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Abstract

We classify the nilpotent orbits in a simple Lie algebra for which the restriction of
the adjoint quotient map to a Slodowy slice is the universal Poisson deformation of its
central fibre. This generalises work of Brieskorn and Slodowy on subregular orbits. In
particular, we find in this way new singular symplectic hypersurfaces of dimension four
and six.

1. Introduction

The purpose of this paper is twofold: firstly, we shall explain how to generalise the classical
theorem of Grothendieck, Brieskorn and Slodowy on slices to the subregular nilpotent orbit in a
simple Lie algebra to arbitrary nilpotent orbits. The main idea here is to put the problem in
the framework of Poisson deformations. Secondly, we shall describe new examples of singular
symplectic hypersurfaces. These can be seen as higher dimensional analogues of the Kleinian or
DuVal ADE-surface singularities. They arise as slices to very special nilpotent orbits.

(1) Let g be a simple complex Lie algebra and consider the characteristic or quotient map
ϕ : g→ g//G for the action of the adjoint group G of g. The nullfibre N = ϕ−1(0) consists of
the nilpotent elements in g and is called the nilpotent cone. It is an irreducible variety and
decomposes into finitely many orbits. The dense orbit is called the regular orbit and denoted by
Oreg, its complement N\Oreg is again irreducible, its dense orbit is called the subregular orbit
and denoted by Osub.

A slice to the adjoint orbit of a nilpotent element x ∈N can be constructed as follows. The
Jacobson–Morozov theorem allows one to find elements h, y ∈ g such that x, h and y form an
sl2-triplet, i.e. satisfy the standard commutator relations [h, x] = 2x, [h, y] =−2y and [x, y] = h.
The affine space

S = x+ Ker(ad y) (1.1)

is a special transversal slice [Slo80a, 7.4] to the orbit through x. We follow the tradition to refer
to this choice as a Slodowy slice.

The following theorem was conjectured by Grothendieck and proved by Brieskorn in his
address [Bri71] to the International Congress in Nice 1970. In its original form it is stated
for groups. The following version for Lie algebras is taken from Slodowy’s notes [Slo80b, 1.5,
Theorem 1].

Received 9 December 2010, accepted in final form 21 March 2011, published online 9 November 2011.
2010 Mathematics Subject Classification 14B07 (primary), 17B45, 17B63 (secondary).
Keywords: nilpotent orbits, symplectic singularities, symplectic hypersurfaces, Poisson deformations.
This journal is c© Foundation Compositio Mathematica 2011.

https://doi.org/10.1112/S0010437X11005550 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X11005550


M. Lehn, Y. Namikawa and Ch. Sorger

Theorem 1.1 (Grothendieck–Brieskorn). Let g be a simple Lie algebra of type ADE, let N be

its nilpotent cone and let S be a slice to the orbit of a subregular nilpotent element in g. Then

the germ (S ∩N, x) is a Kleinian surface singularity with the same Coxeter–Dynkin diagram

as g, and the restriction ϕ|S : (S, x)→ (g//G, 0) of the characteristic map ϕ is isomorphic to the

semiuniversal deformation of the surface singularity (S ∩N, x).

An immediate obstacle to extending this theorem to other nilpotent orbits deeper down in
the orbit stratification of the nilpotent cone is the fact that the intersection S0 = S ∩N is no
longer an isolated singularity so that there simply is no versal deformation theory. The solution
to this problem is to notice that S0 carries a natural Poisson structure, that ϕ|S : S→ g//G can
be considered as a deformation of Poisson varieties, and that the space of infinitesimal Poisson
deformation is again finite dimensional.

Recall that a Poisson structure on an R-algebra A is an R-bilinear Lie bracket {−,−} :
A×A→A that satisfies {ab, c}= a{b, c}+ b{a, c} for all a, b, c ∈A. A (relative) Poisson scheme
is a morphism f :X → Y of finite type such that the structure sheaf OX carries an OY -bilinear
Poisson structure. A Poisson deformation of a Poisson variety X over a pointed space (T, t0) is a
flat morphism p : X → T with a Poisson structure on X relative over T together with a Poisson
isomorphism from X to the fibre Xt0 . We will recall the basic properties of, and main results
about, Poisson deformations relevant for this paper in § 2.

Returning to the notations introduced above, it turns out that the restriction ϕS := ϕ|S :
S→ g//G carries a natural relative Poisson structure for the Slodowy slice to any nilpotent
element. This Poisson structure is essentially induced by the Lie bracket on g. It provides Poisson
structures on each fibre of ϕS , and we may consider ϕS as a Poisson deformation of S0 over the
base g//G (cf. the article of Gan and Ginzburg [GG02] and § 3).

In order to state our first main theorem we need to introduce one more piece of notation: let
π : Ñ →N denote the Springer resolution of the nilpotent cone (cf. § 5). The so-called Springer
fibre Fx := π−1(x) of x ∈N is the variety of all Borel subalgebras b⊂ g such that x ∈ b. Keeping
the previous notations we can state the following theorem.

