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The purpose of this paper is to give a more precise form of Theorem 1 of [2],
which gives a structure theorem for subgroups of HNN groups; we prove the
following.

Let H be a subgroup of the HNN group {A,x;;x;U_ix7' = U;>. Then H
is an HNN group whose base is a tree product of groups H N"wAw~" where w
runs over a set of double coset representatives of (H, A); the amalgamated and
associated subgroups are all of the form H NnvU v~ for some v. We can be more
precise about which subgroups occur and about the tree product. We will also ob-
tain stronger forms of other results in 1] and [2].

The main technique is Serre’s theory of groups acting on trees. This theory
is an important new development in combinatorial group theory; in fact the
theorem above follows immediately from Serre’s work. As these results have not
yet been published (they will appear as Springer Lecture Notes) the main results
are stated in section 1. The subgroup theorems are derived in section 2, and sec-
tion 3 contains some results on finitely generated subgroups of HNN groups and
amalgamated free products.

1. Bass and Serre’s theory

The usual meaning is given to the word ‘graph’, except that a graph may
have several edges joining a pair of vertices and may have loops, i.e. edges whose
vertices coincide. All graphs considered will be connected.

A graph of groups, (4,Y) consists of:

(1) a graph Y,

(ii) for each vertex P and edge e of Y groups Gp and G,,

(iii) if Pand Q are the vertices of the edge e, monomorphisms G, -+ Gpand G, — Go
(if P = Q we require two monomorphisms G, - Gp).

An isomorphism from the graph of groups (%, Y) to the graph of groups
(4, X) consists of:
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(i) an isomorphism from the graph Y to the graph X,
(ii) isomorphisms Gp — Hp. and G,— H,., where P is a vertex and e and edge
of Yand P’ and e’ are their images in X ; these isomorphisms must be such that
Ge - GP
if P is a vertex of e the diagram | ¢ commutes.
H,— Hp

Let (%4, Y) be a graph of groups and T a maximal tree in Y. As we are only
considering connected graphs, T contains all the vertices of Y. Let G; be the tree
product of the vertex groups Gp amalgamating for each edge e of Tthe two images
of G, in the corresponding vertex groups (for general information about tree
products and HNN groups see [1], [2]). Then Gy contains the groups Gp(up to
isomorphism). .

The fundamental group of (%,Y) relative to T, written (¥, Y,T), is defined
to be the HNN group with base Gy, with free part having basis {t,} where e runs
over the edges of Y not in T, and with the subgroups associated to ¢, being the
two images of G,. Plainly if (¢, Y) is isomorphic to (5£,Y’) with T’ the tree in
Y’ corresponding to Tin Y, then (%,Y,T) is isomorphic to n(o#,Y’, T'). Also
by replacing (¢, Y) by an isomorphic graph of groups over Y, we may assume
that the groups Gp are subgroups of n( %, Y, T), that for e in Tthe maps G, - G,
and G,— G, are inclusions, while for e not in T one map G, — G, is an inclusion
(the other map need not be an inclusion).

It can be shown that up to isomorphism n(¥, Y, T) is independent of T. The
proof is similar to the proof that the fundamental group of a graph Y may be
obtained using any maximal tree. This latter is a special case of the general result,
obtained by taking all the groups to be trivial.

Let a group G act on a graph X. We say G acts without inversions if
(1) X has no loops
(ii) if the edge e has vertices P and Q and ge = e then gP = P and gQ = Q (the
alternative possibility gP = Q and gQ = P would be called an inversion).

Let G act without inversions on X. Let Y be the quotient graph,p: X > Y
the projection and T a maximal tree in Y. It is not difficult to find a morphism of
graphs j : T— Y such that pj is the identity on T. If we have a tree X, < X con-
taining one vertex from each G-orbit of vertices then p: X, — Y is one-one and
pX, will be a maximal tree of Y. We could then take pX, for T with j the inverse
of p.

We shalldefine a graph of groups (¥, Y) which we refer to as associated to
the action of G on X. This graph of groups will not be unique but is obviously
unique up to isomorphism once T is chosen.

