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ATA N. AL-HUSSAINI anp ROBERT J. ELLIOTT

InTRODUCTION 1. If L? denotes the local time of a continuous semi-
martingale X at a Bouleau and Yor [1] have obtained a form of Ito’s
differentiation formula which states that for absolutely continuous func-
tions F(x)

(1 F&)=F& + | Txax, - L7 Ta,r:.

In [5] Yor uses this expression to discuss the approximations obtained by
Yamada [4] to ‘zero energy’ processes. This article extends these ideas
to suitable functions of the form F(¢, x). In fact, for a continuous semi-
martingale X,, £ > 0, with local time L? at a, (which may be taken to be
jointly right continuous in a and ¢, left limited in a and continuous in ),
and a function F which is C! in ¢, and for which F(¢, x) and (@F/ot)(t, x)
are absolutely continuous in x, with bounded derivatives, the following
differentiation formula holds:

F@t, X)) = F(, X0)+J aF(s X)ds+j OF o x)dxX,

(2)
1 “ a a
ah A BRACLIE S NI e

An advantage of this expression is that only differentiability to the first
order in x is required.

AssumpTIiONS 2. In the sequel X will denote a real, continuous semi-
martingale {X,,¢ > 0} defined on a filtered probability space (2, F, F, P)
which satisfies the usual conditions. Write 7T, = inf(¢: |X,|>n). By
localizing, that is by considering X™», we can suppose that X is bounded.
We shall take the version of the local time L7 with the above continuity
properties in a and ¢
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Remarks 3. A key step in formulae (1) and (2) is the definition of
the integrals with respect to d,L? for fixed ¢ > 0. Recall Tanaka’s formula
for the local time at a:

(3) X, — a) =X, — a) — ItIXsSGdXs n %L‘;.
0
By initially considering step functions of the form

f(u) = iZZ;fiI]ai,aiH](u) s

and linear combinations of expression (3), Bouleau and Yor [1] show that
if F(x) = j f(wdu then
0

(4) FX) = FX) + [ fX)aX, — [ fl@dLt,
where the last integral is the sum
i;fi(Lgiﬂ _ Lgi) .

It is shown this map can be extended to a vector measure on the
Borel field of R with values in L*(F, P), so that if f: R—R is a locally

bounded Borel measurable function and F(x) = r f(wdu then F(X) is
0

given by (4). Indeed, if F(x) is any absolutely continuous function with
a locally bounded derivative then F(X,) is given by (4), because, writing

G(x) = F(x) — F(0) = j (0F/ox)(u)du, the result is valid for G(X)).
0
LemMA 4. Suppose f: R—R is C'. Then for any t:
[ fa@d.r: = — [ xpacx, x»,
—w 0 0x

— jfm_gl(a)Lgda.

Proof. Write F(x) = r f(uw)du. Then applying the Ito differentiation
0
formula to F(X):

(5) F(X) = F(X) + | fX)dX, + % [ g;f (X)d (X, XY, .

https://doi.org/10.1017/50027763000000702 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000702

ITO’S DIFFERENTIATION FORMULA 11

Equating the final terms of (4) and (5) the result follows. However, we
also have from [2], p. 368, that

Jty@f, (X)d(X, X>, = r I (WLida.
0 0x ~ 0X
Remark 5. For absolutely continuous f

r f(@)d,Ls = — f " (Leda,

and treating the ¢ in the function as a constant, we also have for func-
tions f(¢, x) which are absolutely continuous in x,

I:f(t, ad, Lt — — J ) ,af (t, )Lida .

The generalized differentiation formula is first established for a suita-
bly smooth function f(z, x).

THEOREM 6. Suppose, for (¢, x) e [0, o)X R, F(t, x) e R is continuously
differentiable in t and twice continuously differentiable in x. Then

F(t, X,) = F(0, X,) + (s X)ds+j aF(s X)dX,
©) j Fo odre+ 1 j J OF (s a)d,Leds.
2 o 0x 0J-» Jtdx
Proof. By Ito’s differentiation formula:
F(t, X) = F(0, X)) + (s X)ds+j aF(s X)dX,
(7)

1 (*o*F
+ ‘é‘ 0"@’(81 Xx)d<X7 X>s .