Theorem 1.2. Let x be a non-regular nilpotent element. Then ϕS : S→ g//G is the

formally universal Poisson deformation of S0 if and only if the restriction map ρx :H2(Ñ ,Q)→
H2(Fx,Q) is an isomorphism.

In the theorem, ‘formally universal’ means that for any Poisson deformation S′→ T of S0

over a local Artinian base t0 ∈ T , there is unique map f : T → g//G such that f(t0) = 0 and such
that S′ is isomorphic, as a Poisson deformation of S0, to the pullback of S under f . It is a subtle
problem which conditions should be imposed on the total space of the Poisson deformation of an
affine Poisson variety when the base space is not local Artinian. For the moment being, ‘formal
universality’ is the best we can hope for.

We will see that for any non-regular x ∈N the map ρx is injective (Proposition 5.3). The
following theorem clarifies the questions for which orbits the map ρx is indeed an isomorphism.

Theorem 1.3. Let x be a non-regular nilpotent element. Then the restriction map ρx is an

isomorphism except in the following cases:

(Bn) the subregular orbit;

(Cn) orbits of Jordan types [n, n] and [2n− 2i, 2i], for 1 6 i6 n/2;
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(G2) the orbits of dimension eight and ten;

(F4) the subregular orbit.

In particular, ρx is an isomorphism for all non-regular nilpotent elements in a simply laced Lie

algebra.

Consider the special case of a subregular nilpotent element x. If g is simply laced, S0 is
a surface with a corresponding ADE-singularity at x, then Theorems 1.2 and 1.3 provide a
Poisson version of Brieskorn’s Theorem 1.1. Note that even in this case our theorem claims
something new: ϕS is a formally universal Poisson deformation, whereas in the sense of usual
flat deformations it is only semiuniversal, which means that the classifying maps to the base
(g//G, 0) are unique only on the level of tangent spaces [Slo80a, § 2.3]. If g is not simply laced,
it follows from Slodowy’s results [Slo80a] that ϕS : S→ g//G cannot be the universal Poisson
deformation for subregular orbits.

The condition that ρx be an isomorphism also appears as a hypothesis in recent work of
Braverman, Maulik and Okounkov [BMO11]. They use ρx in order to describe explicitly a
quantum multiplication operator on the quantum cohomology of the inverse image of the Slodowy
slice S0 in N under the Springer resolution. They show, with different arguments, that ρ is an
isomorphism for simply laced g (see [BMO11, Appendix]). Thus our Theorem 1.3 extends the
range of cases where their [BMO11, Theorem 1.3] applies.

In the exceptional cases of Theorem 1.3, the Slodowy slices do not give the universal Poisson
deformations of S0 and it is natural to ask what the universal Poisson deformations are. We will
restrict ourselves to the Poisson deformation not of the affine variety S0, but of the germ (S0, x)
in the complex analytic category.

If x is a subregular nilpotent element in a Lie algebra of type Bn, Cn, F4 and G2, then
(S0, x) is a surface singularity of type A2n−1, Dn+1, E6 and D4, respectively. One can therefore
construct its universal Poisson deformation as a Slodowy slice in the corresponding simply laced
Lie algebra.

If x belongs to the eight-dimensional or ‘subsubregular’ orbit in the Lie algebra of type G2,
then (S0, x) turns out to be isomorphic to the analogous singularity (S′0, x

′) for a nilpotent
element x′ ∈ sp6 of Jordan-type [4, 1, 1]. As this orbit is not in the exceptional list of Theorem 1.3
the associated Slodowy slice provides the universal Poisson deformation both of (S′0, x

′) and
(S0, x).

In § 12 we shall discuss an analogous phenomenon for the remaining cases, namely the orbits
in sp2n of Jordan types [n, n] and [2n− 2i, 2i]. Kraft and Procesi [KP82] already observed this
phenomenon without the Poisson point of view. We will clarify that their method is closely
related to Weinstein’s notion of a dual pair in Poisson geometry [Wei83].

(2) One initial motivation for this article was the search for singular symplectic hypersurfaces.
A symplectic variety is a normal variety X with a closed non-degenerate 2-form ω on its regular
part that extends as a regular 2-form to some (and then any) proper resolution f :X ′→X
of the singularities of X. Symplectic varieties carry natural Poisson structures: on the regular
part, the form ω : TXreg → ΩXreg can be inverted to yield a map θ : ΩXreg → TXreg . One checks
that the bracket {f, g}= θ(df)(dg) on OXreg satisfies the Jacobi-identity since ω is closed. By
normality, this Poisson structure canonically extends to X. Many examples of singular symplectic
varieties that we are aware of (like nilpotent orbit closures, finite group quotients, symplectic
reductions) indicate that symplectic singularities tend to require large embedding codimensions.
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In particular, singular symplectic hypersurfaces should be rare phenomena. Previously known
were only the Klein–DuVal surface singularities in C3. We found the following new examples.

