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The purpose of this paper is to give a more precise form of Theorem 1 of [2],
which gives a structure theorem for subgroups of HNN groups; we prove the
following.

Let H be a subgroup of the HNN group <i4,xj;x,l/_,-xI~
1 = t/ ;>. Then H

is an HNN group whose base is a tree product of groups H t~\wAw~l where w
runs over a set of double coset representatives of (H,A); the amalgamated and
associated subgroups are all of the form H n vU,v~l for some v. We can be more
precise about which subgroups occur and about the tree product. We will also ob-
tain stronger forms of other results in [1] and [2].

The main technique is Serre's theory of groups acting on trees. This theory
is an important new development in combinatorial group theory; in fact the
theorem above follows immediately from Serre's work. As these results have not
yet been published (they will appear as Springer Lecture Notes) the main results
are stated in section 1. The subgroup theorems are derived in section 2, and sec-
tion 3 contains some results on finitely generated subgroups of HNN groups and
amalgamated free products.

1. Bass and Serre's theory

The usual meaning is given to the word 'graph', except that a graph may
have several edges joining a pair of vertices and may have loops, i.e. edges whose
vertices coincide. All graphs considered will be connected.

A graph of groups, {&, Y) consists of:
(l) a graph Y,
(ii) for each vertex P and edge e of Y groups GP and Ge,
(iii) if P and Q are the vertices of the edge e, monomorphisms Ge -> GP and Ge -»• GQ

(if P = Q we require two monomorphisms Ge -* GP).
An isomorphism from the graph of groups (^, Y) to the graph of groups

(3f,X) consists of:
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[2] Subgroups of HNN groups 395

(i) an isomorphism from the graph Yto the graph A',
(ii) isomorphisms GP -> HP. and Ge -> He-, where P is a vertex and e and edge
of Yand P' and e' are their images in X; these isomorphisms must be such that

Ge^GP

if P is a vertex of e the diagram j j commutes.

Let (^, Y) be a graph of groups and T a maximal tree in Y. As we are only
considering connected graphs, T contains all the vertices of Y. Let GT be the tree
product of the vertex groups GP amalgamating for each edge e of Tthe two images
of Ge in the corresponding vertex groups (for general information about tree
products and HNN groups see [1], [2]). Then GT contains the groups GP (up to
isomorphism).

The fundamental group of(&, Y) relative to T, written %{f§, Y,T), is defined
to be the HNN group with base GT, with free part having basis {te} where e runs
over the edges of Y not in T, and with the subgroups associated to te being the
two images of Ge. Plainly if (0, Y) is isomorphic to (JV,Y') with T the tree in
Y' corresponding to Tin Y, then n(<&, Y, T) is isomorphic to n(Jtf, Y', T'). Also
by replacing (@, Y) by an isomorphic graph of groups over Y, we may assume
that the groups GP are subgroups of n{ <S, Y, T), that for e in Tthe maps Ge -* GP

and Ge -* GQ are inclusions, while for e not in Tone map Ge -» GP is an inclusion
(the other map need not be an inclusion).

It can be shown that up to isomorphism n(&, Y, T) is independent of T. The
proof is similar to the proof that the fundamental group of a graph Y may be
obtained using any maximal tree. This latter is a special case of the general result,
obtained by taking all the groups to be trivial.

Let a group G act on a graph X. We say G acts without inversions if
(i) X has no loops
(ii) if the edge e has vertices P and Q and ge = e then gP = P and gQ = Q (the
alternative possibility gP = Q and gQ = P would be called an inversion).

Let G act without inversions on X. Let Y be the quotient graph, p : X -> Y
the projection and Ta maximal tree in Y. It is not difficult to find a morphism of
graphs j : T-* Ysuch that pj is the identity on T. If we have a tree Xt £ X con-
taining one vertex from each G-orbit of vertices thenp:.X'1-» Yis one-one and
pXi will be a maximal tree of Y. We could then take pXt for T with j the inverse
of p.

We shall define a graph of groups (^, Y) which we refer to as associated to
the action of G on X. This graph of groups will not be unique but is obviously
unique up to isomorphism once Tis chosen.

