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Abstract. Let p be a prime and K a number field of degree p. We determine the
finiteness of the number of elliptic curves, up to K-isomorphism, having a prescribed
property, where this property is either that the curve contains a fixed torsion group as
a subgroup or that it has a cyclic isogeny of prescribed degree.
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1. Introduction. Our goal is to study the number of elliptic curves over number
fields of prime degree K/�, up to K-isomorphism, having a prescribed property. This
property will be one of the following:

(1) The curve’s group of K-rational points contains a subgroup isomorphic to
a fixed torsion group T .

(2) The curve admits a cyclic n-isogeny defined over K , for some prescribed
integer n.

Our methods will actually solve the first problem for number fields of degree d,
where d is not divisible by any of 2, 3 or 5.

It is clear that, when counting the number of elliptic curves over K with a cyclic
n-isogeny, one has to count up to K-isomorphism, since if E/K has a cyclic n-isogeny,
then so does every quadratic twist of E (in other words, the modular curve Y0(n)
classifying cyclic n-isogenies is a coarse moduli space).

On the other hand, it is not clear whether it is better to count elliptic curves with
prescribed torsion up to K-isomorphism or K-isomorphism. Since we will mostly be
concerned with the finiteness of the number of curves with given torsion, and since (see,
e.g., [11, Lemma 5.5]) the number of elliptic curves over K whose group of K-rational
points contains a subgroup isomorphic to T is finite up to K-isomorphism if and only
if it is finite up to K-isomorphism, we see that the choice of the isomorphism does not
really matter.

Thus, for simplicity’s sake, we will always count elliptic curves up to K-
isomorphism, and we will do so, usually without mention, throughout the paper.

The number of curves will naturally depend on the prescribed property. Let m|n.
Following [8], we define

�1(m, n) =
{(

a b
c d

)
∈ SL2(�)|a − 1 ≡ c ≡ 0 mod n, b ≡ d − 1 ≡ 0 mod m

}
,
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and let X1(m, n) be �1(m, n)\H∗. The curve X1(m, n) is defined over �(ζm). Let
Y1(m, n) = X1(m, n)\{cusps}. The moduli interpretation of Y1(m, n) is that its K-
rational points classify isomorphism classes of the triples (E, Pm, Pn), where E
is an elliptic curve (over K) and Pm and Pn are torsion points (over K), which
generate a subgroup isomorphic to �/m� ⊕ �/n�. Note that X1(1, n) = X1(n) and
Y1(n) = Y1(1, n). Similarly X0(n) = �0(n)\H∗ and Y0(n) = X0(n) \{cusps}. The moduli
interpretation of Y0(n) is that its K-rational points classify isomorphism classes of
pairs (E, C), where E/K is an elliptic curve and C is a cyclic (Gal(K/K)-invariant)
subgroup of E.

Let Y be the modular curve (Y1(m, n) or Y0(n)) corresponding to the property we
are studying, and X its compactification. It is clear that the number of elliptic curves
with the desired property over K is positive and finite if and only if 0 < |Y (K)| < +∞.
Hence, we will from now on, express our problem in determining when 0 < |Y (K)| <

+∞, or equivalently |{K-rational cusps of X}| < |X(K)| < +∞.
The key value that will determine whether 0 < |Y (K)| < +∞ is its genus. If Y is a

genus 0 curve, then Y (K) has either none or infinitely many points, thus implying that
there are none or infinitely many curves with the given property.

In particular, for X = X1(m, n) of genus 0 and m > 2, that is for (m, n) = (3, 3),
(3, 6), (4, 4), or (5, 5), |Y (K)| = ∞ if K contains ζm, an mth primitive root of unity,
and zero otherwise. One direction follows from the Weil pairing, and the other from
the fact that the curve X1(m, n) has a �(ζm)-rational point (and hence infinitely many)
for all of the listed pairs.

On the other hand, if X is of genus ≥ 2, then by Faltings’ theorem [5], X(K) has
only finitely many points. Thus, we see that we are left only with the genus 1 case.

