ON THE DIMENSION OF MODULES AND ALGEBRAS, VI
COMPARISON OF GLOBAL AND ALGEBRA DIMENSION

MAURICE AUSLANDER

Throughout this paper all rings are assumed to have unit elements. A ring
A is said to be semi-primary if its Jacobson radical IV is nilpotent and I'= A/N

satisfies the minimum condition. The main objective of this paper is

Tueorem 1. Let A be a semi-primary algebra over a field K. Let N be the
radical of A and I' = A/N. If

dimA < o agnd (I': K) < =,
Then
dim 4 = gl.dim 4.

Here dim A denotes the dimension of 4 as a K-algebra, i.e. dim 4 = L.dim,eA4
where A° = A®x A%

We do not know whether the condition (I" : K) < o follows from the
condition that 4 is a semi-primary ring such that gl.dim 4A=dim 4 < c. The
theorem has been previously proven in [3] and [4] under the stronger assump-
tion (A4 : K) < co. In this case it was further shown that I" is separable (i.e.
dimI"=0). We do not know whether this is true without the assumption
(A: K) < .

1. Tensor product of semi-simple algebras

A semi-primary ring 4 with radical N is called primary if A/N is a simple
ring.
ProrosiTion 1. Let A4 and 2 be rings and ¢ : A—>3 a ving epimorphism.

If A is a semi-primary ring with radical N, then X is a semi-primary ring with
radical ¢(N).

Recejved February 29, 1956.
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Proof: Since IV is a nilpotent two-sided ideal in A, ¢(IN) is a nilpotent
two-sided ideal in 2. The epimorphism ¢ : 4—>23 induces an epimorphism
¢ : A/N—3/¢(N). Since A/N is semi-simple, it follows that X/¢(N) is semi-
simple. Thus ¢(N) is the Jacobson radical of %, which shows that Y is semi-
primary.

The following proposition, which we state without proof, is due to Naka-

yama and Azumaya (see [5], theorem 9).

ProposITION 2. Let Ay and As be simple K-algebras with centers Ci and
C.. Then C,®xC: is the center of A,®x A and the two-sided ideals in A, ®x As
are in a one-to-one lattice preserving correspondence with the ideals in Ci®x Co.
Under this correspondence a two-sided ideal I in A&k A> corresponds with the
ideal IN (C1®xC2) in Ci®xCs and an ideal ] in C,Rx Cs corresponds with the
two-sided ideal (A, &Qx A2) J in AL Qx As.

ProposiTiON 3. Let Ay and A, be semi-simple algebras over a field K with
centers Cy and Cs. If A Qx Ay is semi-primary, then each of the algebras
Ci®xCe and A, Qx Az is a finite direct product of primary K-algebras.

Proof: Since 4; and 4, are finite direct products of simple K-algebras we
have that 4, ®x 4, is the finite direct product of K-algebras of the form 2 ®x 2o,
where 2 and 3, are simple algebras which are direct summands of 4; and 4.
It follows from Proposition 1, that if 4; ®x4; is semi-primary, then so are the
algebras X ®x 2., which are homomorphic images of 4, &®x4,. Thus it suffices
to prove the proposition in the event that A; and 4. are simple K-algebras.

Let NV be the radical of 4, ®x4.. Since (A; ®xA:)/ N is semi-simple, it satisfies
the minimum condition. Hence we have by Proposition 2 that (C; ®xC2)/NN
(C1®xC:) satisfies the minimum condition. Since N is the maximal nilpotent
two-sided ideal in 4;®x s, it follows from Proposition 2 that NN (C1®x C:) is
the maximal nilpotent ideal in C;®xC;. Therefore (Ci®xC:)/N N (Ci1®xC2)
is semi-simple. Since NN (C, &« C:) is nilpotent, every set of orthogonal idem-
potents in (Ci®xCs)/NN(Ci®xC:) can be “lifted” to an orthogonal set of
idempotents in C; ®x C.. From this and the commutativity of C; ®xC:, it follows
that C;®xC» is a finite direct product of primary K-algebras.

Let Ci®xCo=21+ ... + 23, (direct produgt) where each J; is a primary
K-algebra with radical N; and let I; = 3;/N;. Since C: is a field we have for
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each 7 the exact sequence

0—>N; ®c, Ado—> 2 ®co Ar—> I & ca As—>0.
Since C; is a field, we deduce from the above exact sequence the exact sequence
(%) 00— 41 8¢, N; c, Ao —> N1 ®c, T; D¢y Aa—> M1 &¢, I3 K¢, A2—>0.

By Proposition 2, we have that the center of 4R, ®c, 42 is C1®¢, [ ®c,C2=
I'; which is a field. Thus by Proposition 2, A;®c¢, I ®c,4> has cnly the trivial
two-sided ideals.

Now 4 ®x Ao = M1 8¢, Ci&®x Coa&®cyMs = M ®c, (Z1+ ... + Zp) Qc, Ao =
ém &, Zi®c, A3 Since each 4; ®¢, Y ®c, 42 is a homomorphic image of 41 &xAs,
we have by Proposition 1, that each 4; ®c, % ®c, A2 is semi-primary. It follows
from the fact that each NV; is a nilpotent two-sided ideal that each 4;&¢, N; &¢, 4>
is a nilpotent two-sided ideal in A; ®¢, 3; ¢, .. Hence we deduce from (*) and
Proposition 1 that 4;&c,/: &g, 4> satisfies the minimum condition and is thus
simple. Therefore each A;&¢,2; ®¢, 12 is a primary K-algebra, which establishes

that 4;&x 4» is a direct product of primary K-algebras.

