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1. Introduction

In this paper we denote by H(P ) the naive height of an integer polynomial P (X), that
is, the maximum of the absolute values of its coefficients. In transcendental number
theory, lower estimates for the distance between two algebraic numbers are often needed.
A classical result is the so-called Liouville inequality (see, for example, [3], a slightly
weaker estimate being proved in [5]).

Theorem A. Let P (X) and Q(X) be non-constant integer polynomials of degree n

and m, respectively. Denote by α a zero of P (X) and by β a zero of Q(X). Assuming
that P (β) �= 0, we have

|α − β| � 21−n(n + 1)(1/2)−m(m + 1)−n/2H(P )−mH(Q)−n. (1.1)

Sharp lower bounds for the distance between two roots of a given integer polynomial
turn out to be very useful. The first inequality of Theorem B is due to Mahler [7], while
the second one is folklore (see, for example, [9]).

Theorem B. Let P (X) be a separable polynomial with integer coefficients of degree
n � 2. For any two distinct zeros α and β of P (X) we have

|α − β| �
√

3(n + 1)−(2n+1)/2H(P )−n+1. (1.2)

Furthermore, if α1, . . . , αk are distinct zeros of P (X), then there exists a positive, effective
constant c1(n) such that

∏

1�i<j�k

|αi − αj | � c1(n)H(P )−n+1. (1.3)
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It is natural to ask whether the lower bounds in Theorems A and B are best possible.
Up to now, it is known that the factor H(P )−n+1 in (1.2) cannot be replaced by a term
larger than H(P )−n/4. To show this, it is sufficient to observe that, for any integers a and
n with n � 3 and a � 10, the polynomial Xn − 2(aX − 1)2 has two roots approximately
a−n/2 apart, that is, approximately H(P )−n/4 apart (see, for example, [8]).

In the present paper, we prove that Theorem A is optimal and that (1.3) is nearly best
possible. Furthermore, we show that the term H(P )−n+1 in (1.2) cannot be replaced by
a factor larger than H(P )−n/2.

2. Results

The purpose of the present note is to establish the following statement.

Theorem. Inequality (1.1) is best possible in terms of the heights of the polynomials
P (X) and Q(X). In inequality (1.2), the exponent of H(P ) cannot be replaced by a real
number strictly greater than −n/2. In inequality (1.3), the exponent of H(P ) cannot be
replaced by a real number strictly greater than −n(k − 1)/k.

To prove the last two assertions of our Theorem, we consider the family of polynomials

Pa,n,k(X) := (Xn − aX + 1)k − 2Xnk−k(aX − 1)k,

where a, n and k are positive integers with a � 10, n � 3 and k � 2. Using methods
of Laurent and Poulakis [6] or Theorem 4.4 of Müller [10], it is possible to prove that
these polynomials are irreducible if a is large in terms of n and k. Indeed, performing
the change of variables α = 1/a, Y = aX in the absolutely irreducible curve

Fn,k(a, X) = Xn − aX + 1 − k
√

2Xn−1(aX − 1) = 0,

defined over the field Q( k
√

2), we get the curve with equation

Gn,k(α, Y ) = αnY n − Y + 1 − k
√

2αn−1Y n−1(Y − 1) = 0.

Since Gn,k(0, 1) = 0 and (Gn,k)′
Y (0, 1) �= 0, we apply the analogue over Q( k

√
2) of

Theorem 4 of [6] (proved only for the number field Q) to deduce that the polynomial
Gn,k(α, Y ) is irreducible in Q( k

√
2)[Y ] for any sufficiently large value of a. This implies

that the polynomial Pa,n,k(X) is irreducible over Q[X] if a is large enough in terms of n

and k.
The family of polynomials Pa,n,k(X) can be used in the context of [2], to which we

refer for the following notation (the reader can consult Chapter III of [3] as well). For
any positive integer n, Mahler and, later, Koksma introduced the functions wn and w∗

n,
defined on the set of real numbers, in order to measure the quality of approximation by
algebraic numbers of degree at most n. Although they are very close, these functions do
not coincide for any complex number, as first proved by Baker [1]. It is quite easy to
establish that the inequalities (see, for example, [12])

w∗
n(ξ) � wn(ξ) � w∗

n(ξ) + n − 1
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hold for any transcendental real number ξ. Baker [1] showed that the range of values
of the function wn − w∗

n includes the interval [0, (n − 1)/n]. This has been substantially
improved by Bugeaud [2]: the function wn − w∗

n can take any value in [0, n/4]. Using
the family of polynomials Pa,n,2(X) in the construction of [2] instead of the polynomials
Xn − 2(aX − 1)2 quoted in § 1, it is then quite easy to prove that, for n even, the range
of values of the function wn − w∗

n includes the interval [0, n/2).
According to computations of Collins [4], the ‘true’ exponent of H(P ) in inequality (1.2)

should be −n/2.
With the same ideas used to construct the polynomials Pa,n,k(X), we can also provide

examples of integer polynomials having two very close p-adic roots.

3. Proofs

The constants c2(n), . . . , c7(n) occurring below are positive, effective and depend only
on n.

Let n � 2 and a � 10 be integers with a � n and set

Q1(X) = aX −1, Q2(X) = Xn −aX +1 and Q3(X) = (a+1)Xn −Xn−1 −aX +1.

We notice that
|Res(Q1, Q2)| = |Res(Q2, Q3)| = 1,

where ‘Res’ denotes the resultant. Furthermore, Q2(X) and Q3(X) have roots α and β,
respectively, with

α = a−1 + a−n−1 + O(a−2n), β = a−1 + a−n−1 + O(a−2n).

Hence, after some easy calculation, we get |α − β| � 4a−2n, while Theorem A gives the
lower bound |α − β| � c2(n)a−2n. Consequently, Theorem A is best possible in terms of
the heights of the polynomials involved.

Another example is provided by |1/a−α|, which is less than 2a−n−1 and, by Theorem A,
greater than c3(n)a−n−1.

We now turn to Theorem B. Let k � 2 be an integer and set

Pa,n,k(X) := (Xn − aX + 1)k − 2Xnk−k(aX − 1)k. (3.1)

The coefficient −2 occurs in (3.1) to prevent the polynomial from being obviously irre-
ducible. If we replace it with the constant −1, we obtain a reducible polynomial: actually,
Pa,n,2(X) (with −2 replaced by −1) is then divisible by the polynomial Q3(X).

We observe that the degree of Pa,n,k(X) is kn and that its height is equal to 2ak − 1.
Furthermore, using Rouché’s theorem, it is easy to check that Pa,n,k(X) has k roots
α1, . . . , αk lying in the disc with centre a−1 + a−n−1 and of radius 2a−2n.

Taking k = 2, we get

|α1 − α2| � 4a−2n � c4(n)H(Pa,n,2)−n/2,

which should be compared with the lower bound (1.2).
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Taking now k arbitrary, we get
∏

1�i<j�k

|αi − αj | � c5(n)(a−2n)k(k−1)/2 � c6(n)H(Pa,n,k)−n(k−1). (3.2)

Since the degree of Pa,n,k(X) is nk, inequality (1.3) gives that
∏

1�i<j�k

|αi − αj | � c7(n)H(Pa,n,k)−nk+1,

which, in view of (3.2), is close to being best possible in terms of the height of the
polynomial.

The same example allows us to prove that Proposition 10.1 of Roy and Waldschmidt
[11] is nearly best possible.
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