We begin by defining j on the edges of Y not in T (however the resulting map
Jj:Y—> X will not be a morphism of graphs). Let ¢ be an edge of Y not in T with
vertices P and Q. Take any edge & in X with vertices P and O such that pé = ¢,
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pP = P, pQ0 = Q. As pP = pjP we can find g € G such that gP = jP. Define je
to be gé& Then pje = e and jP is one vertex of je. The other vertex will usually
not be jQ.

For each vertex P and edge e of Y, let G be the stabiliser in G of the vertex
jP of X and G, the stabiliser of the edge je of X. For e in T with vertices P and
Q the maps G, - Gp and G, — G, are the inclusions. For e not in T with vertices
P and Q such that jP is a vertex of je the map G, — Gp is the inclusion. Let
be the other vertex of je. Then we have pJ = pjQ, so that there is an element
g. of G with 0 = g,(jQ). Thus stab jQ = g,~(stab J)g, and the map G, > G,
is the composite of the inclusion G, — stab( and conjugation. We have now de-
fined (%,7Y).

The group n(¥4, Y, T) is generated by the groups Gp and symbols ¢, for each
edge of Y not in T with relations t,H.t,”* = G,, where H, is the image of G, in
Gy. Hence we have a homomorphism n(%, Y, T) » G mapping G, by inclusion
and sending t, to g,.

THEOREM 1. (Serre [4]) The above homomorphism is an isomorphism if and
only if X is a tree.

THEOREM 2. (Serre [4]) Let (¥,Y) be a graph of groups with fundamental
group 7 (relative to some tree T). Then there is a tree Y on which n acts without
inversions such that the associated graph of groups is isomorphic to (9,Y).

It is not difficult to see what ¥ must be. We may assume that each G, is a
subgroup of n, that the maps G, — Gp and G, — G, are inclusions for e in T, and
that G,— Gp is an inclusion for e not in 7. Since there is a m-orbit of vertices
above each vertex P of Yand one vertex in this orbit has stabiliser G, we can take
as the vertices of ¥ the cosets gGp of Gp in 7, where P ranges over the vertices of
Y (if Gp = Gg for P # Q then gGp and gG,, are to be different vertices of 7).
Similarly the edges of ¥ may be taken as the indexed cosets gG, where e ranges
over all edges of Y. For e in T with vertices P and Q the vertices of gG, are gGp
and gG,. For e not in T with vertices P and Q where G, — Gp is inclusion the
vertices of gG, are gGp and g1,Gy. It is straightforward to see that this definition
of the vertices of an edge is unambiguous so that we have a (possibly not connected)
graph ¥ on which & acts without inversions, the associated graph of groups being
(%, Y). The problems are to show that ¥ is connected (which is not difficult) and
then to show Y is a tree. The latter is a consequence of the normal form for tree
products and HNN groups.

2. Subgroup theorems

Let G = A*; B. Then G is the fundamental group of the graph of groups
A4 ——-— B. Hence G acts without inversion on a graph X whose vertices are the

cosets gA and gB of A and B in G and whose edges are the cosets gU, where the
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vertices of gU are g4 and gB. It is easy to see directly that X is a tree; this also
follows from the general theory. G acts transitively on the edges, while there
are two transitivity classes of vertices.

Let H be a subgroup of G. We shall construct a set {D,} of double coset
representatives for (H, A) in G, a set {D,} of double coset representatives of (H, B)
in G, and for every a a set {E,} of double coset representatives of (D, 'HD, N 4, U)
in A and for every B a set {E,} of double coset representatives of (D, 'HD, N B, U)
in B.

Given D, the set {E,} must contain 1 but otherwise can be any set of double
coset representatives of (D; 'HD, N A, U) in A. Similarly for {E,} given D,. We
define the representatives for the double cosets HwA and HwB by induction on
the length of the double coset (i.e. the length of the shortest element in the coset).
The only double cosets of length 0 are HA and HB, for each of which we choose
the representative 1. Let HwA have length r and suppose representatives have
been chosen for all double cosets of length less than r. We may assume w has
length r, and can write w = w’b for some beB and w’ of length r — 1. Let D,
be the representative of Hw'B = HwB. We can find a unique element E, of the
set associated with Dy and an element u € U such that we HD;E u . Then HwA
= HD4E A and we choose D;4E, as the representative of HwA. Similarly for (H, B)
double cosets.

