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A MODULI SPACE OF EXOTIC R4's
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1.

In 1982, the first exotic R4 was discovered—a smooth manifold homeomorphic to IR4,
but not diffeomorphic to it. The object shocked topologists by its open defiance of the
rules of high-dimensional smoothing theory. The exotic R4 was constructed by
connecting the two powerful machines of Freedman [4] and Donaldson [2] to earlier
work of Casson [1].

More recently, many other examples have been discovered. Freedman and Taylor [5]
have constructed a "universal" R4 in which all others embed. A continuous family of
distinct exotic R4's has been constructed [6, 7], which is naturally parametrized by the
two-dimensional space / x / . (We take 7 to be the closed interval [1, oo]. See [6,
Theorem 3.1] and the last paragraph of [6, §3].) These examples are "large" in the sense
that they contain compact 4-manifolds which cannot embed in any homotopy 4-sphere.
In contrast, there is now known to be an exotic R4 which embeds in the standard IR4.
(This follows from work of Casson ([1, Lecture III]) together with Donaldson's
counterexample to the smooth Jt-cobordism theorem [3] and Freedman theory.)

A natural question is how to organize the set of exotic R4's. We let & denote the set
of all oriented diffeomorphism types homeomorphic to R4. ^ contains a 2-parameter
subspace, and it seems a good conjecture that there are many other parameters which
are presently hidden. Such a space cries out for a topology. In the present paper we
construct a quotient space 9t^, modding out by an equivalence relation which, for
example, identifies with R4 any exotic R4 embedding inside it. With this exception, all
presently known structure of @ is preserved in #L. We endow the space 3t^ with a
topology which is metrizable and has a countable basis. In particular, this cannot be the
discrete topology, since $L is uncountable. The topology has some compatibility with
the monoid structure on &^ induced by end-sum (see § 3), and is a refinement of the
partial order topology induced by " g " (see §2) which is essentially inclusion. 9t^ also
has a "one-sided" compactness property: every increasing sequence converges.

The moduli space 01^ is somewhat analogous to moduli spaces of complex structures.
One quirk of the latter is that deformation spaces need not be Hausdorff. This is
corrected by removing certain "degenerate" elements from the space. In the case of $^ a
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similar phenomenon can occur, but it is too pervasive to be corrected in this manner.
Instead, we have forced the topology to be Hausdorff, at the expense of having natural
1-parameter families which are not continuous, but compatible with part of the
topology of 91^ (see § 3). In fact, the above embedding of / x / is not known to be
continuous, but it is compatible with part of the topology.

In this article, we work entirely in the smooth category except when otherwise stated.
All manifolds are implicitly oriented, and all embeddings are assumed to be smooth and
orientation-preserving.

2.

We would like to partially order Si by inclusion. To avoid technical problems
involving noncompactness, we adopt the following definition.

Definition 2.1. Given Rlt R2s9t, we say Rl^R2 if any oriented compact 4-manifold
(with boundary) which embeds in Rt also embeds in R2.

This is clearly reflexive and transitive. It generalizes inclusion in the sense that Rt^
whenever i?, embeds in R2.

The above relation is not a partial ordering on 2k. In particular, any exotic R4 which
embeds in the standard one is both ^ R4 and ^ R4. We remedy this as follows:

Definition 2.2. Rl and R2 are compactly equivalent, R1~R2, if both Rt^R2 and

Roughly speaking, Rt and R2 are compactly equivalent if we cannot distinguish them
by looking at compact subsets. Let &„ denote the space of compact equivalence classes
in M. Then 9t^ is partially ordered by ^ . The 2-parameter family of [6] is embedded in
9t^. (See the remark following Theorem 3.1 of [6].) In fact, the embedding sends Ixl
isomorphically onto its image as a map of partially ordered spaces. (Here, / x / is
ordered by (al,bl)^(a2,b2) if and only if al ^a2 and bl^b2.)

