dimensional examples from those constructed already.

Let J be the (p, p, p)-triangle group, that is, the group generated by reflections in the
sides of a hyperbolic triangle with all angles 2π/p. Arguments similar to those outlined
in § 5 show that J has three conjugacy classes of maximal finite subgroup, each dihedral
of order 2p, three conjugacy classes of cyclic subgroup of order p (one in each class of
dihedral group), and one conjugacy class of elements of order two. Let D(i) and C(i),
for i = 1, 2, 3, be representatives of the three conjugacy classes of Dp subgroups and
Cp subgroups, respectively. There is a homomorphism π from J to Dp that restricts to
an isomorphism on each D(i), and hence has torsion-free kernel. (Just send the three
generators of J of order two to any three distinct elements of Dp of order two.) The
kernel of any such π is the fundamental group of a closed orientable surface of Euler
characteristic 3 − p. The image of the orientable index-two subgroup H of J under π is
Cp � Dp.

Theorem 7.1. Let k be a field of characteristic zero, let ζ be a primitive pth root of
1 in some extension of k, let H, J be as described above, and let G be the double of J

along H. Then G is an orientable PD3 group over k, and E(G) ∈ K0(kG) has order two
if ζ /∈ k[ζ + ζ−1], and is equal to zero otherwise.

Proof. The group G is the orientable index-two subgroup of J×D∞, so is an orientable
PD3 group of type FPP over k. It follows from Theorem 2.1 that E(G) has order at most
two.
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Let ε denote the non-trivial one-dimensional representation of Dp, and define a repre-
sentation α of Dp by the equation kDp = 1 + ε + 2α. Other equivalent descriptions of
α are that α consists of a direct sum of one copy of each irreducible k-representation of
Dp of dimension greater than one, or that kDp/C2 = 1 + α. Arguments similar to those
used in the proof of Proposition 6.2 show that α is in the image of induction from kCp

if and only if ζ ∈ k[ζ + ζ−1].
The natural J-equivariant triangulation of the hyperbolic plane has one free orbit of

2-simplices, three orbits of edges with stabilizer of order two, and three orbits of vertices
with stabilizers conjugate to D(1), D(2) and D(3), respectively. It follows that the Euler
class of J is

E(J) = [kJ ] − 3[kJ/C2] +
3∑

i=1

[kJ/D(i)]

= [kJ ] −
3∑

i=1

[IndJ
D(i)(α)].

If ζ ∈ k[ζ + ζ−1], there is a k-representation ξ of Cp such that IndDp

Cp
(ξ) = α. Hence E(J)

is in the image of induction from H, because

E(J) = IndJ
H

(
[kH] −

3∑
i=1

[IndH
C(i)(ξ)]

)
.

By Proposition 4.3 and Lemma 4.4, it follows that in this case E(G) = 0.
For the converse, note that the image of E(J) under the homomorphism π : J → Dp

is
[kDp] − 3α = 1 + ε − α.

If ζ /∈ k[ζ + ζ−1], then this is a non-zero element in the cokernel of the induction from
Cp to Dp. From the description of E(G) and K0(kG) given in Proposition 4.2, it follows
that in this case E(G) is non-zero. �

To exhibit higher-dimensional Poincaré duality groups that are FL over the complex
numbers but not FL over the rational numbers we shall make use of a product formula
given below in Theorem 7.2. Before stating this theorem, we make another definition.

Suppose that G is of type FP over a ring R, that P∗ is a finite projective resolution of
R over RG, and that φ : R → k is a homomorphism from R to a field. In this case define
χφ(G) as

χφ(G) =
∑
i�0

(−1)i dimk HomRG(Pi, k) =
∑
i�0

(−1)i dimk Hi(G; k).