This collection of double coset representatives {D,}, {Dg} and the associated
collections {E,}, {E,} will be called a semi-cress, since it is a weaker form of
the cress defined in [1]. Note that the collection {D4E,} over all § and associated
v forms a set of double coset representatives of (H, U) in G.

The set X, of all vertices D,A, D,B plainly contains one vertex from each
H-orbit of vertices of X. Also X, is connected (and hence is a tree as X is a tree)
since by construction any vertex D,4 with D, # 1 is joined to some vertex D;B
with Dy shorter than D, by an edge D,E, U, whence inductively D,4 will be joined
to A by a path in X,.

The set of edges D,E,U contains exactly one edge from each H-orbit of
edges and DyE U has at least one vertex, namely D;B, in X,. Given D; and a
corresponding E, there exists a unique D,, corresponding E, and element P in
U such that DsE,e HD,E,P. Let ty, denote D;E(D,E,P)"'€H.

If E, = 1, by construction we have D, and E, with Dy = D,E, so tg, = 1.
Suppose E, # 1 and t;, = 1 so DgE, = D,E,P and DgE, e D,A. Since, by con-
struction Dgendsin A — U and D, in B — U (unless they equal 1) while E,e B — U,
if we have DyE, e D,A we must have D;E e D,U. It is then clear from the con-
struction that D, = D;E, since D, e DyB. We will then have t;, = 1.

We now have the group H acting without inversions on the graph X, and have
obtained a tree X, < X which contains exactly one vertex from each H-orbit and
have also obtained a set of edges, one on each H-orbit and each with one vertex
in X ;. We can now apply Theorem 1 to see that H is isomorphic to the fundamental
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group of a graph of groups whose construction is easy. Since the H-stabiliser of
a vertex g4 is HNgAg~' we can read off the following theorem, which is a
slight generalisation of theorem 5 of [1] (since our coset system is more general
than that in [1]).

THEOREM 3. Let H be a subgroup of A}B. Construct a semi-cress as above,

and let ty, be the associated elements of H. Then H is generated by all t;, together
with all the subgroups H ND,AD;' and H nD,,BD;‘. Further, (1) those
tg, # 1 (which correspond to those B and associated v such that D4E, is not a
coset representative) form a basis of a free subgroup of H;
(2) the group K generated by all H D, AD;* and H N DyBD, ! is the tree pro-
duct of these groups, two such groups being adjacent if D, = Dy =1 or if
D, = Dgb or Dy = D,a for some ae A or be B: the subgroup amalgamated
between two adjacent groups is H " DUD~* where D is the longer of D, and Dy;
(3) Histhe HNNgroup<{K,tg,;ts(H "D,E,UE; 'D; Y)t;;' =HND,EUE;*D; '
where in this expression we take all tg, # 1 and the corresponding D,, E,.

We now proceed to give a similar analysis for HNN groups.

Let G be the HNN group <4, x;;x;U_;x7} = U,>. Then every element of G
has a normal form a,x;!--- a,x;"a,,, where ¢ = +1, a, €A and if i,_, =i,
with ¢,_; = —¢, then a,¢ U, ; . This normal form is not unique; we can replace
A1yt 38yyy DY by, oo, b,y Where by = a,u;, b, = v] ‘'a,u,, - whereu, e U, ; and
x;v, = u,x; . In particular the integer n is uniquely determined and will be
called the length of the element.

G is the fundamental group of a graph of groups with one vertex only and
with one edge (which is a loop) for each i. Thus G acts without inversions on a
graph X whose vertices are the cosets g4 and whose edges are the cosets gU,.
There is one transitivity class of vertices, for each i the edges gU, form a transitivity
class, and gU; joins g4 and gx;A. Using the normal form (or general theory) X
is easily seen to be a tree. If we call the vertices g4 and gx;A of gU; the initial
and final vertices respectively it is clear that the action of G sends the initial and
final vertices of an edge to the initial and final vertices respectively of the image
edge.