We begin by defining./ on the edges of Ynot in T(however the resulting map
j : Y-* X will not be a morphism of graphs). Let e be an edge of Ynot in Twith
vertices P and Q. Take any edge e in X with vertices P and Q such that pe = e,
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pP = P, pQ = Q. As pP = pjP we can find geG such that gP = jP. Define je
to be ge. Then pje = e and j\P is one vertex of je. The other vertex will usually
not be jQ.

For each vertex P and edge e of Y, let GP be the stabiliser in G of the vertex
jP of Z and Ge the stabiliser of the edge je of X. For e in T with vertices P and
Q the maps Ge -» GP and Ge -> Gc are the inclusions. For e not in T with vertices
P and Q such that jP is a vertex of je the map Ge -»GP is the inclusion. Let Q
be the other vertex of je. Then we have p ^ = pjQ, so that there is an element
ge of G with 2 — GeUQ)- Thus stab jQ = 5e~

1(stab Q)ge and the map Ge-> GQ

is the composite of the inclusion Ge -> s t ab^ and conjugation. We have now de-
fined (?, Y).

The group n(&, Y, T) is generated by the groups GP and symbols te for each
edge of Ynot in Twith relations teHete~

x = Ge, where He is the image of Ge in
GQ. Hence we have a homomorphism TT(^, Y, 71) -»G mapping GP by inclusion
and sending te to #e.

THEOREM 1. (Serre [4]) The above homomorphism is an isomorphism if and
only if X is a tree.

THEOREM 2. (Serre [4]) Let <J8, Y) be a graph of groups with fundamental
group n (relative to some tree T). Then there is a tree Y on which n acts without
inversions such that the associated graph of groups is isomorphic to {^S, Y).

It is not difficult to see what Y must be. We may assume that each GP is a
subgroup of n, that the maps Ge -* GP and Ge -» Ge are inclusions for e in T, and
that Ge -* GP is an inclusion for e not in T. Since there is a Tt-orbit of vertices
above each vertex P of Yand one vertex in this orbit has stabiliser GP we can take
as the vertices of Ythe cosets gGP of GP in n, where P ranges over the vertices of
Y (if GP = GQ for P # Q then gGP and gGQ are to be different vertices of Y).
Similarly the edges of Y may be taken as the indexed cosets gGe where e ranges
over all edges of Y. For e in T with vertices P and Q the vertices of gGe are gGP

and gGQ. For e not in T with vertices P and Q where Gc-> GP is inclusion the
vertices of gGe are #GP and gteGQ. It is straightforward to see that this definition
of the vertices of an edge is unambiguous so that we have a (possibly not connected)
graph Y on which n acts without inversions, the associated graph of groups being
(^, Y). The problems are to show that Y is connected (which is not difficult) and
then to show Y is a tree. The latter is a consequence of the normal form for tree
products and HNN groups.

2. Subgroup theorems

Let G = A*VB. Then G is the fundamental group of the graph of groups
A — - — B. Hence G acts without inversion on a graph X whose vertices are the
cosets gA and gB of A and B in G and whose edges are the cosets g U, where the
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vertices of gU are gA and gB. It is easy to see directly that X is a tree; this also
follows from the general theory. G acts transitively on the edges, while there
are two transitivity classes of vertices.

Let H be a subgroup of G. We shall construct a set {Z)a} of double coset
representatives for (H, A) in G, a set {D0} of double coset representatives of (H, B)
in G, and for every a a set {£„} of double coset representatives of (D~ lHDx n A, U)
in A and for every /? a set {£„} of double coset representatives of (Dp lHD0 O B, U)
in B.

Given Dx the set {£„} must contain 1 but otherwise can be any set of double
coset representatives of(D~1HDx r\A, U) in A. Similarly for {£„} given Dp. We
define the representatives for the double cosets HwA and HwB by induction on
the length of the double coset (i.e. the length of the shortest element in the coset).
The only double cosets of length 0 are HA and HB, for each of which we choose
the representative 1. Let HwA have length r and suppose representatives have
been chosen for all double cosets of length less than r. We may assume w has
length r, and can write w = w'b for some beB and w' of length r — 1. Let D0

be the representative of Hw'B = HwB. We can find a unique element Ev of the
set associated with D0 and an element ueU such that w e HDeEvu. Then HwA
= HD0EVA and we choose DfiEv as the representative of HwA. Similarly for (H, B)
double cosets.