If P is a projective permutation module with R-basis a G-set Ω, the k-dimension of
HomRG(P, k) is equal to the number of G-orbits in Ω. In particular, in the case when G

is FPP over R, the integer χφ(G) is independent of the choice of k and φ, and will be
denoted χ(G). Geometrically, if G acts cocompactly on an R-acyclic simplicial complex
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X with stabilizers of order invertible in R, then χ(G) is equal to the Euler characteristic
of the quotient space X/G.

Theorem 7.2. Fix a (commutative, unital) ring R, let G = H ×K, and suppose that
H and K are FP (over R).

(a) There is a bilinear product K0(RH) × K0(RK) → K0(RG) defined on generators
by [P ] · [Q] = [P ⊗R Q].

(b) G is FP, and E(G) = E(H) · E(K).

(c) If K is FPP and χ(K) = ±1, then E(G) = 0 if and only if E(H) = 0.

(d) If K is FL and χ(K) = ±1, then G is FL if and only if H is FL.

Proof. Throughout this proof the symbol ‘⊗’ will indicate a tensor product over R.
It is well known (and easily verified) that the maps

r(h ⊗ k) �→ r(hk), rg �→ r(π1(g) ⊗ π2(g))

define inverse isomorphisms between the R-algebras RH⊗RK and RG, where π1 (respec-
tively, π2) denotes the projection from G onto H (respectively, K). Hence for any RH-
module M and RK-module N , there is a natural RG-module structure on M ⊗N . In the
case when M is free of rank m and N is free of rank n, M ⊗N is free of rank mn. If P is a
direct summand of M and Q is a direct summand of N , then P ⊗Q is a direct summand
of M ⊗N . It follows that the tensor product of a projective RH-module and a projective
RK-module is a projective RG-module. The fact that the formula [P ] · [Q] = [P ⊗ Q]
gives a well-defined bilinear product K0(RH) × K0(RK) → K0(RG) follows from the
additivity properties of the tensor product.

The underlying R-module for a projective RH-module or RK-module is necessarily
R-projective. Hence if P∗ (respectively, Q∗) is a projective resolution for R over RH

(respectively, RK), the Künneth formula may be applied to deduce that the total complex
for the double complex P∗ ⊗ Q∗ is a resolution for R over RG. Since we have already
shown that each Pi ⊗ Qj is a projective RG-module (finitely generated whenever Pi and
Qj are), claim (b) follows.

If E(H) = 0, then E(G) = 0 by (b). For the converse, note that the projection
π1 : G → H induces a map π∗ : K0(RG) → K0(RH). Letting K ′ denote a subgroup
of K whose order is invertible in R, one sees that for any projective RH-module P ,
π∗([P ] · [RK/K ′]) = [P ]. It follows that when K is FPP, π∗([P ].E(K)) = χ(K)[P ],
and so π∗(E(G)) = π∗(E(H) · E(K)) = χ(K)E(H). Hence when χ(K) = ±1, E(H) =
±π∗(E(G)) and claim (c) follows.

If H and K are both FL, then (b) implies that G is FL. As in the previous paragraph,
the hypotheses that K is FPP and χ(K) = ±1 imply that E(H) = ±π∗(E(G)). Since
also π∗([RG]) = [RH], claim (d) follows. �

See [24] for a formula similar to Theorem 7.2 (b) and [15] for a result close to the case
R = Z of Theorem 7.2 (d).
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Corollary 7.3. Let G be a group of type FP over R, let D denote the infinite dihedral
group and let H denote either the free group of rank two or the fundamental group of a
closed (non-orientable) surface of Euler characteristic −1.

(a) G × H is FP over R. Moreover, E(G × H) = 0 if and only if E(G) = 0, and G × H

is FL over R if and only if G is.

(b) If 2 is a unit in R, then G × D is FP over R. Moreover, E(G × D) = 0 if and only
if E(G) = 0, and if G × D is FL over R, then so is G.

