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Abstract. In this review we present a brief discussion on the observational evidence in favor of
the presence of temperature variations, and conclude that many planetary nebulae show spatial
temperature variations that are larger than those predicted by 1D static chemically homogeneous
photoionization models. To determine accurate chemical abundances it is necessary to know the
cause of these temperature variations and several possibilities are discussed. The importance
of this problem is paramount to test the models of stellar evolution of low and intermediate
mass stars and of the chemical evolution of galaxies. We conclude that the proper abundances
for chemically homogeneous PNe are those derived from recombination lines, while for the
two-abundance nebular model the proper heavy element abundances relative to hydrogen are
those derived from visual and UV collisionally excited lines adopting the t* values derived from
Te([O III}) and T.(Balmer).
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1. Overview

Recent reviews on the presence of temperature variations in PNe have been presented
by Esteban (2002), Liu (2003, 2006), and Torres-Peimbert & Peimbert (2003). Of the
well observed PNe about one third can be fitted reasonably well by 1D static chemically
homogeneous photoionization models, but two thirds show temperature variations that
are substantially larger than those predicted by simple photoionization models. In this
paper we review further evidence in favor of the presence of large temperature variations
in PNe. We discuss possible causes for these variations and their effect on the determina-
tion of chemical abundances of PNe. We discuss the proper procedure to obtain accurate
abundances for chemically homogeneous and for chemically inhomogeneous PNe.

2. Temperature determinations

Peimbert (1967, 1971) found that the determinations of T, ([O 111]), the temperatures
based on the I(4363)/1(5007) ratio, are considerably larger than the determinations of
T.(Balmer), the temperatures based on the intensity ratio of the Balmer continuum to
a Balmer recombination line; he interpreted this result as being due to the presence
of temperature variations over the observed volume. To study this problem, Peimbert
defined the mean square temperature variation, t; typical simple photoionization models
yield t? values in the 0.003-0.015 range. Peimbert and collaborators, also developed
equations to derive the abundances for chemically homogeneous nebulae with #2 > 0.000
(Peimbert 1967; Peimbert & Costero 1969, Ruiz et al. 2003, Peimbert et al. 2004). The
large differences between T, ([O 111]) and T.(Balmer) have been confirmed by several
authors for a large number of PNe (e.g. Liu & Danziger 1993; Zhang et al. 2004).
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Peimbert, Storey, & Torres-Peimbert (1993) based on the computations by Storey
(1994) were the first to obtain larger O™+ /HT values from oxygen recombination lines
than from collisionally excited lines under the assumptions of t> = 0.000 and of chemical
homogeneity. Most PNe show this difference which has been usually called the abundance
discrepancy factor defined by: adf(O**+/H*) = (Ot /H) g / (Ot /H")cEL, (e. g. Liu
2006, and references therein). The adf(OT* /H™T) value is larger than predicted by simple
photoionization models for about two thirds of the well observed PNe.

A similar abundance difference for C*+/H™ has been obtained by Peimbert, Torres-
Peimbert, & Luridiana (1995a) based manly on the line intensities compilation by Rola
& Stasiriska (1994). Peimbert et al. (1995a) compared the CT* /H™ abundances derived
from the C 11 M\4267 recombination line with those derived from the CT+ AX1906, 1909
collisionally excited lines. Again about one third of the adf(C** /H™T) of the well observed
PNe might be explained by simple photoionization models but two thirds present values
too large to be reproduced by these models.

Zhang et al. (2005) have obtained large T.([O 111]) — T.(He 1) differences for 48 PNe
that cannot be explained by simple photoionization models. In section 4.2 we discuss
their results.

3. Possible sources of temperature variations

Torres-Peimbert & Peimbert (2003) presented seven mechanisms as possible sources
of temperature variations; in what follows we will mention additional results in favor of
some of these mechanisms.