In Section 2, we study |Y1(m, n)(K)|; combining the obtained results with the results
of [7] and [12], we solve this problem for number fields of prime degree completely.

In Section 3, we study the number of points on Y0(n), for a prescribed n, over
prime degree fields K .

2. Number of elliptic curves with prescribed torsion. As stated in the introduction,
we need to study the modular curves X1(m, n) of genus 1. One can see in
[6, Theorem 2.6, Proposition 2.7] that X1(m, n) is of genus 1 only for (m, n) =
(1, 11), (1, 14), (1, 15), (2, 10), (2, 12), (3, 9), (4, 8) or (6, 6). Note that if K is a
field of odd degree, m > 2 and m|n, then |Y1(m, n)(K)| = 0, as otherwise �(ζm) would
have to be a subfield of K (because of the Weil pairing [17, Corollary 3.11]), which is
impossible. Thus, we can ignore the cases (3, 9), (4, 8) and (6, 6), implying that we are
left with the cases

(m, n) ∈ {(1, 11), (1, 14), (1, 15), (2, 10), (2, 12)}. (1)

The number of points on Y1(m, n) was determined by Kamienny and the author [7]
over all quadratic fields and by the author [12] over all cubic fields. In both cases, there
were exceptional cases where, there are a few fields K over which 0 < |Y1(m, n)(K)| <

+∞. Note also that in [13] it is proven that there are infinitely many such quartic fields.
In this paper, we prove that there are no such number fields of degree d, where d is
not divisible by any of 2, 3 or 5. For d = 5, we find that |Y1(11)(�(ζ11)+| = 15 (where
�(ζ11)+ is the maximal real subfield of �(ζ11)) and |Y1(m, n)(K)| = 0 or ∞ for all other
triples (K, m, n), where K is a quintic field and (m, n) are listed in (1).

We state our results in the theorem.
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THEOREM 1.

(a) Let d be a positive integer coprime to 6 and K a number field of degree d. Then

|Y1(m, n)(K)| =
{

0 or ∞ if (m, n) ∈ {(1, 14), (1, 15), (2, 10), (2, 12)}
0 if (m, n) ∈ {(3, 9), (4, 8), (6, 6)} (2)

(b) Let K a number field of degree d. Then

|Y1(11)(K)| =
{

0 or ∞ if 3, 4, 5 � d or if d = 5 and K 	= �(ζ11)+

15 if K = �(ζ11)+
(3)

REMARK 1. An elliptic curve over � has one of the following 15 torsion groups
(see [9] for the proof):

�/n�, where n = 1, . . . , 10, 12

�/2� ⊕ �/2n�, where n = 1, . . . , 4. (4)

For any number field K , there are infinitely many elliptic curves containing any of the
groups from (4). All of the groups (4) are parameterized by modular curves of genus 0.
On the other hand, the groups from (2) and (3) are parameterized by curves of
genus 1.

We can summarize our results in terms of elliptic curves with prescribed torsion
groups. The following corollary follows trivially from Theorem 1 and Remark 1.

COROLLARY 2. Let d be a positive integer not divisible by any of 2, 3 or 5, and let be
K a number field of degree d. If T is one of the following groups

�/n�, where n = 1, . . . , 12, 14, 15,

�/2� ⊕ �/2n�, where n = 1, . . . , 6, (5)

then there are either none or infinitely many elliptic curves over K containing T as a
subgroup. If T is any other finite group, then there are only finitely many (maybe 0)
elliptic curves containing T as a subgroup.

Let Y1(m, n) be of genus 1. For 0 < |Y1(m, n)(K)| < +∞ to be true, the following
two conditions have to hold.

(C1) rank(X1(m, n)(K)) = 0.
(C2) At least one of the torsion points of X1(m, n)(K) is not a cusp (note that this

implies |X1(m, n)(K)|tors > |X1(m, n)(�)|tors).
To prove Theorem 1, we will use division polynomials and Galois representations.
We denote by ψn the nth division polynomial, which has the property that, for

a point P 	= O on an elliptic curve in Weierstrass form, ψn(x(P)) = 0 if and only if
nP = 0. For a definition and more information on division polynomials see [17]. Note
that the field of definition of P will be either the number field F obtained by adjoining
a root of ψn or a quadratic extension of F .