Only the case of Corollary 7.3 involving the infinite dihedral group is needed below,
but we draw attention to the other two cases for the following reason. The other groups
have the advantages that they are torsion free, so no restriction on R is needed, and that
they are FL over any R. (Since the dihedral group D is not FL over any (non-trivial)
ring, it can happen that G is FL over R, but G × D is not.) On the other hand, the
product of G and the free group of rank two cannot be a Poincaré duality group. The
fundamental group, H, of a surface of Euler characteristic −1 does not have this defect,
but of course taking a direct product with H increases cohomological dimension by two.

Proof of Corollary 2.4. In the case when n = 3, Theorems 2.2, 5.2 and 7.1 exhibit
groups G that are PDn groups over Q and also have the properties that E(G) = 0 in
K0(CG) but Ẽ(G) �= 0 in K0(QG). If G is an example of an n-dimensional group having
these properties, Corollary 7.3 implies that the product of G and an infinite dihedral
group is an example of dimension n + 1. Any such group is FL over C but not FL
over Q. �

8. More virtually free groups

The Euler class of a virtually free group can never be a non-zero torsion element, as shown
below in Proposition 8.1. It can, however, happen that the Wall finiteness obstruction
Ẽ(G) for a virtually free group G is a torsion element in K̃0(RG), the quotient of K0(RG)
by the subgroup generated by [RG]. One example of this appeared (unremarked) earlier
in the paper: the case p = n = 2 of Proposition 6.3. In this section, such examples are
exhibited using Theorem 8.2, a relative version of Theorem 2.1.

Proposition 8.1. Let G be a (finitely generated) virtually free group and R a ring
over which G is FP. Then E(G) ∈ K0(RG) is either zero or has infinite order.

Proof. The Euler class of a non-cyclic free group has infinite order. It follows that if
G has a non-cyclic free subgroup, then E(G) has infinite order, and it remains to consider
the virtually cyclic case. If G has an infinite cyclic subgroup of finite index, then either
G = N : Z, or G = A ∗N B, where N is a finite normal subgroup, and in the second
case |A : N | = |B : N | = 2 [13, IV.6.12]. These two cases correspond to actions on a line
with one orbit of edges and one or two orbits of vertices, respectively. In the first case
the edge and vertex stabilizers are both equal to N , so E(G) = [RG/N ] − [RG/N ] = 0.
In the second case, E(G) = [RG/A]+ [RG/B]− [RG/N ], and has infinite order, since its
image under the natural map from K0(RG) to K0(R) is equal to [R]. �
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Theorem 8.2. Let X be a contractible triangulated n-manifold with boundary for
some odd n, and suppose that G acts on X, preserving the orientation of X, with finitely
many orbits of simplices, freely on the boundary of X, and with stabilizers of order
invertible in R. Then G is FPP over R, and the Wall obstruction Ẽ(G) ∈ K̃0(RG) has
order at most two.

Proof. Replacing X by its barycentric subdivision, we may suppose that the simplicial
chain complex C∗ = C∗(X; R) (with R-basis the simplices of X) is a sum of permutation
modules RG/Hj where each |Hj | is a unit in R. Since X is contractible, C∗ is an RG-
projective resolution for R, G is FPP over R, and

E(G) =
∑

i

(−1)i[Ci] ∈ K0(RG). (8.1)

Let D∗ be the cochain complex with compact supports for X relative to its boundary
δX, so that D∗ has R-basis the characteristic functions of those simplices of X that are
not contained in δX. Since G acts freely on δX, for each i, there is a finitely generated
free RG-module Fi such that Di ⊕ Fi

∼= Ci. By Poincaré duality for X (see [27]), there
is a long exact sequence

0 → D0 → D1 → · · · → Dn−1 → Dn → R → 0.

It follows that

E(G) =
∑

i

(−1)n−i[Di] = (−1)n
∑

i

(−1)i[Ci] + (−1)n+1
∑

i

(−1)i[Fi]. (8.2)

Since n is odd, adding equations (8.1) and (8.2) gives

2E(G) = (−1)n+1
∑

i

(−1)i[Fi],

and hence the claim. �

Let J be a non-cyclic finite subgroup of the rotation group SO(3). Recall that the
natural action of J on the 2-sphere has three non-free orbits. Let H1, H2 and H3 be
stabilizers of points in these three orbits.