Deposition of mechanical energy: The central stars of PNe inject mechanical energy
into the expanding shells by means of stellar winds, bipolar flows, multipolar flows, and
asymmetrical ejections; these processes produce shocks, turbulence, and an increase of
the expansion velocity of the shell with time. These processes are more important for
some objects than for others and might be responsible for the spread in the observed
t? values. Guerrero et al. (2005) and Guerrero, Chu, & Gruendl (2006) found that the
following PNe are strong X-ray emitters: BD+30° 3639, NGC 40, NGC 2392, NGC 3242,
NGC 6543, NGC 7009, and NGC 7027; they also argue that this emission is due to
shocks produced by fast winds or bipolar flows. Rowlands, Houck, & Herter (1994) derived
T.([Ne v]) ~ 50,000 K for NGC 6302 and NGC 6537; they also computed photoionization
models and were not able to produce temperatures higher than 20,000 K and reached
the conclusion that these temperatures were indicative of shock heating. Peimbert et al.
(1995a) found that the following PNe with large velocity dispersions also show large
temperature variations: NGC 2392, NGC 2371-2, NGC 2818, NGC 6302, and Hu 1-2;
the last four are bipolar Type I PNe. Medina, Pena, & Stasiriska (2006) found, from a
sample of 47 PNe, that the velocity of expansion of the shell increases with age indicators,
for example (vegp) is larger for low density nebulae and it is also larger for nebulae with
higher temperature stars. Furthermore by studing the line profiles Medina et al. (2006)
find that a substantial fraction of the material shows turbulent motions.

Chemical inhomogeneities: See section 4.2 and the review by Liu (2006).

Time dependent ionization: When a photoionization front passes through a nebula it
heats the gas above the steady state value and some time is needed to reach thermal
equilibrium. In the presence of localized density variations or a density gradient, this
process produces large temperature variations and might explain the presence of hot
external halos in PNe (e.g. Tylenda 2003, Sandin et al. 2006). When the stellar ionizing
flux decreases, or the density distribution along the line of sight changes, the outer
regions of a nebula might become isolated from the stellar radiation field and will cool
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down before fully recombining, creating cold partially ionized outer regions; this might
explain the low T, (Balmer) values derived by Luo & Liu (2003) in the outer regions of
NGC 7009.

Density variations: Extreme density variations are present in most PNe, as can be seen
from optical images. For steady state photoionization models density variations are not
very important, but for time dependent processes the regions of higher density will reach
equilibrium sooner than those of lower density.

Deposition of magnetic energy: No specific models have been proposed yet for this
mechanism.

Dust heating: Stasiniska & Szczerba (2001) have analyzed the effects of photoelectric
heating by dust grains in photoionization models of PNe. This effect might be important
in nebulae with large density variations. This suggestion has not been tested yet for a
specific model on any given PN.

Shadowed regions: Due to the presence of molecular globules inside NGC 7293 and NGC
6720, two nearby PNe, their presence is expected in many PNe. According to Huggins
& Frank (2006), the covering factor of the globules in NGC 7293 amounts to about 5%.
The ionization of the gas shadowed by the globules will be produced by diffuse radiation,
and consequently, the temperature of the shadowed gas will be a few thousand degrees
lower than that of the material that is directly ionized by the central star (Mathis 1976).
This mechanism alone might produce ¢?> values around 0.01 in PNe of the type of NGC
7293 and NGC 6720.

To discriminate among the different possibilities, it is important to understand the
signature of each process on the temperature and density distributions. Mechanical en-
ergy deposition, an increase in the local ionizing flux, and magnetic energy deposition
will produce localized high-temperature regions relative to simple photoionization pre-
dictions; while shadowed regions, the decrease of the local ionizing flux, and the presence
of metal-rich inclusions will produce localized low-temperatures regions relative to simple
photoionization predictions.

4. Forbidden or recombination line abundances?
4.1. Chemically homogeneous case

Abundances correspond to those derived from recombination lines; if forbidden lines are
used, a t? different from 0.000 has to be adopted. In what follows we present evidence in
favor of chemical homogeneity for most PNe.

From chemical evolution models of the Galaxy it has been found that in the solar
vicinity about half of the C enrichment of the ISM is due to low and intermediate mass
stars that end their lives as white dwarfs, and the rest is due to SN of Type II (e. g. Carigi
et al. 2005). Moreover according to other models most of the C enrichment is due to low
and intermediate mass stars (e. g. Matteucci 2006). Carigi (2003) has shown that the
C/H values derived from C 11 recombination lines are in agreement with these models,
while the C/H values derived from the AA1906 and 1909 collisionally excited lines, under
the assumption of T, ([O 111]) and 2 = 0.000, imply lower C yields than those needed by
the Galactic chemical evolution models.