This collection of double coset representatives {Dx}, {D0} and the associated
collections {£„}, {£„} will be called a semi-cress, since it is a weaker form of
the cress defined in [1]. Note that the collection {D0EV} over all /? and associated
v forms a set of double coset representatives of {H, U) in G.

The set Xt of all vertices DXA, DeB plainly contains one vertex from each
/f-orbit of vertices of X. Also Xt is connected (and hence is a tree as X is a tree)
since by construction any vertex DXA with Dx # 1 is joined to some vertex D0B
with Dp shorter than Dx by an edge DfiEvU, whence inductively D^A will be joined
to A by a path in Xt.

The set of edges D0EVU contains exactly one edge from each H-orbit of
edges and DeEvU has at least one vertex, namely DfB, in Xt. Given Dfi and a
corresponding Ev there exists a unique Da, corresponding Eu and element P in
U such that D^E^HD^P. Let tffv denote D0EV(DXEUP)-1 eH.

If £„ = 1, by construction we have Da and £„ with Z)# = £)„£„ so tfiv = 1.
Suppose £„ 5* 1 and f̂  = 1 so D^f,, = DXE,,P and Z ) ^ e £>a^. Since, by con-
struction Dfi ends in A — U and Dx in B — U (unless they equal 1) while EveB — U,
if we have D0EveDxA we must have DpEveDxU. It is then clear from the con-
struction that Dx = D0EV since DxeDpB. We will then have tBv = 1.

We now have the group H acting without inversions on the graph X, and have
obtained a tree Xl Z X which contains exactly one vertex from each H-orbit and
have also obtained a set of edges, one on each H-orbit and each with one vertex
in Xt. We can now apply Theorem 1 to see that H is isomorphic to the fundamental
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group of a graph of groups whose construction is easy. Since the H-stabiliser of
a vertex gA is H (~\gAg~l we can read off the following theorem, which is a
slight generalisation of theorem 5 of [1] (since our coset system is more general
than that in [1]).

THEOREM 3. Let H be a subgroup of A*B. Construct a semi-cress as above,
and let tev be the associated elements ofH. Then H is generated by all tPvtogether
with all the subgroups H C\DxAD~l and H nD^BDJ1. Further, (1) those
tpv ^ 1 (which correspond to those /? and associated v such that DeEv is not a
coset representative) form a basis of a free subgroup of H;
(2) the group K generated by all H nD^AD'1 and H dDfBD^1 is the tree pro-
duct of these groups, two such groups being adjacent if Da = Dfi = 1 or if
Dx — Dpb or Dp ~ Daa for some as A or beB: the subgroup amalgamated
between two adjacent groups is H C\DUD~l where D is the longer of Dxand Df;
(3) HistheHNNgroupilCt^teXHnD^UE^D;1)^-1 = tf nD^UE^DJ1}
where in this expression we take all tfiv # 1 and the corresponding DX,EU.

We now proceed to give a similar analysis for HNN groups.
Let G be the HNN group ^ x ^ X j l / . j x r 1 = [/,>. Then every element of G

has a normal form a^if ••• anXj"an+l where sr = ± 1 , areA and if ir_! = ir

with £r_i = — er then ar£ UCrir. This normal form is not unique; we can replace
au — ,an+1 by bu ••• ,bn+l w h e r e bt = alul,b2 = v^a2u2, ••• w h e r e ure UCrir and
x\vr = urx\r. In particular the integer n is uniquely determined and will be
called the length of the element.

G is the fundamental group of a graph of groups with one vertex only and
with one edge (which is a loop) for each i. Thus G acts without inversions on a
graph X whose vertices are the cosets gA and whose edges are the cosets gU{.
There is one transitivity class of vertices, for each i the edges gUt form a transitivity
class, and gUt joins gA and gxtA. Using the normal form (or general theory) X
is easily seen to be a tree. If we call the vertices gA and gxtA of gUt the initial
and final vertices respectively it is clear that the action of G sends the initial and
final vertices of an edge to the initial and final vertices respectively of the image
edge.