Let H be a subgroup of G. We shall construct a set {D,} of double coset
representatives of (H, A) in G and for every « and i sets {E;,} and {E,,} of double
coset representatives of (D; "HD, N A, U))and of (D7 *HD, N A, U_)) respectively
in A. The systems {E;,} and {E;,} must each contain 1 but are otherwise arbitrary.
We define the representative of the double coset HwA by induction on the length
of the double coset. The only double coset of length 0 is HA for which we choose
the representative 1. Let HwA have length r and suppose that representatives have
been chosen for all double cosets of length less than r. We may assume w has
length r, and can assume w = w’xF!. Let D, be the representative of Hw'A. If
w = w'x take the unique element E,, associated with D, and element u € U; such
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that w'e HD,E ,u. Then HwA = Hw'x;,A = HD4E,ux;A = HDyE, x;A, since
ux; = x;v for some ve U_;; we take D4E ,x; as the representative of HwA,. If
w = w'x; !, we similarly obtain a representative D,4E ,x; ! for HwA.

The collection of double coset representatives {D,} and the associated col-
lections {E;,} and {E,} will again be called a semi-cress. The collection {D,E,,}
over all « and all associated u forms a set of double coset representatives of (H, U;)
in G.

The set X, of all vertices D, A4 plainly contains one vertex from each H-orbit
of vertices of X. Also X, is connected since by construction any vertex D,4 with
D, # 1is joined to a vertex DyA with Dy shorter than D, by an edge D4E, U, or by
an edge DgE; x; 1U , whence inductively D,4 will be joined to A by a path in X .

The set of edges D,E ,U; contains exactly one edge from each H-orbit of edges
labelled i, and D,E;, U, has its initial vertex D,A in X,. Given D, and corresponding
E,, there exists a unique D, corresponding E;, and element PeU_; such that
D,E,x;€ HD4E, P. Let t,,, denote D,E,x(DsE,,P)""eH.

If t,,, =1, we get D,E,x;eDzA. Suppose D,E; x, e DygA. As D; ends in
x;—'l while D, E,x; ends in x; unless E;, = 1 and D, ends in x; ! we see that
Dge D,E,x;U_; unless E;, = 1 and D, ends in x;!. From the construction it is
now clear that D; = D,E,x; so that t,;, = 1. If E;,, = 1 and D, ends in x; ',
D,E,x; € DyA gives, from the construction, D, = D;E;x; ' and so 1, = 1.

We now have the group H acting without inversions on the graph X, and
have obtained a tree X; < X which contains exactly one vertex from each H-
orbit and have also obtained a set of edges, one in each H-orbit and each with
initial vertex in X,;. We can now apply theorem 1 to see that H is isomorphic to
the fundamental group of a graph of groups whose construction is easy. Since
the H-stabiliser of a vertex gA is H NgAg™~!, we obtain the following theorem,
which is a significant generalisation of theorem 1 of [2].

THEOREM 4. Let H be a subgroup of {A,x;;x;U_;x7' = U,>. Construct a

semi-cress as above, and let t,;, be the associated elements of H. Then H is
generated by all t,,, together with all the subgroups H N\ D,AD; . Further
(1) those t,;, # 1 (which correspond to those o and associated u such that D,E; x;
is not a Dy and where E;, = 1 is omitted if D, ends in x; 1) form a basis of a
free subgroup of H;

(2) the group K generated by all H \D,AD;" is the tree product of these
groups, two such groups corresponding to D, and Dy, with D, shorter than D,,
being adjacent if D, = DyE;x; or D, = DBE,-,,x,-_l, the subgroup amalgamated
between these two being H "D, U_,D;' or HN\D,UD;' respectively;

(3) H is the HNN group

<K9 taiu;taiu(H nDﬁEivU—iEi;IDB—l)t;iul = H nDaEiuUiEi—l;lDa_l>

where in this expression we take all t,;,, # 1 and the associated Dy, E;,.
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3. Finitely generated subgroups

Let G = A*;Bandlet A = A,B; < Bwith4, NU =B, NU = U,. Then
{A,B;> = A*; By and {A4,,B;) NA = 4,. It follows that if G and U are
finitely generated so are A and B, by taking A, to be generated by the elements
of A occurring in normal forms of the finitely many generators of G and the
generators of U, and similarly for B, so that G = {A4,, B;>. Similar results hold
for HNN groups, either by direct use of the normal form or by embedding an
HNN group in an amalgamated free product.