Esteban et al. (2005), based on recombination lines of C 11 and O 11 of Galactic H 11
regions, have determined for the ISM of the solar vicinity that 12 + log O/H = 8.77+0.05
and 12 + log C/H = 8.671+0.07. These values are in excellent agreement with the Asplund,
Grevesse, & Sauval (2005) solar values (see Table 1), considering that since the Sun was
formed the increase in the ISM abundances of these elements has been of 0.13 dex in
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Table 1. Stellar and Nebular Abundances for NGC 6543

N(X)/N(H) CELs RLs Central Star Solar Values
He/H 0.117 £ 0.004 0.114+0.01

12 + log C/H 8.2-8.5 8.90 £0.10 9.0+0.1 8.39 £ 0.05
12 + log O/H 8.86 £0.10 9.15+£0.10 9.1+0.1 8.66 £ 0.05

References: C/H Rola & Stasiriska (1994), Peimbert, et al. (1995a), Wesson & Liu (2004);
O/H(FL) and all RLs Wesson & Liu (2004), central star Georgiev et al. (2006); solar values
Asplund, Grevesse, & Sauval (2005).

O/H and 0.29 dex in C/H; the increases in C/H and O/H are those predicted by Galactic
chemical evolution models by Carigi et al. (2005).

In Table 1 we present the stellar abundances of NGC 6543 based on a non-LTE model
by Goergiev et al. (2006), and compare them with those derived from recombination
and forbidden lines of the gaseous nebula. The recombination OT* abundance is based
only on the multiplet 1 of O 11. The agreement between the nebular recombination line
abundances and the stellar abundances is excellent, while the forbidden line abundances
are about a factor of two to four smaller than the stellar ones. This result is in favor of
the idea that the recombination line abundances are the proper ones for this object.

The O/H value for the central star of NGC 6543 is higher than the solar value, see
Table 1. There are three factors that might help to explain the difference: a) the Sun
was formed 4.5 Gyr ago and, as mentioned above, the C/H and O/H values of the ISM
have increased during this period, therefore we would expect PNe with progenitor masses
greater than 2 Mg to have been formed when the ISM had abundances greater than solar;
b) a fraction of the H has been converted into He increasing the C/H and O/H ratios, this
is a small effect and is in the 0.02 to 0.06 dex range; and c) some intermediate mass star
models predict an increase in the O/H ratio; Marigo, Bressan, & Chiosi (1996) obtain
an increase of about 0.2 dex in the O/H ratio for stellar models in the 1.83 to 2.5 Mg
mass range with Z=0.008. It is clear that accurate abundances for the atmospheres of
the central stars of PNe are needed to test the models of stellar evolution.

Liu et al. (2001) presented a strong correlation between the adf(O™* /H™) and T, ([O 11])
— T.(Balmer) and mention that this correlation strongly supports the idea that temper-
ature variations are real. Similarly, from the adf(C™*/H") values by Peimbert et al.
(1995a) and others in the literature and the T, (Balmer) values by Zhang et al. (2004), a
strong correlation between the adf(C*1) and T.([O 111]) — T.(Balmer) is found, a result
that also supports the presence of temperature variations.

From the relative intensities of the lines of multiplet 1 of O 11 it is possible to obtain
N.(O 1) (Ruiz et al. 2003; Peimbert & Peimbert 2005, Bastin & Storey 2006). The
N (O 11) values can be compared with the N.(Balmer) values obtained from Zhang
et al. (2004). In Table 2 we present the densities obtained from [Cl 1], O 11, and H 1
lines for five PNe with relatively high adf(O**) values (see Liu 2006, and references
therein). The N, (O 11) values were obtained from the equations presented by Peimbert
& Peimbert (2005); these equations were derived from a calibration based on H 11 regions.
The N.(O 1) values presented in Table 2 probably are slightly higher than the real ones
because the temperatures of the H 11 regions used for the calibration are larger than
those of the PNe in Table 2; therefore the N.(O 1I)values presented in Table 2 should
probably be reduced by 0.1 to 0.2 dex due to the temperature difference. The equations
determined by Ruiz et al., based on a fit to PNe and H II regions, yield N, (O 11) values
about 0.25 dex smaller than those presented in Table 2. The N.(O 1) values are in
good agreement with the N.(Balmer) values supporting the idea that these objects are
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Table 2. Electron Densities (cm ™)