Recall we are taking X = X7 so (0*°F/0x")(s, X,) is continuous and bounded
for s <t. Again from [2], p. 368,

ffffff (s X)d(X, X, _J f OF (s a)d,Leda.
0
Integrating the inner integral by parts in s this is
_ r (Lgi’ili(t a) — j L9 (s a)ds) da.
- ox*

Using Fubini’s Theorem to interchange the order of integration, (L* has
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compact support), and then integrating by parts in a this equals:

- aF ‘L 3F
" F ¢ aya. L fj OF (s, a)d, Lo ds .
J_m oy B OLLEE ] atar & Vdulids

Substituting in (7) the result follows.

Remarks 7. When X is Brownian motion Perkins, [3], has shown
that L¢ is a semimartingale in a for each i€ [0, ). Yor, [5], has pointed
out, using the monotone class theorem, that the integral with respect to
d,L? then equals the stochastic integral in a. The advantage of the dif-
ferentiation formula in the form given by Theorem 6 is that, as stated, it
requires only differentiability of order one in x. Following the usual
mollifier techniques we show that the result holds under a weaker differ-
entiability hypothesis.

COROLLARY 8. Suppose that F(t, x) is continuously differentiable in t
and absolutely continuous in x with a locally bounded derivative 3F[ox.
Furthermore, suppose that F(t,0) = 0 so that for all t >0

Ft,x) = [ 25t y)dy .

Similarly, suppose that for all t > 0

oF > gF
Iy = | 2L (¢, y)d
o &9 =] ar GBIV

where 3*F[otox is locally bounded. Then F(t, x,) is given by the differentia-
tion formula (6) of Theorem 6.

Proof. Write f(t,y) = (6F/ox)(t,y). Suppose ge Cy(R) is such that
j g(x)dx = 1, and for each integer n > 0 put

Ft,x)=n j F(t, x — y)g(ny)dy

=n j F(t,y)g(n(x — y)dy .

Then

oF,

X

and
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2F. 2y =n| fgtia, x — 9)gny)dy .

As n— oo, lim F,(¢, x) = F(t, x),

. oF, oF
1 2t x) = ——(t %),
im oy 69 =200

BF n

¢, x) = f@t, x) a.e.,

lim

and

lim oF, (¢ x) = ??f ¢, x) a.e..

Applying Theorem 6 to F,(t, x)

F.(t, X)) = F, 0, X)+Jif( X,)ds +j oF, " (6, X)aX,

1 oF, e, 1 j‘(j‘” o°F, a)
— t, a)d,L? il —=* (s,a)d,L*)d
2 J-= ox (¢ a)d.Li + 2 Jo\J-= dtdx (5, 0) s

Letting n — oo we have

F(t, X) = F(0, X)) +j am(s X)ds + J £(s, X.).dX,

- f b, a)d, Lt + f (fw,a,,(s a)d, L“)ds

Remarks 9. This corollary holds without the hypothesis that F(¢, 0)
= 0; suppose F(t, x) satisfies the hypotheses of the corollary except pos-
sibly the condition F(¢,0) = 0. Then G(t, x) = F(t, x) — F(t, 0) satisfies all
the hypotheses, and so the result holds for G. However,

oG oF oF
—(,x) = —(, x) — —(t,0),
at( ) at( ) at( )
and the integral in s then contributes an additional quantity
1
[ = 26,00 = FO,0 - Fit,0,
0 ot
so cancelling the extra terms.

The next result extends some formulae of Yamada [4], and Proposition
3.1 of Yor [5]. First we give a definition.

https://doi.org/10.1017/50027763000000702 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000702

14 ATA N. AL-HUSSAINI AND ROBERT J. ELLIOTT

Suppose B,, t > 0 is a standard Brownian motion and F(¢, x) is such
that it is C' in ¢t and 0F/ox exists and belongs to L}.([0, ) X R). Then
the second derivative ¢°F/dx* exists in the sense of distribution theory.

DerFiNiTION 10. The process

¢ *F
0 0x*

AF = (s, Byds

is defined to be

2@@@-F@®-ﬂ%@3ﬁ&~ﬂ%@3ﬁ9.

TueEorEM 11. Suppose for (t, x)e [0, 0) X R F(t,x) is continously
differentiable in t and twice continuously differentiable in x outside the
origin.

Write (0F/[ox)(t, x) = f(t, x) and, for some T > 0, suppose that

f*(x) = sup|f(t, x)| € Lio(R)

and

of* _ of 1
@ =sup 0,9 e L)

Then for all pell, o)

lim E [sup

e—0 t<T

Al — {L%(s, B3, 5.ds

+ [ 0dL: — [ 6, —9d.Li7)

q=o.