Let H be a subgroup of G. We shall construct a set {£)„} of double coset
representatives of (H, A) in G and for every a and i sets {£,-„} and {Elv} of double
coset representatives of (D~ 1HDX n A, Ut) and of (D~ XHDX n A, l/_f) respectively
in A. The systems {Eiu} and {£,•„} must each contain 1 but are otherwise arbitrary.
We define the representative of the double coset HwA by induction on the length
of the double coset. The only double coset of length 0 is HA for which we choose
the representative 1. Let HwA have length r and suppose that representatives have
been chosen for all double cosets of length less than r. We may assume w has
length r, and can assume w = w'xf1. Let Dp be the representative of Hw'A. If
w = w'x take the unique element Eiu associated with Dfi and element ueUt such
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that w'eHDBEuu. Then HwA = Hw'x^ = HD^E^uXiA = HDeEiuXiA, since
uxt = xtv for some r e f/_;; we take DpEuxt as the representative of Hw/t;. Tf
w = w'xf1, we similarly obtain a representative DfE^xJl for # w A

The collection of double coset representatives {Da} and the associated col-
lections {£;„} and {£,„} will again be called a semi-cress. The collection {DaE,B}
over all a and all associated u forms a set of double coset representatives of (H, [/,)
in G.

The set Xt of all vertices DXA plainly contains one vertex from each H-orbit
of vertices of X. Also Xx is connected since by construction any vertex DXA with
Dx # 1 is joined to a vertex DPA with D^ shorter than Dx by an edge DpEiuUi or by
an edge Df,EivxJlU , whence inductively DXA will be joined to A by a path in Z j .

The set of edges DXE uUi contains exactly one edge from each H-orbit of edges
labelled i, and DtEiuUi has its initial vertex DXA in Xt. Given Dx and corresponding
Eiu there exists a unique Dfi, corresponding Eiv and element PeU_t such that
DxEiuXleHDfiEwP. Let r,fa denote D.E^DfE^P^eH.

If („,„ = 1, we get DaEiux, e DfiA. Suppose DxEiuxt e D^A . As D^ ends in
xfl while DxEiuXi ends in x; unless £,-„ = 1 and Dx ends in xf1 we see that
DpeDaEiuXiU_; unless £ju = 1 and Da ends in x7 x . From the construction it is
now clear that Df = DxEiuxt so that txiu = 1. If Eiu = 1 and Da ends in xf1,
DxEiuxte DBA gives, from the construction, Dx = DpE^xJ1 and so f̂ ,-,, = 1.

We now have the group H acting without inversions on the graph X, and
have obtained a tree I , c l which contains exactly one vertex from each H-
orbit and have also obtained a set of edges, one in each H-orbit and each with
initial vertex in Xx. We can now apply theorem 1 to see that / / is isomorphic to
the fundamental group of a graph of groups whose construction is easy. Since
the Jf-stabiliser of a vertex gA is H HgAg'1, we obtain the following theorem,
which is a significant generalisation of theorem 1 of [2].

THEOREM 4. Let H be a subgroup of </4,x,;Xj[/_(xf1 = U^. Construct a
semi-cress as above, and let txiu be the associated elements of H. Then H is
generated by all txm together with all the subgroups H (~\DXAD~X. Further
(1) those txiu # 1 (which correspond to those a and associated u such that DxEiuxt

is not a De and where Eiu = 1 is omitted if Dx ends in x'1) form a basis of a
free subgroup of H;
(2) the group K generated by all H C\DxADx

l is the tree product of these
groups, two such groups corresponding to Dx and Dp, with Dp shorter than Dx,
being adjacent if Da = DfiEiuXi or Dx = D^E^x'1, the subgroup amalgamated
between these two being H r\DxU_,D~l or H OD^t/.D"1 respectively;
(3) H is the HNN group

<K,tatm;t.JiHnDl,Et,U.iErv
1Dt1)t^ = H n D x E i u U f i ^ D ^ y

where in this expression we take all txiu =£ 1 and the associated D0, Eiv.
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3. Finitely generated subgroups

Let G = A*VB and let Ax £ A, Bx s B with X 1 n [ / = B 1 n l / = U%. Then
{A1,Bl} = Al*UlBl and iAuB^ n ^ = i t . It follows that if G and U are
finitely generated so are A and B, by taking y^ to be generated by the elements
of A occurring in normal forms of the finitely many generators of G and the
generators of U, and similarly for B1 so that G = (tA1,Biy. Similar results hold
for HNN groups, either by direct use of the normal form or by embedding an
HNN group in an amalgamated free product.