Object log N.[Cl 1] log N.(Balmer) log N.(O 1)
NGC 6153 3.6 0.2 3.8+0.2 3.9+0.3
NGC 6543 3.7£0.1 3.8£0.2 4.0£04
NGC 7009 3.5+0.2 3.8+0.1 4.2+0.3
M1-42 3.2+£0.1 3.7£0.2 3.9+£0.3
M2-36 3.7+0.1 3.8+0.1 4.0+0.3

N, [C] III], N.(O II) Peimbert & Peimbert (2005, and references therein); N. (Balmer) Zhang
et al. (2004).

chemically homogeneous. The N, ([Cl 111]) values are smaller than the N, (Balmer) values,
which is expected in the presence of a medium with density and temperature variations.

Chemically inhomogeneous nebulae can be produced by H-poor stars that eject ma-
terial into H-rich nebulae. That is the case of A30 and A78 (Jacoby 1979; Hazard et al.
1980; Jacoby & Ford 1983; Manchado, Potasch & Mampaso 1988; Wesson & Liu 2003).
This type of situation might occur in those cases where the central star is H-poor. Ac-
cording to Gorny & Tylenda (2000) about 10% of the central stars of PNe are H-poor;
while, from the results of the Sloan project, based on 2065 DA and DB white dwarfs,
Kleinman et al. (2004) find that 1888 are non-magnetic DAs and 177 are non-magnetic
DBs. From these numbers, we conclude that about 10% of Galactic PNe have a H-poor
central star, and might show He, C, and O rich inclusions in their expanding shells.
We consider it unlikely for PNe with H-rich central stars to have significant amounts of
H-poor material in their associated nebulae.

4.2. Chemically inhomogeneous case

It has been proposed that many PNe are chemically inhomogeneous (e.g. Liu 2006 and
references therein). In this proposal, the two-abundance nebular model, PNe present two
components: a) the low density component, that has most of the mass and is relatively
hot, emits practically all the intensity of the H lines and of the forbidden lines in the
visual and the UV, and part of the intensity of the He I lines, and b) the high density
component, that has only a small fraction of the total mass, is relatively cool, H-poor,
and rich in heavy elements, and emits part of the He 1 and of the recombination line
intensities of the heavy elements but practically no H and no heavy element collisionally
excited lines.

In favor of the two-abundance nebular model is that it provides an explanation for the
observed T, (Balmer) — T, (He 1) differences, but it does not provide an explanation for the
temperature variations responsible for the difference between T, ([O 111]) and T, (Balmer).
The main evidence for the two abundance nebular model has been provided by Zhang
et al. (2005) who found an average difference of T, (Balmer) — T, (He 1) = 4000 K from
the ratio of the A6678 to A7281 recombination lines of He 1 in 48 PNe.

The abundances of the low density component are the ones needed for studies of
the chemical evolution of galaxies and of low and intermediate mass stars; therefore
we will discuss its abundances. For the low density component the forbidden lines with
2 = 0.000 provide a lower limit and the recombination lines provide an upper limit to the
real abundances relative to H. The t? formalism applies to any type of gaseous nebulae,
but the equations to derive abundance ratios by Peimbert & Costero (1969), Ruiz et al.
(2003) and Peimbert et al. (2004) assume chemical homogeneity; in the two-abundance
model, the low density component is chemically homogeneous, thus its abundance can be
computed from this formalism using a t? that is representative of this volume; since we
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Table 3. Electron Temperatures (K)

Object T.([O IM])  T.(Balmer) T.(He 1)* T.(He 1)° T, (He 1)°

NGC 6572 10500 +300 10300 = 1000 9800 % 600 7100 £500 8690 £ 1200
NGC 6803 10000 £ 300 8500 £ 400 8500 £ 500 6900 £400 5000 £ 1100
NGC 7009 10000 =+ 300 7200 £ 400 8000 £ 400 6800 £ 400 5040 £ 800