Remark. It should be noted that while the hypothesis of Proposition 3 is
satisfied if (A4; : K) < o, it can also be satisfied without any finiteness restrictions
on the linear dimension of the algebras. For example, let 4, be a pure trans-
cendental field extension of K and 4. an arbitrary algebraic extension of K.
Then A, &®xA: is a semi-primary K-algebra. On the other hand, it can be shown
that if C is a commutative semi-simple K-algebra such that C®xC is semi-
primary, then (C : K) < o. Thus if 4 and 4; are semi-simple K-algebras with
C. = C;, we have by Proposition 3 that 4,&x 4, being semi-primary implies that
(C: K)< oo,

2. Tensor product of semi-primary algebras

LemMa 4. Let 0—>A'— A—>A"—>0 be an exact sequence of left A-
modules such that

l.dim, A < sup(l.dim, A/, L.dim, A").
Then 1.dimy, A" =1+ 1.dim, A'.

Proof: Let n=1.dim, A, which is finite by hypothesis. Then Ext 2(A4, C)
=0 for p > » and all left 4-moduyles C, Thus by the homology sequence for
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the functor Ext we have that Ext%(A’, C) = Ext{*'(A", C) for p > n. Thus
if L.dim, A’ > # we are done. If l.dim, A' = #, then 1l.dim, A" = »+1. But then
by hypothesis 1.dim, A" would have to be greater than or equal to n+1. From
the exactness of the sequence Ext} (A', C)—> Ext "' (A", C)—>0 we see that

if 1.dim, A’ < », then l.dim, A" < n, which is impossible.

TueoreM 5. Let Ay and As be semi-primary algebras over a field K. Let N;
be the radical of A; and let T; = A;/N;, i=1, 2. If ®x T is semi-primary,
then A, Rk A is semi-primary. If further

gl.dim 4, g A: < o
then
gl.dim 4, ®x 4> = gl.dim 4, + gl.dim A, = L.dima,®ga, 11 Ox .
Proof: Consider the exact sequence
0—>R— M ®x A>T Qxl2—>0

where R = N ®x 42+ 4;®x Ne. Since R is nilpotent and Iy ®x I'» is semi-primary,
it follows that A, ®x 4> is semi-primary.

The inequality
gl.dim 4; + gl.dim 4, = gl.dim (4; ®x 4s)
follows from [1] Theorem 16. The inequality
Ldima,@xa, 1 ®x > £ gl.dim 4; + gl.dim A,
follows from the general inequality
Ldim s, @xa, A1 ®x Az = 1.dim 4, A1+ 1.dim 4, A,
(See [2], Chapter XI, 3.2).

Assume L.dima,@xa,J1 ®xls=m < n=gl.dim4,®x4:. There exists then
by [1], Corollary 11, a simple A; ®x d>-module A such that 1.dima,®xs, A =n.
Since R is nilpotent, RA =0 and it follows that A is also a simple I'1®xl»-
module. By Proposition 3 we know that I';1 ®x73 is a direct product of primary
rings. Thus A is isomorphic with a left ideal I in It ®=« I; (See [1], Proposition
15). Then Ldima,@xa,l<ldima,®@pa, [1®xl> Thus by Lemma 4 we deduce

from the exact sequence

0“_”1—)1—‘1®Kr2_“>(r1®:xr2)/1“—‘>0
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that Ldim (11 ®x I[2)/I=1-+1.dima,®xa, =1+ n, a contradiction.

Remark. It should be noted that Theorem 5 is false without the assumption
gl.dim A; ®x A2 < o, Indeed, let 4 be a finite inseparable field extension of K.
Then gl.dimA4=0. By Proposition 3 4®x4 is a direct product of semi-primary
K-algebras. Since 4 ®x4 is not semi-simple, gl.dim A ®xA=  (See [1], Pro-
position 15).

3. Proof of Theorem I.
By [3], Proposition 9, we have that
dim (1) = gl.dim A®x ™.

Since (I'* : K) =(I': K) < o, it follows that (I'®xI* : K) < «. Thus we have
that I'®xI'* is a semi-primary K-algebra. Since by hypothesis gl.dim A ®x ™"
=dim A < «, we have applying Theorem 5 that

gl.dim A ®xI'* = gl.dim A + gl.dim I'* = gl.dim A.

Therefore dim 4 = gl.dim 4.

BIBLIOGRAPHY

[1] M. Auslander, On the dimension of modules and algebras (III), global dimension,
Nagoya Math. J., 9 (1955), 67-77.

[2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.

[3] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv.,
28 (1954), 310-319.

[4] M. Ikeda, H. Nagao and T. Nakayama, Algebras with vanishing »n-cohomology groups,
Nagoya Math. J. 7 (1954), 115-131.

[51 T. Nakayama and G. Azumaya, On irreducible rings, Ann. of Math. 48 (1947), 949-965.

University of Michigan

https://doi.org/10.1017/5002776300000194X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000194X