Let X be a tree, O a vertex of X. Let e be an edge with vertices P and Q.
Then exactly one of the paths from O to P and from O to Q will contain e. Orient
e by defining P to be the final vertex if the path from O to P contains e. We call
this orientation of X the orientation outwards from O. Plainly fovP^O there is
exactly one edge whose final vertex is P ; we will denote it by eP. If Xl is a sub-
tree of X containing O then P e Xt implies eP e Xu since eP must be in the path
in Xx from O to P. Any path in X is of the form P0 ) ••• ,P n where for some r,
0 ^ r ^ n, the edge joining P;_! and P; is oriented from Pt to P , - ! for i ^ r
and from P,-_! to P4 for j > r . If Po, •••, Pn is a path in a subtree Xt containing O
with each edge directed from Pt to P;_ t and Po 6 Xj then Pf e Xl for all i .

For the remainder of this section we let G be a group acting without inversions
on a tree X. The symbols Y, T,p,j will have the same meaning as in section 1.
We will orient X outwards from a vertex O in jT.

An element geG will be called negative for an edge e if e is oriented from
P to Q but gfe oriented from gQ to #P. A G-orbit of edges will be called reversing
if for some (and then for every) edge e in the orbit 3g negative for e. (If G is a
subgroup of A*B and X is the standard tree for A%B reversing orbits correspond
to double-ended cosets GwU.)

LEMMA 1. There are finitely many reversing orbits if and only if
(i) there are finitely many edges of Y not in T and
(ii) there are finitely many vertices P ofjTfor which stab P ^ stab eP.

PROOF. In an orbit above an edge not in T there will be an edge e from P
to Q with PeyTand Q$jT. There will be geG with gQejTand then gP$jT.
Then e is oriented from P to Q and ge from gQ to gP, so the orbit is rever-
sing.

If P is a vertex of jTwith stabP # stabcP, then plainly any element of stabP
not in stab eP is negative for eP. Also for P, Q distinct vertices of jT, as all vertices
of eP and eQ are in^Tand distinct vertices ofjTare in different G-orbits, we see
that eP and eQ are in different G-orbits.

Hence (i) and (ii) hold if there are only finitely many reversing orbits.
Suppose (i) and (ii) hold. Let Xt be a finite subtree of jT containing O, all
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[8] Subgroups of HNN groups 401

the vertices P of jT with stabP # stab eP, and all vertices jQ with Q a vertex of an
edge of Y not in T. We show that any reversing orbit either lies above an edge of
7not in Tor meets Xt.

Take a reversing orbit lying above an edge in T. Take an edge e in this orbit
and in jT, and let g be negative for e. Let the path from e to ge be Po , •••, Pn.

Suppose first that every edge is oriented from P ^ to P>. As Pn = gP0 we
have Pn $jT. Take k with P0,--,Pk ejTbut Pk+1 $jT. If the edge PkPk+1 maps to

an edge not in Tthen PkeXt by our choice of Xt. Our general remarks about
orientation then show that e = ePl eXx. If the edge PkPk+1 maps to an edge in
T,3heG with h(PkPk+1) ejT, and we must have hPk = Pk since jT contains only
one vertex in each orbit. If h(PkPk+l) = ePk then PkeXl and as before eeX^.
Otherwise the path joining e to hge will be Po, ••,Pk = hPk, hPk+1,--- ,hPn

and hgPQ = hPn. Induction on n — k now gives the result.
Now suppose that for some r with 0 < r ^ n the edge joining P,_x and Pt is

oriented from Pt to Pj_t for i g r and from P;_x to P; for i > r. We cannot have
r = n as that would give PnejTalthough Pn = gP0.

