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AN EXTENSION OF ITO'S DIFFERENTIATION FORMULA

ATA N. AL-HUSSAINI AND ROBERT J. ELLIOTT

INTRODUCTION 1. If Lf denotes the local time of a continuous semi-

martingale X at a Bouleau and Yor [1] have obtained a form of Ito's

differentiation formula which states that for absolutely continuous func-

tions F(x)

(1) F(Xt) = F(X0) + P ψ{Xs)dXs - 1 Γ ψ-(a)daLΐ .
Jo dx 2 J-~ dx

In [5] Yor uses this expression to discuss the approximations obtained by

Yamada [4] to 'zero energy' processes. This article extends these ideas

to suitable functions of the form F(t, x). In fact, for a continuous semi-

martingale Xt, t > 0, with local time La

t at α, (which may be taken to be

jointly right continuous in a and t, left limited in a and continuous in t),

and a function F which is C1 in t, and for which F(t, x) and (dFldt)(t, x)

are absolutely continuous in x, with bounded derivatives, the following

differentiation formula holds:

F(t, Xt) = F(0, Xo) + "Ms, Xs)ds + -^-(s, Xs)dXa

Jo dt Jo dx
( 2 )

— — — ( Λ o)daL
a

t + —
2 J -°° 9x 2 Jo J -c

An advantage of this expression is that only differentiability to the first

order in x is required.

ASSUMPTIONS 2. In the sequel X will denote a real, continuous semi-

martingale {Xt, t > 0} defined on a filtered probability space (Ω, F, E, P)

which satisfies the usual conditions. Write Tn = inΐ(t: \Xt\ > ή). By

localizing, that is by considering XTn, we can suppose that X is bounded.

We shall take the version of the local time L? with the above continuity

properties in a and t.
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Remarks 3. A key step in formulae (1) and (2) is the definition of
the integrals with respect to dJJl for fixed t > 0. Recall Tanaka's formula
for the local time at a:

( 3 ) (Xt - a)- = (Xo - a)- - ΓIXsiadX s + 1 L ? .
JO Z

By initially considering step functions of the form

and linear combinations of expression (3), Bouleau and Yor [1] show that

if F(x) = Γ f(u)du then
Jo

(4) F(Xt) = F(X0) + \lf(Xs)dXs - I f " f(ά)daLΐ,
JO £ J -oo

where the last integral is the sum

It is shown this map can be extended to a vector measure on the
Borel field of R with values in U(F, P), so that if /: R->R is a locally

Cx

bounded Borel measurable function and F(x) = f{u)du then jF(Xt) is
Jo

given by (4). Indeed, if F(x) is any absolutely continuous function with
a locally bounded derivative then F(Xt) is given by (4), because, writing
G(x) - F(x) - F(0) = ['(dFldx)(u)du, the result is valid for G(Xt).

Jo

LEMMA 4. Suppose f: R-^>R is C\ Then for any t:

Γ f{d)dJA = - Γ-|£(X,)ci<X,X>,
J -oo Jo OX

= - Γ -^-(a)Lfda.

Proo/. Write F(x) = f(u)du. Then appl^ng the Ito differentiation
Jo

formula to F(Xt):
t) = F(X0) + [f(Xs)dXs + 1 [lt(Xs)d(X, X}s.

Jo 2 Jo ax
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Equating the final terms of (4) and (5) the result follows. However, we
also have from [2], p. 368, that

Γ-^-(X,)d<X,X>, = Γ dί-(a)La

tda.
Jo dx J -oo dx

Remark 5. For absolutely continuous /

Γ f(a)d*Lΐ= - Γ lL(a)Lΐda,
J - ~ J-oo dX

and treating the t in the function as a constant, we also have for func-
tions f(t, x) which are absolutely continuous in x,

Γ f(t, a)dJJt = - Γ
J-eo J -

The generalized differentiation formula is first established for a suita-
bly smooth function f(t, x).

