Errata

Elastic buckling design curves for isotropic rectangular plates with continuity or elastic edge restraint against rotation

C. B. York

Division of Engineering, University of Edinburgh Edinburgh, UK

The following corrections have been made to this paper published originally in the April issue, volume 104, number 1034 of *The Aeronautical Journal* on pages 175 to 182.

The Greek letter lambda (λ) was missing from the caption of Fig. 1; which should read:

Figure 1. A component plate: (a) of width *b* with loading and reference axis system and; (b) showing skew nodal lines with half-wavelength λ caused by perturbation force (denoted by *p* and *m*) and displacement amplitudes shown at the longitudinal edges of the plate, which are multiplied by exp(^{inx}/_λ).

Two multiplication symbols contained within the following sentence should have been printed as follows:

4.0 MODELLING

The isotropic material properties are: Young's Modulus (E) = 72.4kNmm⁻² (100,000lbin⁻²) and Poisson's ratio (v) = 0.3.

An S8R5 plate element is adopted for the finite element analysis⁽²⁰⁾ to provide the classical thin plate result. A high degree of convergence is achieved using 30×30 elements for the square plate ($\frac{4}{b} = 1.0$) and maintained by adjusting the number of elements with respect to changes in aspect-ratio, e.g. 45×30 elements for $\frac{4}{b} = 1.5$, etc.

The two equations contained in the paper should have appeared as follows:

$$\kappa = \frac{\beta b}{D} \qquad \dots (1)$$

$$\mathbf{k} = \frac{\sigma b^2 t}{\pi^2 \mathbf{D}} \quad \text{or} \quad k = \frac{\tau b^2 t}{\pi^2 \mathbf{D}} \qquad \dots (2)$$

The correct fig. 4(c) now appears below containing the "Critical shear load factor" as intended by the author, illustrating design curves that should correspond to Case 2-1:

4(c) longitudinal edges, y = 0 and b, the two transverse edges simply supported. Case 4-1 results⁽²⁹⁾, for longitudinal edges clamped, and Case 3-1 results⁽²³⁾, which possess continuity over simple supports in the *y*-direction, are given for comparison. Note that Case 4-1 $\Rightarrow k_{(a/b = w)} = 9.2$;