So we may take r <n. Since g is negative for e, we must have gP0 = Pn-t,
gPi = Pn .IfPoeXx wehaveee.X1.IfP0^Ar

1 the edge from Po = ^~1Pn_1 to
g~1PR_2 must lie above an edge in T. As before 3/ieG such that h maps this
edge to an edge in jTand with hP0 = P o . Let P_ t = hg~1Pn_2- A s P o ^ ! we
have stab Po = stab ePo. Thus the edge joining Po to P_ t is oriented from Po to
P_! since «"1-P»-2 ^ p i = 0~1-P«- Then we have a p a t h P ^ P o , - ^ , , . ! with
P_x ejT, the edge joining Po and P_x oriented from Po to P_ t and with Pn_j
= 0/!~1PoandPn_2 = gh~lP^1. By induction on n — r we may assume P_X e ^
and can then deduce Poe.X\ and so eeXi, as required.

LEMMA 2. Let G be finitely generated. Then G has finitely many reversing
orbits. If, in addition, each edge has finitely generated stabiliser then each vertex
has finitely generated stabiliser. Conversely, if G has finitely many reversing
orbits and each vertex has finitely generated stabiliser then G is finitely gen-
erated.

PROOF. G has the free group with basis {te, e an edge of 7not in T} as homo-
morphic image. Hence there are only finitely many edges not in T if G is finitely
generated. The finitely many generators of G will involve the te and elements from
the stabilisers of finitely many vertices P. Let Xt be a finite subtree of jT con-
taining O, these vertices, and jQ for all vertices Q of an edge not in T. It follows
that G, which is an HNN group with free part <fe> and base group the tree product
overj'Tof stab Pis equal to its subgroup which has for base group the tree product
over Xt only. This requires that the tree products over jT and Xt are the same,
and by induction over the distance of P from 0 we see that stabP = stabeP for

The result now follows from Lemma 1.
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If, in addition, every edge has finitely generated stabiliser, then, by induction
on the number of edges not in Tand the number of vertices in Xu we see first
that the tree product over X t is finitely generated, and then that stabP is finitely
generated for PeXt. Then stabP is finitely generated for PejT (since stabP
= stabeP for PejT, P$XY)and any vertex has stabiliser conjugate to stabP for
some PejT.

By lemma 1, if G has finitely many reversing orbits, the free part of G is
finitely generated and the base group is the tree product over a finite subtree of
j T of the goups stab P. So G will be finitely generated if it has finitely many revers-
ing orbits and each vertex has finitely generated stabiliser.

We say the group A has the finitely generated intersection property (f.g.i.p.)
if the intersection of two finitely generated subgroups of A is finitely generated.

THEOREM 5. The group A"VB has f.g.i.p. if A and B have f.g.i.p. and U is
finite.

THEOREM 6. The HNN group (A^^tiVitJ1 = t/,> has f.g.i.p. if A has
f.g.i.p. and each Ut is finite.

Theorem 5, which is proved in [1], and theorem 6, which improves on a theo-
rem in [2], are special cases of the next theorem.

THEOREM 7. Let G act without inversions on a tree X. If the stabiliser of
each vertex has f.g.i.p. and the stabiliser of each edge is finite then G has f.g.i.p.

PROOF. Let H and K be finitely generated subgroups of G. By Lemma 2, there
are finitely many reversing H-orbits and finitely many reversing X-orbits, and for
any vertex P both H n stab P and K n stab P are finitely generated. As stab P has
f.g.i.p. it follows that HO K n stabP is finitely generated for any vertex P. Hence
it is enough to prove that there are only finitely many reversing (H n K)-orbits.
Since such an orbit is in the intersection of a reversing H-orbit and a reversing
K-orbit we need only prove that the intersection of an H-otbit and a X-orbit
contains finitely many (H n X)-orbits.

Let the stabiliser of the edge e be U. Then gee He O Ke if and only if
g e HU O KU. As I/is finite HU O KU is the intersection of finitely many cosets
of H and K, and so consists of finitely many double cosets (H O K)wU, so that
ge lies in the (H O X)-orbit of one of finitely many edges we.