NGC 7027 130004300 12000 = 400 10000 £ 600 8200 £ 600 10360 + 1100
NGC 7662 130004300 12200 = 600 9500 £ 600 9200 &£ 700 7690 £ 1650
Hu 1-2 18900 £ 300 20000 = 1200 12900 % 6004 11500 £ 1500

T.([O m)), T.(He 1)»*¢ Peimbert et al.(1995b); T.(Balmer) Zhang et al. (2004); T.(He 1)
Zhang et al.(2005); a) 3889,4471,7065; b) 3889,4471,10830; c) 6678,7281; d) 4471,5876,6678.

don’t expect the high density component to have neither relevant hydrogen emission (it
contains very little hydrogen) nor relevant [O 111] AA4363, 5007 emission (it is too cold),
the ¢ that can be determined from T, (Balmer) and T, ([O 111]) will only be representative
of this volume and the abundances determined from Hg3, [O 111] A5007, and this ¢? will
have no contamination from the emission of the very small high density region. Therefore
the proper abundances for the heavy elements are those derived from the forbidden
lines adopting the t? value derived from the combination of T, (Balmer) and T, ([O 1)),
for those PNe with most of their oxygen in the OTT stage. If these abundances are
in agreement with those derived from recombination lines it means that the nebula is
chemically homogeneous.

In Table 3 we present temperature values for six very bright PNe derived from four
different sets of He I recombination lines and compare the results derived by Zhang et al.
(2005) with those derived by Peimbert, Luridiana, & Torres-Peimbert (1995b). The best
comparison between T, (Balmer) and T, (He 1) is provided by objects where most of the He
is in the form of He™, because then the He 1 lines and the H I lines originate in the same
volume. For NGC 6572, NGC 6803, and NGC 7009 most of the He is in the He™ stage,
and the T, (Balmer) and T, (He 1) values are practically the same when T, (He 1) is derived
from AA3889, 4471, and 7065, contrary to the results derived from A6678 and A\7281, and
in favor of a homogeneous chemical composition for these three objects. Alternatively
the results derived from AA3889, 4471, and 10830 are intermediate between those derived
from AA3889, 4471 and 7065, and those derived from A6678 and A7281 providing support
for the two-abundance nebular model. For the other three PNe the three sets of He I lines
clearly indicate that T, (He 1) is smaller than T, (Balmer), but in these three PNe a large
fraction of He is in the He™™ region where a higher temperature is expected and where
a fraction of the Balmer line emission originates, particularly in the case of Hu 1-2. The
differences in the T, (He 1) values derived from different sets of He I recombination lines
need to be sorted out.

5. Conclusions

We consider that our knowledge on the density and temperature distributions and on
the chemical composition of PNe will increase considerably from the study of the four
following problems.

The N.(O 11) values derived from the O 11 lines of multiplet 1, like those presented
in Table 3, need to be determined again based on the atomic physics computations by
Bastin & Storey (2006). Objects with small He® and He™ " fractions and with most of
their O in the O™ ionization stage will be particularly useful; those objects of this group
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with N, (O 11) ~ N.(Balmer) will be chemically homogeneous, while those with N, (O 11)
> N.(Balmer) will be chemically inhomogeneous.

The idea that there are high density He' regions embedded in low density H rich
material might be tested by deriving T, (He 1), N.(He 1), and 7(3889) based on accurate
measurements of at least 10 different He I lines in relatively low density PNe without
substantial He® and He™™ regions. Those objects with N, (He 1) ~ N,(Balmer) will be
chemically homogeneous, while those with N.(He 1) > N.(Balmer) will be chemically
inhomogeneous.

There are at least seven possible mechanisms as sources of temperature variations.
From the theoretical side, it is important to model the signature of each process on
the temperature and density distributions. From the observational side, the combination
of 3D kinematical models with high spectral resolution data, like those presented by
Barlow et al. (2006), might permit to derive temperature and density distributions and
consequently to single out the main mechanism responsible for the temperature variations
in a given object.

Finally, accurate H, He, C, and O abundances of H-rich central stars, like those ob-
tained by Georgiev et al. (2006) for NGC 6543, are needed to compare them with those
nebular abundances derived from permitted and forbidden lines.
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