Proof. Without loss of generality suppose that F(¢,0) = 0 so

F(t, %) = | ft, y)dy

and
oF J.m of
t, = —(t, dy .
ot x) o 3t (2, y)dy
Write fs(t) y) = f(t, y)IIIIIZE and

Fit,%) = [ £t dy.
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Then

oF z 9
= (t,x) = | L=(t, y)d
at(’x) oat(y)y

and applying Corollary 8 to F. with X a standard Brownian motion B

Fi(t, B) = | f.s, B)AB, + [ "I (s, B)ds
—_— a af a
J ft dLt + j j_w e (s, a)d L ds
Writing
ar == reodl+ | [ aaﬁ (s, a)d, L ds
we have

st ([ o) [ o

and by parts (in a) this is
— L, ©) — Licf(t, —e) + ( j j TF (,: a)L“da)
— j (L;ﬁf (s,¢) — L= gg (s, —e))ds

B J (f J -m‘ata L6 a)Lada>ds

Applying Fubini’s Theorem to the final term and integrating by parts in s
( f gt I’)( N a)L“ds) da
: - otdx
= ([ + D) (B fs a0 [[55 @ adLs)da.

Therefore,
AFe = —j £t a)d, Lo + j (r ofe (s a)d, L“)
= Liftt,) — Li*ft, —9) — | Lt-2 ﬁf (5, 9)ds
+jL—s f (s, —e)ds + f P (6, B),p,..ds

= (£, 9dL; ~ [ s, —aaLi + [ 7F

N (Bs|26ds‘
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For the function F(¢, x) the process Af is defined by
Fo_ ¢ ¢t oF
At =2 F(t) Bt) - f(s, Bs)st - “ét—(s) Bs)ds .
0 0

Therefore,
B¢ t
ar — ar = 2([7 e My = [ 6, B)L1s1.dB
t (*Bs
- I I a—f(sr y)Ilylézdyds) )
oJo ot
and for pe[l, o), T > 0,
Elsup|AF — AFp] < ConstE[sup UB £, y)I,y,Ssdy\”
t<T t<T 0
+ sup [ (s, B)Ln,c.
t<T

[0 6 ty)asf]

Denote the three terms in the expectation by I, I® and I®, respectively.
Then

+ sup

t<T

o) < Elsup ([ ire iay)| < (] reay),

and this converges to 0 as ¢ — 0.

EU®] < C,E||[ f(s, B,

D T p/2
. ] < Const E(j £, Bx)I‘legds)
0o T »/2 '
= Const E (j_m (L f4s, @)l Iulgsdng> da)
< Const E( J f*(a)zL‘;da)p/Z < Const (E(L;‘)M) ( j E_ef*(a)zda>p/2 ,

which again converges to 0 as ¢ — 0.

LI

which converges to 0 as ¢ — 0, so the result is proved.

Finally,

E[I®] < E[sup

t<T

I s, iayase| < ([ 2Ly’

ExampLEs 12. Suppose B,, t > 0, is a standard Brownian motion.
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1) Taking F(t, B,) = exp (2B, — 1%t[2), for 2¢ R, from the identity

obtained in Theorem 6
jt X exp (AB,; — ¥s/2)ds
0

= — e [ evaLy — [ e ([T evd,Lids).
o0 0 —

(xl — 0
2) With F(, x) ={¢< Nxlogx —x)  for x>
0 for x <0,

where ¢ is C' in ¢

TF t, x) = ¢(t)/x for x >0
9°x

and Theorem 11 implies that in L?, p e [1, o0),

I = Principal value of jt B8) g
o (By).

— lim {L .?g? I,..ds + log < j:¢(s)dsL§} .

g0

3 With F(t, ) :{¢(t)|xi“2/(l + DA+ for x>0
0 for x <0,

where —3/2 <2< — 1 and ¢ is C' in ¢, we have from Theorem 11 that
in L*, pell, o),
A% = Finite partof | 4(s)]B,ds
0
—1im {[ T & j dLi— = j dL."E}.
1:151;)1 {j0¢(8)|le 1Bs\,zds+ (2+ 1) 0¢(S) st4s (2 + 1) 0¢(5’) sts
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