The next lemma will enable us to prove some results on subnormal subgroups.

LEMMA 3. Let G act without inversions on a tree X. Let e be an edge such

that {ge;g negative for e] is infinite. If heG stabilises no vertex, then 3k eG

such that {ge; g negative for e and g a power of k~1hk) is infinite.

PROOF. Let e be oriented from PotoPj. Suppose first that the path from e
to he begins with P1( Po. Choose k so that ke is oriented from kP^ to kP0 and
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so that the paths from e to ke and from he to ke both end with kPukP0. This is
possible since we need only choose k negative for e and such that ke is not on
the paths joining e and he to the origin O.

If the path from ke to hke begins with kPu kP0, then the path from he to
ke will be shorter than the path from he to hke, and this has the same length as
the path from e to ke. If the path from ke to h~*ke begins with kPu kP0, then
the path from e to ke will be shorter than the path from e to h~xke, and this has
the same length as the path from he to ke. Hence (as ke ^ hke, for h stabilises no
vertex) either the path from ke to hke or the path from fee to h~lke begins with
kP0, fcPt. Then either the path from e to k-1hke or the path from e to k~ih~lke
will begin with Po, Pt.

It follows that (replacing h by fc~1/ife or by k~1h~lk if necessary) we need
only consider the case when the path from e to he begins with Po, Pt.

Suppose this is so, and suppose that h is positive for e. Let the path from e
to he be Po, Pu •••, Pm-1 — hP0, Pm= hP1. We show inductively that, for any pos-
itive integer r, hr is positive for e and that the path from e to h'e begins with Po, Pu

and has 1 + r{m — 1) edges.
This is true for r = 1. Suppose it is true for r, and let the path e to h'e be

PO,PU -,Prim-i) = hrP0,P1+r(m-1)= WPV Then the path from he to hr+ie is
hP0,hPu---,hPHm-1),hP1+r(m_1).Then the path from e to hr+1e will consist of
the path from e to he (which ends with hP0, hP{) followed by the path from he
to hr+le, as required.

The path from e to h~re will be of length 1 + r(m — 1), being

h~rPl+r(.m-l) = Puh~rPr(m-i) = Po, ••• ,h~rPu h~rP0 .

For large r this will be longer than the path from e to the origin, and so its last
edge must be oriented from h~rP1 to h~"P0. Hence h~r is negative for e if r is
large, and the edges h~re are distinct, being at different distances from e.

We are left with the case when h is negative for e, and the path from e to he
begins with Po, Px. Let this path be P 0 ,P 1 , - - - ,P m _ 1 = hPuPm = hP0. Then
3n,l ^ n ^ m with APf = Pm_, for i ^ n but /iPn + 1 # P m _ n _ 1 . We must have
n < m\2. For if n ^ m/2 we would have either m = 2k, hPk = Pk or m = 2fc + 1,
W t = P k + i , JiPfc+i = P*. The first is impossible as /i stabilises no vertex, the se-
cond is impossible as G acts without inversions.

We show inductively that hr is negative for e for any positive integer r and
that the path from e to hre has form Qo = Po , Qi = Pi , — , 6 B + i = Pn+1, — ,Q,-t
= h'PuQs = /irP0. This holds for r = 1. Suppose it holds for some r. Then the
path from he to hr+1e is hQ0 = Pm,hQt = Pm_u-,hQn = Pm.n, hQn+l

# P m - B - i , - - , / i e j - i = hr + lPuhQs = / i r + 1P0. Hence the path from c to /T+1e
will be Po.Pi, ••• ,Pm-n,hQn+1, hQn+2, •••, / T ^ P i , hr+lP0. As this path starts with
PO,PU all its edges are positively oriented, and in particular hr+1 is negative for e.
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As n < m/2, this completes the induction step. Also, as n < m/2, the path from e
to hr+1e is longer than the path from e to hre. Consequently the edges h'e are all
distinct and h' is negative for e for any positive integer r and the proof of the
lemma is complete.

The next theorem generalises Theorem 10 of [1] and Theorem 9 of [2]. it
can also be proved using the theory of ends (see [3]).