Let E[n] denote the n-torsion subgroup of E/� over � and let �(E[n]) be the
nth division field of E. The Galois group Gal(�/�) acts on E[n] and gives rise
to an embedding ρn : Gal(�(E[n]/�) ↪→ GL2(�/n�) called a Galois representation
associated with E[n]. Serre’s Open Image Theorem [14] tells us that for an elliptic curve
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Table 1. Non-surjective mod l Galois representations

Modular curve Cremona label [2] Primes l for which ρl is not surjective

X1(11) 11a3 5
X1(14) 14a4 2, 3
X1(15) 15a8 2
X1(2, 10) 20a2 2, 3
X1(2, 12) 24a4 2

without complex multiplication (all of the X1(m, n)-s that we study do not have complex
multiplication) this embedding is surjective for all but finitely many primes. The primes
for which this embedding is possibly not surjective can be computed in SAGE [15] with
the non surjective() function, which uses the bounds for the non-surjective primes
from [1].

To prove Theorem 1, we will find the fields K of prime degree over which
X1(m, n)(K)tors is strictly larger than X1(m, n)(�)tors, where (m, n) is a pair from the list
(1).

Proof of Theorem 1. Before proceeding with the details of the proof, we sketch the
strategy of the proof.

Let E/� be an elliptic curve without complex multiplication. Let l be an odd
prime such that the Galois representation ρl is surjective. This implies that the division
polynomial ψl is irreducible. The field of definition F of a torsion point of order l has
to contain the field obtained by adjoining a root of ψl to �, which is a field of degree
(l2 − 1)/2. In particular, the degree of F must be divisible by 4. It follows that if K is
any number field of prime degree then E(K) cannot contain a point whose order is
divisible by any odd prime l for which ρl is surjective.

If E(�) has at least one point of order 2 and K is a number field of odd degree, then
by [12, Lemma 1], the 2-Sylow subgroup of E(K) is equal to the 2-Sylow subgroup of
E(�). Suppose now E(�)[2] = 0. One can then write E(�) in short Weierstrass form
y2 = f (x), where f (x) is an irreducible degree 3 polynomial, and conclude that any
number field containing a point of order 2 has to have the field obtained by adjoining
a root of f to � as a subfield. Thus E(�)[2] = 0 implies E(K)[2] = 0 when the degree
of K is not divisible by 3.

Combining these two cases, we see that for any number field K of degree coprime
to 6, the 2-Sylow subgroup of E(K) is equal to the 2-Sylow subgroup of E(�).

As the X1(m, n) we study do not have complex multiplication, it follows that
condition (C2) can be true only if there exists a prime l such that ρl is non-surjective
and a prime degree field K contains a root of ψl.

For all the X1(m, n)-s we study, we list the primes (computed in SAGE) for which
the Galois representation ρl is not surjective in Table 1.

We start with X1(11) and the prime 5. The curve elliptic curve X1(11) has the
following Weierstrass model

y2 − y = x3 − x2

and X1(11)(�) � �/5� and all the rational torsion points are cusps. Since no number
field of odd degree contains �(ζ5) as a subfield, X1(11)(F)[5] � �/5�, for all number
fields F of odd degree. We now factor the 25-division polynomial of X1(11) and obtain
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the factorization

ψ25 = ψ5f5g5f20g20f250,

where fn and gn are irreducible polynomials of degree n. We need to examine only the
fields generated by f5 and g5, as the zeroes of ψ5 correspond to the points of order 5,
which are either rational (and thus cusps) or are defined over a field of even degree,
and as f20, g20 and f250 generate fields of even degree.