Corollary 8.3. For J , Hi as above, let G be the double of J along the H1, H2, H3,
and let R be a ring in which |J | is a unit. Then G is a virtually free group of type FPP
over R and the Wall obstruction Ẽ(G) in K̃0(RG) has order at most two.

Proof. We shall build a contractible 3-manifold with a G-action satisfying the condi-
tions of Theorem 8.2. View the 3-sphere as the 1-point compactification of R3. The usual
SO(3) action on R3 extends to an action on the 3-sphere with fixed points at 0 and ∞.
Let B1 be the closed unit ball in R3 centred at 0, and let B2 be the complement in the
3-sphere of the open ball of radius two, so that B2 is a ball centred at ∞. Pick points xi

for i = 1, 2, 3 on the surface of B1 in distinct J-orbits, such that the stabilizer of xi is
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Hi. Finally, for each i, let Ci be a cylinder joining B1 and B2 with xi on its axis. Pick
a J-equivariant triangulation for the union of B1, B2 and the images under J of the Ci.
(The radius of Ci should be sufficiently small that these images are disjoint.)

This gives J-spaces Bj for j = 1, 2 and for each i an Hi-space Ci, together with Hi-
equivariant attaching maps from one end of Ci to the boundary of Bj for each i and j.
Moreover, the singular set of Bj (which is the central point together with a collection of
intervals meeting at the centre) is a J-equivariant retract of Bj , the singular set of Ci

(which is its central line) is an Hi-equivariant retract of Ci, and these retractions can
be chosen to be compatible with the gluing of Ci to Bj . Now view Bj as a Jj-space for
j = 1, 2.

Each of the five spaces constructed so far can be ‘induced up to G’, to give G-spaces
G×Jj Bj and G×Hi Ci, and the Hi-equivariant attaching maps give rise to G-equivariant
attaching maps between these five induced G-spaces. The resulting G-space X has a G-
tree as an equivariant retract (the tree corresponding to the given expression for G as a
graph of groups), and so X is contractible. Moreover, X is a 3-manifold with boundary,
and G acts freely on δX. Hence Theorem 8.2 applies to X, and the claim follows. �

The next proposition completes the proof of Theorem 2.3.

Proposition 8.4. Let J be a finite subgroup of SO(3), and construct G as in Corol-
lary 8.3. If J is Dn for n even, or A4, S4 or A5, then Ẽ(G) ∈ K̃0(CG) has order two. If
J = Dn for n odd, then Ẽ(G) ∈ K̃0(CG) is zero, but Ẽ(G) ∈ K̃0(QG) has order two.

Proof. By Corollary 8.3, the order of Ẽ(G) is at most two. Since K̃0(kJ) is free
abelian, it follows from Proposition 4.2 that Ẽ(G) = 0 ∈ K̃0(kG) if and only if the trivial
kJ-module is a sum of induced modules from the Hi. If J is the symmetry group of a
platonic solid, or Dn for n even, then each of the Hi has even index in J . Thus in this
case any induced module has even k-dimension, so the trivial module is not a sum of
induced modules.

If J = Dn for n odd, the trivial CC2-module induces up to J as the sum of the trivial
CJ-module direct sum one copy of each irreducible CJ-module of dimension two. Since
each irreducible two-dimensional CJ-module is induced up from Cn, it follows that the
trivial CJ-module is a sum of induced modules as required.