THEOREM 6. Suppose, for (t, x) e [0, oo)χ.R, F(t, x)eR is continuously
differentiate in t and twice continuously dίfferentiable in x. Then

F(t, Xt) = F(0, Zo) + f-^(s , Xs)ds + Γ-|^(β f X,)dX,
Jo at Jo dx

- 1 Γ Άt, a)dJJt + I Γ Γ - ^ ( β , a)daUds .
2 J-oo a x 2 J o J - ~ ^ 3 χ

Proof. Ety Ito's differentiation formula:

F(/, Xt) - F(0, Xo) + f ^ ( s , X,)ώ + f 4^-(s, Xs)dXs

Jo dt Jo dx

+ ^\ -^(s,χs)d<χ,χys.
2 Jo dx

Recall we are taking X — XTn so (d2F/dx2)(s, Xs) is continuous and bounded

for $<t Again from [2], p. 368,

Γ-ξ^(s, Xs)d(X, X)s = Γ Γ-^(β, α)d,L?dα .
Jo 5 χ 2 J-c»Jo ^χ 2

Integrating the inner integral by parts in s this is

J-Λ dx2 V ' ; Jo d£dχ2 v ; /

Using Fubini's Theorem to interchange the order of integration, (La has
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compact support), and then integrating by parts in a this equals:

- Γ -ψ-(t, a)dJJi + Γ Γ ~ξξ-{s, a)daL«ds.
J - - dx Jo J-- dtdx

Substituting in (7) the result follows.

Remarks 7. When X is Brownian motion Perkins, [3], has shown

that La

t is a semimartingale in a for each t e [0, oo). Yor, [5], has pointed

out, using the monotone class theorem, that the integral with respect to

daL
a

t then equals the stochastic integral in a. The advantage of the dif-

ferentiation formula in the form given by Theorem 6 is that, as stated, it

requires only differentiability of order one in x. Following the usual

mollifier techniques we show that the result holds under a weaker differ-

entiability hypothesis.

COROLLARY 8. Suppose that F(t, x) is continuously differentiable in t

and absolutely continuous in x with a locally bounded derivative dF/dx.

Furthermore, suppose that F(t, 0) = 0 so that for all t > 0

F(t, x) = f d-f(t,y)dy.
0 OX

Similarly, suppose that for all t > 0

where d2F/dtdx is locally bounded. Then F{t, xt) is given by the differentia-

tion formula (6) of Theorem 6.

Proof. Write f(t, y) = (dFldx)(t9 y). Suppose g e C0°°(fi) is such that

g(x)dx = 1, and for each integer n > 0 put

Fn(t, x) = n J F(t, x - y)g(ny)dy

= n^F(t,y)g(n(x-y))dy.

Then

^ ( t , x) = n [f(t, x - y)g(ny)dy ,

dx J

and
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|^-(f, x) = n f i f (t, x - y)g(ny)dy .
dtdx J dt

As n -• oo, limFn(ί, x) = F(ί, x),

dt w "

x) a.e.,

(t, x) a.e.

and

Applying Theorem 6 to Fn(t, x)

Fn(t, Xt) = F,(0, Xo) + Γ-^-(β, Xs)ds + \^-(s, Xs)dXs
Jo dt Jo dx

I f ψ(t,a)daU + \U2 J-~ dx 2 Jo

Letting n -> oo we have

ί, X,) = F(0, Xo) + Γ Άs, Xs)ds + Γ/(s,
Jo dt Jo

Remarks 9. This corollary holds without the hypothesis that F(t, 0)

= 0; suppose F(t, x) satisfies the hypotheses of the corollary except pos-

sibly the condition F(t, 0) = 0. Then G(t, x) = F(t, x) - F(t, 0) satisfies all

the hypotheses, and so the result holds for G. However,

f M f M f ( ί ,0),
dt dt dt

and the integral in s then contributes an additional quantity

so cancelling the extra terms.

The next result extends some formulae of Yamada [4], and Proposition

3.1 of Yor [5]. First we give a definition.
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Suppose Bt, t > 0 is a standard Brownian motion and F(t, x) is such

that it is C1 in t and dFjdx exists and belongs to L2

loc([0, oo) x R). Then

the second derivative 32F/dx2 exists in the sense of distribution theory.

DEFINITION 10. The process

Af = (s,B3)ds

is defined to be

2 (*"(«, Bt) - F(0, 0) - Γ | ^ ( s , £s)dBs - Γ-^(8, Bs)ds).
\ Jo dx Jo dt J

THEOREM 11. Suppose for (t, x) e [0, oo) x R F(t, x) is continously

differentiable in t and twice continuously differentiable in x outside the

origin.