We compute that f5 and g5 generate the same field, �(ζ11)+. We compute
X1(11)(�(ζ11)+)tors � �/25� and rank(X1(11)(�(ζ11)+)) = 0 (via 2-descent). The curve
X1(11) has 10 cusps over �(ζ11)+ (see [3, Example 9.3.5]), thus there are 15 non-
cuspidal points on X1(11)(�(ζ11)+). As �/11� has 10 generators and each point on
X1(11)(�(ζ11)+) corresponds to a pair (E,±P), where P is a point of order 11, we see
that this implies that there are 15/5 = 3 elliptic curves with a point of order 11 over
�(ζ11)+. We also conclude that �(ζ11)+ is the only quintic field K such that there is a
positive finite number of elliptic curves with a K-rational point of order 11 and that
if K is a number field of degree not divisible by 2, 3 or 5 (as to not contain �(ζ11)+),
then there are either none or infinitely many elliptic curves with a K-rational point of
order 11.

We move on to X1(14) and the prime 3. The elliptic curve X1(14) has a Weierstrass
model

y2 + xy + y = x3 − x

and X1(14)(�) � �/6�, where all the rational torsion points are cusps. We factor its
9-division polynomial ψ9 and obtain

ψ9 = ψ3f3f6f27,

where fn is an irreducible polynomial of degree n. As in the previous case, the zeroes of
ψ3 do not concern us. From the factorization of ψ9, we see that there are no points on
X1(14) of order 9 over any number field of degree not divisible by 3. Thus X1(14) has
no non-rational torsion points over any number field of degree not divisible by 2 or 3.
Note that points on X1(m, n) over cubic fields have already been dealt with in [12].

The case X1(2, 10) and the prime 3 remain. The elliptic curve X1(2, 10) has a
Weierstrass model

y2 = x3 + x2 − x

and X1(2, 10)(�) � �/6�, where all the rational torsion points are cusps. We factor its
9-division polynomial ψ9 and obtain

ψ9 = ψ3f9f27,

where fn is an irreducible polynomial of degree n. Similarly as in the previous case we
can conclude that there are no points on X1(2, 10) of order 9 over any number field of
degree not divisible by 9. Thus, X1(2, 10) has no non-rational torsion points over any
number field of degree not divisible by 2 or 9.

Combining all the cases we have proven Theorem 1. �
REMARK 2. Let α be the root of the polynomial x5 − 18x4 + 35x3 − 16x2 − 2x +

1, which generates �(ζ11)+. The three elliptic curves over �(ζ11)+ with a point of
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order 11 are

y2 + 4α4 − 73α3 + 150α2 − 96α + 27
11

xy + 3α4 − 19α3 + 19α2 − 6α + 1
11

y

= x3 + 3α4 − 19α3 + 19α2 − 6α + 1
11

x2, (6)

y2 + 2α4 − 32α3 + 68α − 8
11

xy + −6α4 + 111α3 − 261α2 + 190α − 33
11

y

= x3 + −6α4 + 111α3 − 261α2 + 190α − 33
11

x2 (7)

and

y2 + xy
11

(45α4 − 799α3 + 1379α2 − 372α − 179) + y
11

(372α4 − 6605α3 + 11404α2

− 3157α − 1519) = x3 + x2

11
(372α4 − 6605α3 + 11404α2 − 3157α − 1519). (8)

The curves (6)–(8) have j-invariants −11 · 1313, −215 and −112, respectively. The
curve (7) has complex multiplication by the ring of integers �(

√−11), while the
other two curves do not have complex multiplication. The elliptic curves above were
constructed using the formulas from [16].

3. Number of elliptic curves with a cyclic n-isogeny. As we are studying elliptic
curves with a cyclic n-isogeny, we are led to the study of the modular curves X0(n).

If X0(n) is of genus 0 (when n ≤ 10, n = 12, 13, 16, 18 or 25), then there are already
infinitely many elliptic curves with a cyclic n-isogeny over �.