It remains to check that when J = Dn for some odd n, the trivial QJ-module is not a
sum of induced modules (from proper subgroups). In the case when n is an odd prime p,
there are only three irreducible QJ-modules, and it can be checked that induced modules
(from any proper subgroup) consist of an even number of QJ-irreducibles. This proves
the claim when n = p. The claim for general odd n follows, since if p divides n, there is
a surjective homomorphism from Dn to Dp, which takes the trivial QDn-module to the
trivial QDp-module. �

9. Comparing FL and FH

Bestvina and Brady define G to be of type FH over R if there is an R-acyclic, G-free G-
CW-complex Y with finitely many orbits of cells [5]. Using the simplicial approximation
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theorem it may be shown that any G-CW-complex Y is G-homotopy equivalent to a
simplicial complex X on which G acts simplicially. Moreover, if Y has finitely many
orbits of cells, X has finitely many orbits of simplices. Thus there is no loss of generality
if one assumes that the space Y is a simplicial complex.

If G is FH over R, the chain complex for the space Y is an RG-free resolution for the
trivial module R, and hence G is FL over R. The converse does not hold for all choices
of G and R, however, as we shall see below.

If K is an extension field of a field k, then for any space X, and any i, the homology
group Hi(X; K) is naturally isomorphic to Hi(X; k) ⊗ K. In particular, X is k-acyclic if
and only if X is K-acyclic. Thus one obtains the following proposition.

Proposition 9.1. Let K be an extension field of k. A group G is FH over K if and
only if G is FH over k.

Corollary 9.2. There are virtually free groups and PD3 groups over the complex
numbers C that are FL over C but not FH over C.

Proof. By Proposition 9.1, any group that is FL over C but is not FL over Q cannot
be FH over C. Virtually free groups having these properties are given in Proposition 8.4
and PD3 groups having these properties in Theorems 5.2 and 7.1. �

To demonstrate that this corollary is interesting, we ought to show that many groups
of type FL are also of type FH. This is the content of Theorem 9.4.

A CW-complex is said to be of finite type if it has finitely many cells in each dimension.
(Note that a simplicial complex with finitely many vertices must be finite, so for this
finiteness condition one really must consider CW-complexes instead.) An Eilenberg–
Mac Lane space for a group G, denoted K(G, 1), is a connected CW-complex whose
fundamental group is G and whose universal cover is contractible. The proposition below
shows that every group considered in this paper has a finite-type Eilenberg–Mac Lane
space.

Proposition 9.3. If G is virtually torsion free and acts with finite stabilizers and
finitely many orbits on a contractible simplicial complex X, then G has a finite-type
Eilenberg–Mac Lane space.

Proof. Let H be a torsion-free finite-index normal subgroup of G, and let Y be
the universal cover of a finite-type Eilenberg–Mac Lane space for G/H. (The ‘bar con-
struction’ shows that any finite group has a finite type Eilenberg–Mac Lane space [8].)
Replacing X by its barycentric subdivision if necessary, it may be assumed that the
stabilizer of every simplex of X fixes that simplex pointwise. Now X may be viewed as
a G-CW-complex whose cells just happen to be simplex shaped. Also X × Y is a con-
tractible G-CW-complex with finitely many orbits of cells of each dimension. Since the
stabilizer of any cell of Y is H, and H acts freely on X, it follows that G acts freely on
X × Y , and the quotient (X × Y )/G is a finite-type K(G, 1). �
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Theorem 9.4. Let R be a subring of the rationals, and let G be a group with an
Eilenberg–Mac Lane space of finite type. Then G is FL over R if and only if G is FH
over R.

Proof. Without any conditions on G and R, FH ⇒ FL, but we must prove the
converse. Let Y be the universal cover of a finite-type Eilenberg–Mac Lane space for G.
Let n be the maximum of three and the cohomological dimension of G over R, and let
X ′ be the (n − 1)-skeleton of Y . The R-chain complex C ′

∗ for X ′ is the start of a finite
RG-free resolution for R. Hence

H ′ = Hn−1(X ′; R) = ker(C ′
n−1 → C ′

n−2)

is a stably free RG-module, i.e. there exists m such that H ′ ⊕ RG⊕m is free. Build X ′′

by attaching m free G-orbits of (n − 1)-spheres to X ′. (Equivalently, one could attach a
bouquet of m copies of the (n−1)-sphere to Y/G, and define X ′′ to be the (n−1)-skeleton
of the universal cover of this space.) Now X ′′ is an (n − 1)-dimensional G-free G-CW-
complex which is (n − 2)-connected, and has the property that H ′′ = Hn−1(X ′′; R) is a
free RG-module, with RG-basis h1, . . . , hl say.