Let X be a tree, O a vertex of X. Let e be an edge with vertices P and Q.
Then exactly one of the paths from O to P and from O to Q will contain e. Orient
e by defining P to be the final vertex if the path from O to P contains e. We call
this orientation of X the orientation outwards from O. Plainly for P # O there is
exactly one edge whose final vertex is P; we will denote it by ep. If X, is a sub-
tree of X containing O then P e X, implies ep € Xy, since ep must be in the path
in X; from O to P. Any path in X is of the form Py,---, P, where for some r,
0 = r £ n, the edge joining P;_, and P; is oriented from P; to P;,_; for i £ r
and from P;_, to P;for i > r. If Py, ---, P, is a path in a subtree X, containing O
with each edge directed from P; to P;_, and P, € X, then P;e X, forall i.

For the remainder of this section we let G be a group acting without inversions
on a tree X. The symbols Y, T, p,j will have the same meaning as in section 1.
We will orient X outwards from a vertex O in jT.

An element g € G will be called negative for an edge e if e is oriented from
P to Q but ge oriented from gQ to gP. A G-orbit of edges will be called reversing
if for some (and then for every) edge e in the orbit 3g negative for e. (If G is a
subgroup of A%B and X is the standard tree for A5B reversing orbits correspond
to double-ended cosets GwU.)

LEMMA 1. There are finitely many reversing orbits if and only if
(i) there are finitely many edges of Y not in T and
(i) there are finitely many vertices P of jT for which stab P # stab e, .

PrOOF. In an orbit above an edge not in T there will be an edge e from P
to Q with PejTand Q¢;T. There will be g € G with gQ €T and then gP¢jT.
Then e is oriented from P to Q and ge from gQ to gP, so the orbit is rever-
sing.

If P is a vertex of jT with stab P # stabep, then plainly any element of stab P
not in stab ep is negative for ep. Also for P, Q distinct vertices of jT, as all vertices
of ep and e, are in jT and distinct vertices of jT are in different G-orbits, we see
that ep and e, are in different G-orbits.

Hence (i) and (ii) hold if there are only finitely many reversing orbits.

Suppose (i) and (ii) hold. Let X, be a finite subtree of jT containing O, all
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the vertices P of jT with stab P # stabep,and all vertices jQ with Q a vertex of an
edge of Y not in T. We show that any reversing orbit either lies above an edge of
Y not in T or meets X,.

Take a reversing orbit lying above an edge in T. Take an edge e in this orbit
and in jT, and let g be negative for e. Let the path from e to ge be P,,---, P,.

Suppose first that every edge is oriented from P;_; to P;. As P, = gP, we
have P, ¢jT. Take k with Py ,--, P, €jTbut P, ¢jT. If the edge P,P, ., mapsto
an edge not in T then P, e X, by our choice of X ;. Our general remarks about
orientation then show that e = ep, € X . If the edge P, P, ,, maps to an edge in
T, 3h € G with h(P,P, () €jT, and we must have hP, = P, since jT contains only
one vertex in each orbit. If h(P,P,+,) = ep,_then P e X, and as before e€ X, .
Otherwise the path joining e to hge will be Pgy,«--,P, = hP,, hP, .4, ,hP,
and hgP, = hP,. Induction on n — k now gives the result.

Now suppose that for some r with 0 < r < n the edge joining P;_; and P;is
oriented from P;to P;_, for i £ r and from P,;_; to P, for i > r. We cannot have
r = n as that would give P,€jT although P, = gP,.