Let S be the set of n-s such that X0(n) is of genus 1, that is,

S = {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49}. (9)

Note that the Cremona label of X0(n) is na1 and, as listed in Cremona’s tables [2], the
curves X0(n) have rank 0 over � and hence |Y0(n)(�)| is finite for all n ∈ S. The curve
Y0(n)(�) has 1 point for n = 19 and 27, 2 points for n = 14 and 17, 3 points for n = 11,
4 points for n = 15 and 21 and 0 points for the remaining genus 1 cases [10].

As in the previous section, we will be interested in finding the fields K of prime
degree for which the elliptic curve X0(n) has larger torsion than over �, but still has
rank 0.

We state our results in the following theorem.

THEOREM 3. The only pairs (n, K), where n ∈ S and K is a number field of prime
degree such that |Y0(n)(�)| < |Y0(n)(K)| < +∞ are listed in Table 2.

Proof. As the general strategy of the proof is similar as the proof of Theorem 1,
we will leave some details out. We will not explicitly write the Weierstrass models of
X0(n), but note that they can be found in [18].

The proof will be different for elliptic curves with complex multiplication and
those without. We first deal with those without complex multiplication using the same
general strategy as in the proof of Theorem 1.

We first deal with the cases when X0(n) does not have complex multiplication, that
is n ∈ {11, 14, 15, 17, 19, 20, 21, 24}. As in the proof of Theorem 1, for each X0(n) we
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Table 2. Exceptional fields

n K |Y0(n)(K)|
11 �(α)a 8
14 �(

√−7) 8
14 �(

√−3) 14
15 �(

√
5) 12

15 �(i) 12
19 �(β)a 4
20 �(i) 6
21 �(

√−3) 12
27 �(

√−3) 3
27 �(γ )a 4
49 �(

√−7) 2
aα is a root of x3 − 13392x − 1080432, β of
x3 − 12096x − 544752, γ of x3 − 314928.

Table 3. Non-surjective mod l Galois representations

Modular curve Primes l for which ρl is not surjective

X0(11) 5
X0(14) 2, 3
X0(15) 2
X0(17) 2
X0(19) 3
X0(20) 2, 3
X0(21) 2
X0(24) 2

compute primes l for which the Galois representation ρl is not surjective. We list the
obtained results in Table 3.

First note that if X0(n)(�) has no 2-torsion, then X0(n) gains non-trivial 2-torsion
over one cubic field (we count number fields up to isomorphism). The curves X0(n) for
n = 11, 19 and 27 have no 2-torsion and all of them have rank 0 over the cubic field
over which they gain 2-torsion.

We start by proving that there is no number field K of prime degree such that
|X0(11)(�)| < |X0(11)(K)| < +∞. We factor the 5-division polynomial of X0(11) and
obtain that x2 + x − 29/5 is the only factor of prime degree, but X0(11)(�(

√
5)) =

X0(11)(�) � �/5�.
The 25-division polynomial of X0(11) has no factors of prime degree, except the

ones corresponding to the 5-division polynomial. Thus, we have dealt with X0(11).
By examining X0(14) over the number fields generated by the factors of prime

degree of the 4-division and 9-division polynomials, we obtain

X0(14)(�(
√−7))tors � �/2� ⊕ �/6� and X0(14)(�(

√−3))tors � �/3� ⊕ �/6�

and X0(14)(K)tors = X0(14)(�)tors for all other fields K of prime degree. We compute
that the rank of X0(14) over both �(

√−3) and �(
√−7) is 0. Thus Y0(14)(�(

√−7))
has 8 points (|X0(14)(�(

√−7))| minus the 4 rational cusps) and Y0(14)(�(
√−3)) has

14 points.
By examining X0(15) over the number fields generated by the factors of prime

degree of the 8-division polynomial, we obtain

X0(15)(�(i))tors � �/4� ⊕ �/4� and X0(15)(�(
√

5))tors � �/2� ⊕ �/8�
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and X0(15)(K)tors = X0(15)(�)tors for all other fields K of prime degree. We compute
that the rank of X0(15) over both �(i) and �(

√
5) is 0. Thus, by removing the 4 rational

cusps of X0(15), we obtain that Y0(15)(�(i)) and Y0(15)(�(
√

5)) have 12 points.
We factor the 8-division polynomial of X0(17) and obtain that the only number

field K of prime degree such that X0(17) has torsion points defined over K , but not
over �, is K = �(i). But we compute that the rank of X0(17)(�(i)) is 1, and hence
there are infinitely many elliptic curves with a cyclic 17-isogeny over �(i).