H ′′ is a submodule of the (n − 1)-chains on X ′′, so each hi may be represented as a
finite sum hi =

∑
j rijcj for rij ∈ R and cj an (n − 1)-cell of X ′′. Since R is a subring of

Q, there is an integer si which is a unit in R and such that for each j, sirij ∈ Z. (Take
si to be the lowest common multiple of the denominators of the rij when expressed as
quotients of coprime integers.) The elements sihi form an RG-basis for H ′′, and each
sihi lies in the integral (n − 1)-chains on X ′′. Since X ′′ is (n − 2)-connected, there is a
map fi from the (n−1)-sphere to X ′′ sending a generator for the top homology group of
the sphere to sihi. Build X by attaching l free G-orbits of n-cells to X ′′ using the fi as
attaching maps for a set of orbit representatives. This X is the required R-acyclic G-free
G-CW-complex. �

10. Detecting K0

In this section we give a proof that certain elements of K0 have order two, that does not
depend on [2,12,31,32]. This gives a self-contained and comparatively elementary proof
of parts (a) and (b) of Theorem 2.3, together with some cases of Theorem 2.2. A different
account of this argument has appeared in [19], so we omit some of the calculations.

Let f be the embedding of C in M2(R) defined by

f : reiθ �→
(

r cos θ −r sin θ

r sin θ r cos θ

)
.

Let S1 and S2 be copies of M2(R), and let R be the coproduct of S1 and S2, amalgamating
the images of C. As a C-bimodule, M2(R) is freely generated by

I =

(
1 0
0 1

)
and A =

(
0 1
1 0

)
.
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It follows that R has C-basis the alternating words in A and A′, the copies of A lying
in S1 and S2, respectively. Thus R may be identified with the skew group ring C ∗ D,
where D is an infinite dihedral group generated by A and A′, and AλA = A′λA′ = λ∗,
the complex conjugate of λ, for each λ ∈ C.

The map
1 ⊗ f : C ⊗ C → C ⊗ M2(R),

where all tensor products are over R, is the inclusion of a subring isomorphic to C × C

in M2(C). Hence C ⊗ R may be identified with the coproduct of two copies of M2(C),
amalgamating a subring isomorphic to C × C. In terms of the description of R as a skew
group algebra, C⊗R is isomorphic to (C×C)∗D, where A(λ, µ)A = A′(λ, µ)A′ = (µ, λ)
for any (λ, µ) ∈ C × C. The R-algebra R is one of the examples mentioned at the start
of § 6.

Now let e be a rank-one idempotent in M2(R), and let e, e′ denote copies of e in S1

and S2, respectively. Let [e] and [e′] denote the corresponding elements of K0(R). In
K0(M2(R)), 2[e] is equal to the free module of rank one. It follows that 2([e] − [e′]) =
[R] − [R] = 0 in K0(R).

On the other hand, the image of 1⊗f : C⊗C → M2(C) contains rank-one idempotents.
It follows that [e] − [e′] = 0 in K0(C ⊗ R). To show that [e] − [e′] is an element of order
two in K0(R) that is mapped to zero in K0(C ⊗ R) it suffices to show that the following
theorem holds.

Theorem 10.1. The elements [e] and [e′] are not equal in K0(R).

Proof. Let T be the ring of real polynomial functions on the circle x2 + y2 = 1.
Parametrizing the circle by t ∈ R/Z, T is generated as an R-algebra by c and s defined
as

c(t) = cos(2πt), s(t) = sin(2πt).