As a first attempt at topologizing £?_ we can consider the partial order topology. A
subbasis of closed sets is given by KR, LR indexed by R e ^ , where KR = {R' eM^ \R'^
R} and LR = {R'e&$^ \R^R'}. Unfortunately, this topology is hard to work with, and
not even known to be Hausdorff.

Our topology x for M^ is a refinement of the partial order topology. We consider sets
Ux indexed by compact, oriented 4-manifolds X. Ux = {Re@^\X embeds in R}. These
will be open sets in x. In fact, we define x by the subbasis of closed sets 9t^ — Ux and LR.
It is routine to verify that the sets KR are closed in this topology, so that x is indeed a
refinement of (possibly equal to) the partial order topology.

Proposition 2.3. The topology x is regular.

Proof. The key idea is the following: Let X be a compact 4-manifold embedded in
some R e f . Then there is a compact X' and some R'e@ such that X<= R'aX'cR. To
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see this, recall that R is homeomorphic to R4. Thus, X lies in the interior of some
compact topological 4-ball B. We may take R' = intB with the smooth structure
inherited from R, and X' = f~x[0,Y] where f:R-+[0, oo) is a smooth, proper map which
vanishes on B and takes 1 as a regular value.

It is now easy to prove regularity, T is Tlt since the one-point set {R} = KRnLR is
closed. Given a closed set of the form 01^ — Ux, and R. not in this set, we must have
X<=R, so we can write XcR'<=X'<=R as above. The disjoint open sets Ur and
3t^—LR' contain R and St^ — \JX, respectively. Similarly, to separate a closed set LR

from a point R*$LR observe that by definition there is a compact XcR which does
not embed in R*. Writing XcR'cX'cR, we obtain the desired open sets 0t^—LR. and
UX', containing R* and LR. It is now trivial to separate points from arbitrary closed
sets.

Proposition 2.4. The topology x has a countable basis. Hence, it is metrizable.

Proof. The second statement follows from the first, together with Proposition 2.3,
via the Urysohn Metrization Theorem.

There are only countably many compact manifolds, since there are only countably
many finite simplicial complexes. Thus, there are only countably many sets of the form
Ux, and it suffices to show that the sets LR are generated by a countable subcoUection.

Consider all pairs (X',X) of compact 4-manifolds for which there is an R&01 with
X^RcX'. For each such pair, arbitrarily choose one such R and denote it R(X',X).
This gives a countable collection of elements R(X', X) e 3&. To see that the closed sets
LRW.X) generate, choose a set LR and an R*$LR. As above, we have an X not
embedding in R* with XaR'<zX'<=R. Thus there is an element R(X',X), and we have
^ $LR(X, X) and LRcLR(}r xy

Proposition 2.5. Every increasing sequence converges.

Proof. Given an increasing sequence Rl^R2^R3^ •.. in ^ we will construct an R
for which (1) each Rn^R and (2) any compact XaR embeds in some Rn. It is then easy
to verify that Rn->R in the topology T. (Note that if Rtc= R2cR3c... then R = \J?=lRn

suffices.)

For each n, let {Xn,,-|i= 1,2,3,...} be an increasing sequence of compact submanifolds
whose union is Rn. Then XnJ embeds in Rm for m^n. Inductively define compact
manifolds YmcRm as follows: Let Yl=XltlcRl. Now assume Ym<=Rm has been defined.
Fix embeddings (possibly overlapping) of Ym, XmA, Xm_1-2,...,XUm in /?„ + ,. Let
Bm + lczRm + l be a topological 4-ball whose interior contains the images of all of these
manifolds. Let Ym+l be a compact (smooth) manifold in Rm+l containing Bm+l. By
construction, we now have embeddings Yt c Y2 <= Y3 c . . . . Let R = \J%= { Ym. Since each
embedding factors YmcBm+lcYm+1, R is topologically a nested union of 4-balls, so it is
homeomorphic to R4. Condition (1) holds since any compact subset of Rn lies in some
XnJc: Yn+h and condition (2) is clear.
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3.