So we may take r < n. Since g is negative for e, we must have gP, = P,_,,
gP, = P,.If Poe X, we have ee X,. If P, ¢ X, the edge from P, = g~'P,_, to
g~ 'P,_, must lie above an edge in T. As before 3h € G such that h maps this
edge to an edge in jT and with hPy = Py. Let P_, = hg~'P,_,. As Py ¢ X, we
have stab P, = stabep,. Thus the edge joining P, to P_, is oriented from P, to
P_, since g~'P,_, # P, = g~'P,. Then we have a path P_, P,,---, P,_, with
P_, €jT, the edge joining P, and P_, oriented from P, to P_; and with P,_,
= gh~*Pyand P,_, = gh™'P_, .Byinduction onn — r we may assume P_, € X,
and can then deduce Pye X, and so ec X, as required.

LeMMA 2. Let G be finitely generated. Then G has finitely many reversing
orbits. If, in addition, each edge has finitely generated stabiliser then each vertex
has finitely generated stabiliser. Conversely, if G has finitely many reversing
orbits and each vertex has finitely generated stabiliser then G is finitely gen-
erated.

PROOF. G has the free group with basis {t,, ¢ an edge of Y not in T} as homo-
morphic image. Hence there are only finitely many edges not in Tif G is finitely
generated. The finitely many generators of G will involve the ¢, and elements from
the stabilisers of finitely many vertices P. Let X; be a finite subtree of jT con-
taining O, these vertices, and jQ for all vertices Q of an edge not in T. It follows
that G, which is an HNN group with free part {t,) and base group the tree product
over jT of stab P is equal to its subgroup which has for base group the tree product
over X, only. This requires that the tree products over jT and X, are the same,
and by induction over the distance of P from 0 we see that stab P = stabe, for
P¢ X,. The result now follows from Lemma 1.
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If, in addition, every edge has finitely generated stabiliser, then, by induction
on the number of edges not in T and the number of vertices in X,, we see first
that the tree product over X, is finitely generated, and then that stab P is finitely
generated for Pe X ;. Then stab P is finitely generated for P T (since stab P
= stabep for PejT, P¢ X,)and any vertex has stabiliser conjugate to stab P for
some PejT.

By lemma 1, if G has finitely many reversing orbits, the free part of G is
finitely generated and the base group is the tree product over a finite subtree of
jT of the goups stab P. So G will be finitely generated if it has finitely many revers-
ing orbits and each vertex has finitely generated stabiliser.

We say the group A has the finitely generated intersection property (f.g.i.p.)
if the intersection of two finitely generated subgroups of A is finitely generated.

THEOREM 5. The group A%yB has f.g.i.p. if A and B have f.g.i.p. and U is
finite.

THEOREM 6. The HNN group {A,t;t,V;t;* = U,> has f.g.i.p. if A has
f.g.i.p. and each U is finite.

Theorem 5, which is proved in [ 1], and theorem 6, which improves on a theo-
rem in [2], are special cases of the next theorem.

THEOREM 7. Let G act without inversions on a tree X. If the stabiliser of
each vertex has f.g.i.p. and the stabiliser of each edge is finite then G has f.g.i.p.

ProoF. Let H and K be finitely generated subgroups of G. By Lemma 2, there
are finitely many reversing H-orbits and finitely many reversing K-orbits, and for
any vertex P both H Nstab P and K Nstab P are finitely generated. As stab P has
f.g.i.p. it follows that HN K Nstab P is finitely generated for any vertex P. Hence
it is enough to prove that there are only finitely many reversing (H N K)-orbits.
Since such an orbit is in the intersection of a reversing H-orbit and a reversing
K-orbit we need only prove that the intersection of an H-orbit and a K-orbit
contains finitely many (H N K)-orbits.

Let the stabiliser of the edge e be U. Then gee He N Ke if and only if
ge HU N KU . As U is finite HU N KU is the intersection of finitely many cosets
of H and K, and so consists of finitely many double cosets (H N K)wU, so that
ge lies in the (H N K)-orbit of one of finitely many edges we.