The ring M2(T ) may be viewed as a ring of polynomial functions from the circle to
M2(R). Define homomorphisms

fi : Si → M2(T )

by
f1(M) = (t �→ M), f2(M) = (t �→ f(eπit)Mf(e−πit)),

for any M ∈ Si, where f : C → M2(R) is as above. Since the image of f is commutative,
f1 and f2 agree on the images of C in S1 and S2, and hence define a homomorphism
f̂ : R → M2(T ). In fact, f̂ is an isomorphism from R to M2(T ).

The homomorphisms f1 and f2 satisfy

f1 :

(
1 0
0 0

)
�→

(
1 0
0 0

)
,

f2 :

(
1 0
0 0

)
�→

(
(1 + c)/2 s/2

s/2 (1 − c)/2

)
.
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Hence the images of [e] and [e′] in K0(T ) (under the composite of f and the Morita
equivalence map) are the classes represented by the free module of rank one and the ideal
(c + 1, s), respectively. Since (c + 1, s) is a non-principal maximal ideal in the Dedekind
domain T , it is not stably isomorphic to the free module (see 1.4.23 of [30]). �

This argument is similar to that used in [19], except that there a topological argument
(via the ring of continuous functions on the circle) was used to detect [e] − [e′].

Let G be the double of the dihedral group Dp of order 2p along its subgroup Cp, for p

an odd prime. Recall that in Proposition 6.2 it was shown that

K0(RG) ∼= Z⊕(p+5)/2 ⊕ Z
⊕(p−1)/2
2 .

The rank of K0(RG) is equal to the number of conjugacy classes of elements of finite
order in G, and so Hattori–Stallings traces detect K0(RG) modulo its torsion subgroup.
The torsion subgroup of K0(RG) can be detected by homomorphisms from RG to the
ring R of Theorem 10.1, as follows.

Let ρ be an irreducible two-dimensional real representation of the dihedral group Dp.
Thus ρ gives rise to a homomorphism ρ : RDp → M2(R). It may be assumed that ρ

is orthogonal, in which case ρ(Cp) is contained in f(C) ⊆ M2(R). The corresponding
R-algebra homomorphisms

ρ1 : RDp → S1 ⊆ R, ρ2 : RDp → S2 ⊆ R

coincide on RCp, and hence induce a homomorphism

ρ̂ : RG → R.

There are (p − 1)/2 different choices of ρ. As an R-algebra, RDp is isomorphic to
R × R × M2(R)⊕(p−1)/2, and the different choices of ρ correspond to projections on to
the M2(R) factors. This gives rise to (p − 1)/2 distinct homomorphisms from RG to R,
and hence (p − 1)/2 homomorphisms from K0(RG) to K0(R).

There is a Z2-basis for the torsion subgroup of K0(RG) consisting of the elements
[ei] − [e′

i], 1 � i � (p − 1)/2, where ei is a primitive idempotent in RDp lying in the ith
copy of M2(R), and ei, e′

i denote corresponding elements in the two copies of RDp inside
RG. Each of these elements is sent to the element of order two in K0(R) by exactly one
of the (p − 1)/2 homomorphisms from RG to R, and is sent to zero by the others. Hence
the whole torsion subgroup of K0(RG) is detected by these homomorphisms.

In the cases when either k is a subfield of R, or k contains a primitive pth root of
unity, this gives an alternative method to detect all of the elements of K0(kG) given in
Proposition 6.2. This suffices to prove cases (a) and (b) of Theorem 2.3.

11. Stably free modules

In this section, we exhibit non-free stably free finitely generated kG-modules for a certain
virtually free group G and any field k of characteristic zero. Note that Bass has shown
that when G is free, every projective kG-module is free [1]. (This can also be deduced
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from the theorem of Bergman–Dicks quoted below as Theorem 11.1.) See [3,14,20] for
examples of non-free stably free modules for group algebras of certain torsion-free groups.