Our subbasis for T naturally divides into two parts. The sets Ux are natural in many
ways, but the sets LR are harder to deal with. For example, the embedding / x / - + ^ of
[6] is easily seen to be (/-continuous, i.e., continuous with respect to the (non-Ti)
topology generated by the sets Ux alone. It is not clear, however, that the preimage of
LR will be closed for R not in the family.

On the other hand, the most general parametrized families should not always be
continuous. We may obtain a 1-parameter family from any sliced concordance. This is a
smoothing on R4 x / such that projection n onto / is a smooth submersion. The
1-parameter family is given by Rt = n~l(t), tel. A sliced concordance is analogous to a
deformation of complex structures. Any sliced concordance is [/-continuous. (If a
compact X embeds in R,o then it embeds in R, for t near t0.) However, the following
example cannot be continuous in any Hausdorff topology: Let R<=R' be an arbitrary
nested pair for which R is the interior of a flat topological 4-ball in R'. A sliced
concordance may be obtained from R' x / by removing all of the bottom boundary
except for R x {0}. Then R0 = R and Rt = R' for 0 < t ^ l . Similar examples occur with
complex structures. Since R and R' are nearly arbitrary, however, it seems impractical to
eliminate this phenomenon by throwing away part of the space 01^.

The space M is a commutative monoid under the operation of end-sum, t], the
noncompact analogue of boundary-sum. (See the appendix of [6] for the defintion and
basic properties.) End-sum is easily seen to be compatible with ^ . (Rt^R2 and
^ ^ ^ R , t j ^ g i ^ ^ ^ t - This is one reason why we restricted to compact sets when
defining ;g.) Thus, 91^ inherits a monoid structure. End-sum is easily seen to be jointly
(/-continuous on 9t^, but again the sets LR cause trouble.

The space 81 ̂  contains unique maximal and minimal elements. Clearly, U4^ R for
any Re£%, and this characterizes U4 up to compact equivalence. We may also construct
an element R* characterized up to compact equivalence by the property that R ̂  R* for
any Re Si. To construct R*, consider all compact 4-manifolds X which embed in
elements of ^ . For each X, choose an element Rxe8t in which X embeds. This gives a
countable collection of elements Rx. Let R* be the end-sum of all of these. Then for any
Re2%, all compact subsets of R embed in R*, as required. This R* is actually
diffeomorphic to the universal U4 of Freedman and Taylor [5]. (In fact, our collection
of X's includes Freedman and Taylor's "link slice solutions" infinitely many times,
which characterizes the universal U4.)

The techniques of this paper can be applied to the study of smooth structures on
other open 4-manifolds. For example, let S?n denote the space of smoothings on a
4-sphere where n punctures, up to orientation and end-preserving diffeomorphism. Of
particular interest are ^=3% and 5 2̂ = the space of smoothings on S3xR. Section 2
generalizes directly. We simply restrict attention to compact, oriented 4-manifolds X
which have exactly n boundary components, indexed by {l, . . . ,n}. Embeddings X-*
Se9*n are required to match the z'th boundary of X with the ith end of S. Note that the
spaces Sfn^ will be disconnected for n^2 since the Kirby-Siebenmann invariant gives a
continuous surjection £fn^->H3(S4— n points; Z2). In this setting, we have additional
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structures: inclusion i: yn-+SPn+l by deleting a point, projections r.yn + l->Sfn by
coalescing two preassigned ends (i.e., deleting a smooth curve connecting the ends) and
connected sum #:SPmx£Pn-*SPm+n. These operations all descend to Sfn^ and are
[/-continuous. Note that for ^ = 3^, Rx t\R2 = r(Rl # R2). A similar monoid structure
exists on each !?„.
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