We factor the 9-division polynomial of X0(19) and obtain that the only number
field K of prime degree such that X0(19) has torsion points defined over K , but not over
�, is K = �(

√−3). But, as in the previous case, the rank of X0(19)(�(
√−3)) is 1, and

hence there are infinitely many elliptic curves with a cyclic 19-isogeny over �(
√−3).

By examining X0(20) over the number fields generated by the factors of prime
degree of the 4-division and 9-division polynomials, we obtain

X0(20)(�(i))tors � �/2� ⊕ �/6�

and X0(20)(K)tors = X0(20)(�)tors for all other fields K of prime degree. We compute
that the rank of X0(20) over �(i) is 0, and hence Y0(20)(�(i)) has 6 points (we subtract
the 6 rational cusps of X0(20)).

In a similar manner, we obtain that the only field of prime degree K such that
X0(21) has torsion points defined over K , but not over �, is K = �(

√−3), and that
the rank of X0(21)(K) is 0. Hence Y0(21)(�(

√−3)) has 12 points (we subtract the 4
rational cusps of X0(21)).

By examining X0(24) over the number fields generated by the factors of prime
degree of the 8-division, we obtain that X0(24)(K)tors = X0(24)(�)tors for all number
fields of prime degree.

For the remaining cases n ∈ S, X0(n) is a curve with complex multiplication, so we
cannot apply the same methods as before. Instead we use following theorem, which
give a good description of the behaviour of the torsion of an elliptic curve with complex
multiplication defined over � upon extensions.

THEOREM 4. [4, Theorem 2] Let E be an elliptic curve defined over � with CM by
an order of K = �(

√−D) and p an odd prime not dividing D. Let F be a Galois number
field not containing K. Then E(F)[p] is trivial.

We have already shown that X0(27) gains non-trivial 2-torsion over a cubic
field, so by Theorem 4 and from the fact that X0(27)(�) � �/3�, we need to
check only its 3-division polynomial and 9-division polynomial. The 9-division
polynomial gives us no new fields and from the 3-division polynomial we obtain that
X0(27)(�(

√−3)) � �/3� ⊕ �/3�. However, X0(27) has 6 cusps over �(
√−3), which

gives |Y0(27)(�(
√−3))| = 3.

To find all the number fields K of prime degree such that |X0(32)(�)| <

|X0(32)(K)| < +∞, by Theorem 4, we just need to check the 8-division polynomial of
X0(32) and determine X0(32)(�(i)). We obtain that the only field K with the desired
property is K = �(i), and

X0(32)(�(i))tors � �/2� ⊕ �/4�.

The curve X0(32) has 8 cusps over �(i), so all of the �(i)-rational points are cusps.
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Similarly, for X0(36), by Theorem 4, we need to check the 9-division polynomial
and X0(36)(�(

√−3)). We obtain

X0(36)(�(
√−3))tors � �/2� ⊕ �/6�

and X0(36)(K)tors = X0(36)(�)tors for all other fields K of prime degree. The curve
X0(36) has 12 cusps over �(

√−3), so all of the �(
√−3)-rational points are cusps.

Finally, for X0(49), by Theorem 4, we need to check the 4-division and 7-division
polynomials and X0(49)(�(

√−7)). We obtain

X0(49)(�(
√−7))tors � �/2� ⊕ �/2�

and X0(49)(K)tors = X0(49)(�)tors for all other fields K of prime degree. The rank of
X0(49)(�(

√−7)) is 0, and hence Y0(49)(�(
√−7)) has 2 points. �
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