For any ring R, let P(R) denote the abelian monoid of isomorphism types of finitely
generated projective R-modules. A projective R-module P is stably free of rank r but
not free if and only if [P ] = r[R] in K0(R), but [P ] �= r[R] in P(R). As remarked earlier,
the Bergman–Dicks approach to Theorem 4.1, which has the drawback that it requires
stronger hypotheses than Waldhausen’s, does have the advantage that it also gives the
following.

Theorem 11.1. Let G be the fundamental group of a finite graph of finite groups,
and let C be a category with objects the edge and vertex groups in the graph for G, with
(non-identity) morphisms the inclusions of each edge group in its initial and terminal
vertex groups. Let k be a field in which the order of each of the finite groups in C is a
unit. Then the following natural map is an isomorphism:

colimH∈C P(kH) → P(kG).

The corresponding statement for graphs of groups with larger edge groups is not valid.
Lewin exhibits non-free stably free QG-modules for a class of groups which includes the
fundamental groups of the trefoil knot and of the Klein bottle [20]. Dunwoody’s non-free
stably free ZG-modules for G the trefoil group [14] also give rise to non-free stably free
QG-modules for this G. On the other hand, the trefoil and Klein bottle groups may be
expressed as fundamental groups of graphs of groups with infinite cyclic edge and vertex
groups, and every projective module for the rational group algebra of an infinite cyclic
group is free.

Corollary 11.2. Let G be the double of the alternating group J = A5 along subgroups
H1 and H2 of order two and three. For any field k of characteristic zero there is a finitely
generated projective kG-module P such that P ⊕ kG is free, but for any n > 0, P⊕n is
not free.

Proof. For any finite group L, the monoid P(kL) is isomorphic to a direct sum of
copies of N indexed by the simple kL-modules, and embeds in K0(kL). (Of course, these
assertions rely on the hypothesis that k has characteristic zero.) For each choice of k, we
shall exhibit finitely generated (projective) kJ-modules M1 and M2 with the following
properties.

(1) For some r > 0, [M1] + [M2] = r[kJ ] in P(kJ).

(2) For each n > 0 and each 1 � i, j � 2, if N � (Mi)⊕n and N is isomorphic to a
module induced up from Hj , then N = 0.

(3) In K0, for each 1 � i � 2, [Mi] is in the image of the induction map K0(kH1) ⊕
K0(kH2) → K0(kJ).

Given such Mi, let J1 and J2 be the two copies of J used to build G, and define
P = IndG

J1
(M1) ⊕ IndG

J2
(M2). Then by (1) and (3), it follows that in K0(kG),

[P ] = IndG
J1

([M1] + [M2]) = IndG
J1

(r[kJ1]) = r[kG].
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On the other hand, the description of P(kG) given by Theorem 11.1 and property (2)
imply that for each n > 0, n[P ] �= nr[kG] in P(kG).

It remains to exhibit M1, M2 satisfying (1)–(3). Firstly, suppose that k is a splitting
field for J and for the Hj . (This occurs if and only if k contains ω, a primitive cube root
of 1, and

√
5.) In this case, there are five simple kJ-modules, which we shall denote by

χ1, . . . , χ5, of k-dimensions 1, 3, 3, 4 and 5, respectively. The modules

M1 = χ1 + χ4 + 5χ5, M2 = 3χ2 + 3χ3 + 3χ4

have properties (1)–(3), and give rise to a non-free stably free kG-module of rank one.
The same elements will suffice if k contains ω but does not contain

√
5, except that in

this case there are only four simple kJ-modules, and χ2 + χ3 should be understood to
denote a simple kJ-module of dimension six. When k does not contain ω, the Mi as
above do not satisfy (3). However, the modules M ′

i = Mi ⊕ Mi satisfy (1)–(3) and may
be used to construct a kG-module that is not free and is stably free of rank two. �

Of course the method used in proving Corollary 11.2 could be applied to the funda-
mental groups of many other graphs of finite groups, but we preferred to concentrate on
a specific example.
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