Write (dF/dx)(t, x) = fit, x) and, for some T > 0, suppose that

= sup I/(*,*)
t<τ

and

Then for all p e [1,

limtfΓsup
6-0 L t^T

%τix) = sup
at t<τ

= 0 .

Proof. Without loss of generality suppose that F(t, 0) = 0 so

F(t,x)= \xf(t,y)dy
Jo

and

Write f.(t,y) = f(t,y)IitU. and

F.(t,x)= \XW,y)dy.
Jo
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Then

dt Jo at

and applying Corollary 8 to Fe with X a standard Brownian motion B

F.(t, Bt) = ['/.(«, Bs)dBs + f'-^i. (s, Bs)ds

- 4- Γ /•('» °)^ L " + 4- Γ Γ -If(s- c)rf^?
Z J - °° £ J 0 J — °° vt

Writing

Af£ = - Γ /.(ί, α)dαL? + Γ Γ M ( s , a)doL?ds

we have

Afi = ~ ( Γ + ί - J ( t ' a ) d a L f ) + I ( Γ + ί - Λ ί ( s ' a)d-L

and by parts (in a) this is

= L\f(t, e) - L^fit, -ε) + (J~ + \~^~~(t, σ)Lfdα)

Jo\J5 J-co

Applying Fubini's Theorem to the final term and integrating by parts in s

Therefore,

Af = - Γ f.{t,a)dJJt + Γ(Γ ^Hs,a)
J-™ JQ\J-™ dt

= Lί/(ί, ε) - Lr7(<, -s) -

= Γ/(β, e)dA - Γ/(β, -e)d,L,- + f
Jo Jo Jo
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For the function F(t, x) the process Af is defined by

Af = 2(F(t, Bt) - Γ/(s, Bs)dBs - P-^(s, Bs)ds).
\ Jo Jo dt J

Therefore,

Af - Af = 2(Γf(t,y)I]vl<.dy - [>(*, Bs)IlBs]<edBs

\Jo Jo

at

and for p e [1, oo), Γ > 0,

E[sup|Af - Af l'] < ConstE
τt<τ

Γf(t,y)I{yl<edy
Jo

fV(β, Bs)IiB^,
Jo

+ sup
t<τ

+ sup
t<τ

Denote the three terms in the expectation by 7(1), /(2) and 7(3), respectively.

Then

< (j* /*(y)dyj ,

and this converges to 0 as ε —• 0.

] < Cp

= Const ίr

< Const E(JJ%S, B.)I |B,ls.

/ Ce \P/2 / \ / Γ̂  \ P/2

Const E(\ f*(a)2LidaJ < Const(E(L*yή (\ f*(afda\ ,

which again converges to 0 as ε —> 0.

Finally,

Γ Γ -|f (s,y)]dyds\A < T*([
J o J - ε dt J \J-ε fit

which converges to 0 as ε -> 0, so the result is proved.

EXAMPLES 12. Suppose Bt, t > 0, is a standard Brownian motion.
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1) Taking F(t, Bt) = exp (λBt - λ2tl2\ for λ e R, from the identity

obtained in Theorem 6

Γ λ exp {λBs
Jo

2) with * • < * * ) H r w ( * l o g * ~ x ) f o r x > °
I 0 for x < 0,

where φ is C1 in £

for x> 0

and Theorem 11 implies that in Lp, p e [1, oo),

Af — Principal value of -rLJ_cίs

= lim < J?£LlBa^eds + logs ^(s)dsL'i .
ε-0 UO Bs JO J

(φ(t)\x\λ+2l(λ + l)(λ + 2) for x > 0

where — 3/2 < λ < — 1 and ^ is C1 in t, we have from Theorem 11 that

in Lp, p e [1, oo),

Af = Finite part of ί φ(s)\Bs\*ds
Jo

= l i m < I cS(s)|.BsPJΓ|JBs|>£<ί5 + I φ(s)dsL
ε

s — -. I φ{s)dsLs

 ε> .
ε-»0 Uθ ~ (^ + 1) J 0 (/ί + 1) J 0 J
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