The next lemma will enable us to prove some results on subnormal subgroups.

LemMmA 3. Let G act without inversions on a tree X. Let e be an edge such
that {ge; g negative for e} is infinite. If he G stabilises no vertex, then ke G
such that {ge; g negative for e and g a power of k™'hk} is infinite.

Proor. Let e be oriented from P, to P,. Suppose first that the path from e
to he begins with P;, P,. Choose k so that ke is oriented from kP, to kP, and
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s0 that the paths from e to ke and from he to ke both end with kP,,kP,. This is
possible since we need only choose k negative for e and such that ke is not on
the paths joining e and he to the origin O.

If the path from ke to hke begins with kP, kP, then the path from he to
ke will be shorter than the path from he to hke, and this has the same length as
the path from e to ke. If the path from ke to h~'ke begins with kP,, kP,, then
the path from e to ke will be shorter than the path from e to h~'ke, and this has
the same length as the path from he to ke. Hence (as ke # hke, for h stabilises no
vertex) either the path from ke to hke or the path from ke to h~'ke begins with
kP,, kP,. Then either the path from e to k™~ 'hke or the path from e to k~'h~'ke
will begin with Py, P;.

1t follows that (replacing h by k~'hk or by k=1h~'k if necessary) we need
only consider the case when the path from e to he begins with P,, P,.

Suppose this is so, and suppose that & is positive for e. Let the path from e
to he be Py, Py, -+, P, _= hP,, P,,= hP,. We show inductively that, for any pos-
itive integer r, h" is positive for e and that the path from e to h"e begins with P, P,
and has 1 + r(m — 1) edges.

This is true for » = 1. Suppose it is true for r, and let the path e to h'e be
Po, Py, Pym-1y = WPy, Py 4 y(m—1y= h"Py. Then the path from he to h"*'e is
hPo, hPy, -, hPum_1y, hP | 4 p(m—1)- Then the path from e to h"*'e will consist of
the path from e to he (which ends with hPg, hP,) followed by the path from he
to h"*1le, as required.

The path from e to h~"e will be of length 1 + r(m — 1), being

h™"Pisem-1y = P, h7"Pyg_yy = Po, =+ ,h™"P,h™"P,.

For large r this will be longer than the path from e to the origin, and so its last
edge must be oriented from h~"P; to h~"P,. Hence h~" is negative for e if r is
large, and the edges h~"e are distinct, being at different distances from e.

We are left with the case when h is negative for e, and the path from e to he
begins with Py, P,. Let this path be Py, P,,-:+,P,._ = hP,,P, = hP,. Then
In,1 £ n<mwith hP, =P, _,fori < nbdut hP,,, # P,_,-,;. We must have
n < mf2.Forif n = m/2 we would have either m = 2k, hP;, = P,orm =2k + 1,
hP, = P, hPy,, = P,. The first is impossible as h stabilises no vertex, the se-
cond is impossible as G acts without inversions.

We show inductively that A" is negative for e for any positive integer r and
that the path from eto h"e has form Qp = Py, @y = Py, +++,Qpsy = Pryy, -+, 05y
= WP,,Q, = h"P,. This holds for r = 1. Suppose it holds for some r. Then the
path from he to h'*'e is hQg = P,, hQy = P, _4,*,hQ, = Ppopy hQps1
#Py_p 1y hQyy = WP, hQ, = h"*1P,. Hence the path from e to h"*le
willbe Po, Py, -+, Py 1Qp 3 1, Qi 2,00, AT IP A7 1P, As this path starts with
Py, P,, all its edges are positively oriented, and in particular A"+* is negative for e.
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Asn< m/2, this completes the induction step. Also, as n < m/2, the path from e
to h"*'e is longer than the path from e to h'e. Consequently the edges h"e are all
distinct and h" is negative for e for any positive integer » and the proof of the
lemma is complete.

The next theorem generalises Theorem 10 of [1] and Theorem 9 of [2]. it
can also be proved using the theory of ends (see [3]).

THEOREM 8. Let G be either (i) A*yB or (ii) an HNN group
{4, xi;x‘Vix}-l = Up.