THEOREM 8. Let G be either (i) A*VB or (ii) an HNN group

Let Gr be a subnormal subgroup of G such that in case (i) Gr is contained in
no conjugate of A or B and in case (ii) Gr is contained in no conjugate of A.
Let H be a finitely generated subgroup of G with Gr £ H. Then in case (i) the
double coset index of (H, U) in G is finite while in case (ii) the double coset
index of (H, Ut) in G is finite for each i.

COROLLARY 1. Let G be either A*VB or the HNN group (A,x;xVx~1 = lT>,
with U finite in either case. If the finitely generated subgroup H of G contains
an infinite subnormal subgroup of G, then H has finite index in G.

PROOFS. In either case let X be the tree constructed in section 2. Orient X
outwards from the vertex I.A. In the first case we see that the edge gU is oriented
from gA to gB if the last syllable of g is in A, and is oriented from gB to gA if
the last syllable of g is in B. In the second case we find that if r > 0 the edge
x'Ut is oriented from x[A to xr

t
 + 1A while if aeA - Vt the edge xr

i
 + 1ax~1Ui

which joins xr
i
 + 1axfiA( =£ x'A) to xr

t
 + lax~1xiA = x]+1A must be oriented from

xr
t
+1A to xr

l*
1ax~xA (since only one edge ends with x\+lA). Similarly if r > 0

the edge xf Ut is oriented from x1~
(r~1)/l to x~rA and if aeA — U, the edge

x^'aUji ,* x~rU,) which joins x~raA = xJrA to x^raxtA must bs oriented from
x~rA to x~raxtA.

It follows that in case (i) we have {ge;g negative for e} infinite for any edge
e while in case (ii) we have {ge;g negative for e} infinite for any edge e provided
we do not have e = gUt where Ut = A = Vt.

Let G r < 6 , . [ < - < C 0 = G. As Gr is contained in no conjugate of A (or
B) it contains an element h not in any conjugate of A (or B), and h stabilises no
vertex of X.

Let e be an edge such that {ge;g negative for e} is infinite. We show induc-
tively that for 0 ^ s g r we have {ge; g e Gs negative for e] is infinite. This is true
for s = 0. Suppose it is true for some s. By Lemma 3 3fceGs such that {ge;g
negative for e, g a power of k~1hk} is infinite. Since / ieG s + 1 <iG s , we have
{ge;geGs+1 negative for e] is infinite.

In particular, the Gr-orbit of e will be reversing, and so the H-orbit of e will
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be reversing. By Lemma 2, H has only finitely many reversing orbits since it is
finitely generated.

Since the number of//-orbits containing an edge gU, fro some g (and fixed j)
is the double coset index of (//, Vt) in G, we have the result for those i such that we
do not have Ut = A = Vt. (We also see that if there are infinitely many i for
which we do not have Ut = A = Vt, then no such subgroup H can exist).

Plainly the result follows unless l/f = A = Vt for all i. In this case 4 < G
and GjA is free. Let a : G -> G/.4 be the natural homomorphism. Then the double
coset index of (//, A) in G is the index | <xG : ccH | , and a// is a finitely generated
subgroup of <xG containing the non-trivial subnormal subgroup aGr. If the free
group OLG has rank 1 then | <xG : aH | is obviously finite while if aG has rank greater
than 1 it is a free product and the result follows as in the proof of the corollary
(and is in fact well-known ).

To prove the corollary (and the above statement) it is enough to show that
if G = A*VB any subnormal subgroup contained in a conjugate of A or B must
be contained in a conjugate of U.

Let Al be a subgroup of A. If BgeG with g$A and g~1A1g ^ A it is easy
to see Ax must be contained in a conjugate of U. Hence if At is contained in no
conjugate of U its normaliser is contained in A, and we see, as required that At

cannot be subnormal in G.

Added in proof
This also has been obtained by Karrass, Pietrowski and Solitar 'An improved

subgroup theorem for HNN groups with some applications', Canadian Journal
of Mathematics, 26 (1974), 214-224.

Added in proof
Serre informs me that he had obtained spacial cases of theorems 1 and

the general forms being due to Bass. Accordingly, the results should be attributed
to Bass and Serre rather than to Serre.
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