Let G, be a subnormal subgroup of G such that in case (i) G, is contained in
no conjugate of A or B and in case (ii) G, is contained in no conjugate of A.
Let H be a finitely generated subgroup of G with G, < H. Then in case (i) the
double coset index of (H,U) in G is finite while in case (ii) the double coset
index of (H,U)) in G is finite for each i.

COROLLARY 1. Let G be either A*;B or the HNN group {4,x;xVx~1=U>,
with U finite in either case. If the finitely generated subgroup H of G contains
an infinite subnormal subgroup of G, then H has finite index in G.

ProOFS. In either case let X be the tree constructed in section 2. Orient X
outwards from the vertex 1.A4. In the first case we see that the edge gU is oriented
from g4 to gB if the last syllable of g is in 4, and is oriented from gB to g4 if
the last syllable of g is in B. In the second case we find that if » > 0 the edge
xIU, is oriented from x[A4 to x;"'A4 while if aeA — V; the edge x/*'ax U,
which joins x}*tax; *A( # x[A) to x;"lax; 'x;4 = x;*' A must be oriented from
x7*14 to x{"'ax; ' A (since only one edge ends with xi*'4). Similarly if r >0
the edge x; "U, is oriented from x; """V 4 to x;"4 and if ac 4 — U, the edge
x; "aU( # x; "U,) which joins x; "ad = x; "4 to x; "ax;A must be oriented from
x"A to x; "ax;A.

It follows that in case (i) we have {ge; g negative for e} infinite for any edge
e while in case (ii) we have {ge;g negative for e} infinite for any edge e provided
we do not have e = gU; where U; = A = V.

Let G,<1G,_;<1---<1G, = G. As G, is contained in no conjugate of 4 (or
B) it contains an element h not in any conjugate of A (or B), and # stabilises no
vertex of X.

Let e be an edge such that {ge; g negative for e} is infinite. We show induc-
tively that for 0 < s < r we have {ge; g € G, negative for e} is infinite. This is true
for s = 0. Suppose it is true for some s. By Lemma 3 3k € G, such that {ge;g
negative for e, g a power of k~'hk} is infinite. Since he G,,, < G, we have
{ge; g € G, negative for e} is infinite.

In particular, the G,-orbit of e will be reversing, and so the H-orbit of e will
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be reversing. By Lemma 2, H has only finitely many reversing orbits since it is
finitely generated.

Since the number of H-orbits containing an edge gU, fro some g (and fixed i)
is the double coset index of (H, U;) in G, we have the result for those i such that we
do not have U; = A = V,. (We also see that if there are infinitely many i for
which we do not have U; = A = V,, then no such subgroup H can exist).

Plainly the result follows unless U, = A = V, for all i. In this case A<1 G
and G/A is free. Let « : G - G/A4 be the natural homomorphism. Then the double
coset index of (H, A) in G is the index IozG caH l ,and aH is a finitely generated
subgroup of aG containing the non-trivial subnormal subgroup «G,. If the free
group oG has rank 1 then | oG :aH I is obviously finite while if G has rank greater
than 1 it is a free product and the result follows as in the proof of the corollary
(and is in fact well-known ).

To prove the corollary (and the above statement) it is enough to show that
if G = A*;B any subnormal subgroup contained in a conjugate of 4 or B must
be contained in a conjugate of U.

Let 4, be a subgroup of A. If 3ge G with g¢ A and g~ 14,9 < A it is easy
to see A, must be contained in a conjugate of U. Hence if A4, is contained in no
conjugate of U its normaliser is contained in 4, and we see, as required that A4,
cannot be subnormal in G.

Added in proof

This also has been obtained by Karrass, Pietrowski and Solitar ‘An improved
subgroup theorem for HNN groups with some applications’, Canadian Journal
of Mathematics, 26 (1974), 214-224,

Added in proof

Serre informs me that he had obtained spacial cases of theorems 1 and
the general forms being due to Bass. Accordingly, the results should be attributed
to Bass and Serre rather than to Serre.
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