Firstly, there is a series of four-dimensional symplectic hypersurfaces that appear as
intersections S0 =N ∩ S of the nilpotent cone N with Slodowy slices S to certain nilpotent
orbits in sp2n. In simplified coordinates these can be written as follows.

Example 1.4. For each n> 2 the following polynomial defines a four-dimensional symplectic
hypersurface:

f = a2x+ 2aby + b2z + (xz − y2)n ∈ C[a, b, x, y, z].

Secondly, we have a single six-dimensional example that appears in a similar way in the
exceptional Lie algebra g2. The corresponding polynomial f in seven variables can be best
expressed in the following way. Consider the standard action of the symmetric group S3 on C2

and the corresponding symplectic action on C2 ⊕ (C2)∗. The invariant ring of the latter action
is spanned by seven elements, say a, b, c of degree two and p, q, r, s of degree three, that are
obtained by polarising the second and the third elementary symmetric polynomial in 3 variables.
The ideal of the quotient variety (C2 ⊕ C2∗)/S3 ⊂ C7 is generated by the following five relations
among the invariants:

t1 = a(ac− b2) + 2(q2 − rp),
t2 = b(ac− b2) + (rq − ps),
t3 = c(ac− b2) + 2(r2 − qs),

z1 = as− 2br + cq,
z2 = ar − 2bq + cp.

Keeping this notation we can state the following example.

Example 1.5. The following polynomial defines a six-dimensional symplectic hypersurface:

f = z2
1a− 2z1z2b+ z2

2c+ 2(t22 − t1t3) ∈ C[a, b, c, p, q, r, s].

In both cases the Poisson structure and in turn the symplectic structure can be recovered
from a minimal resolution of the Jacobian ideal that is generated by the partial derivatives of f .
We will return to such issues in a later article.

2. Poisson deformations

For the convenience of the reader, we shall briefly review in this section some aspects of the
theory of Poisson deformations. For details and further information we refer to the articles of
Ginzburg and Kaledin [GK04] and the second author [Nam08b, Nam10, Nam11].

Let (X, { , }) be an algebraic variety with a Poisson structure. We will usually denote the pair
again by the simple letter X and suppress the bracket if no ambiguity can arise. Let A be a local
Artinian C-algebra with residue filed A/mA = C and let T = Spec(A). A Poisson deformation
of X over A is a flat morphism X → T with a relative Poisson structure { , }T on X/T and an
isomorphism φ :X →X ×T Spec(C) of Poisson varieties.

We define PDX(A) to be the set of equivalence classes of such pairs (X/T, φ) where (X , φ)
and (X ′, φ′) are defined to be equivalent if there is a Poisson isomorphism ψ : X ∼= X ′ over T
with ψ ◦ φ= φ′. We obtain in this way the Poisson deformation functor,

PDX : (Art)C→ (Set),

from the category of local Artin C-algebras with residue field C to the category of sets. Let C[ε]
be the ring of dual numbers. The set PDX(C[ε]) has the structure of a C-vector space and is
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called the tangent space of PDX . A Poisson deformation of X over SpecC[ε] is called a first order
Poisson deformation of X.

As a particularly interesting case, consider an affine symplectic variety X with a symplectic
structure ω (cf. Introduction part (2)). Assume further that there exists a symplectic projective
resolution π : Y →X, i.e. a projective resolution with the property that ω extends to a symplectic
form on Y . This is equivalent to requiring that π be crepant. (One can replace Y by a Q-factorial
terminalisation of X if X does not have a crepant resolution.) As explained in the introduction,
both X and Y carry natural Poisson structures. Moreover, if p : Y → T is a Poisson deformation
of Y , one can show that X := Spec(p∗OY)→ T is a Poisson deformation of X. This defines a
natural map of functors

π∗ : PDY → PDX .

Finally, assume that X has a C∗ action with positive weights such that ω becomes homogeneous
of positive weight. (In particular, X is contractible.) In this case, the C∗ action uniquely extends
to Y .

Under these assumptions and with the introduced notation one has the following theorem
that combines results from [Nam10, Nam11].

Theorem 2.1 (Namikawa). The Poisson deformation functors PDX and PDY are
prorepresentable and unobstructed. More precisely, there is a C∗-equivariant commutative
diagram

Y //

��

X

��
Ad

ψ // Ad

(2.1)

where Ad is the affine space of dimension d= dimH2(Y, C) isomorphic to PDX(C[ε]), respectively
PDY (C[ε]), such that X → Ad and Y → Ad are formally universal Poisson deformations of X
and Y , respectively, at 0 ∈ Ad, and the map ψ is compatible with the functor map π∗ : PDY →
PDX . Moreover, ψ is a finite Galois cover with ψ(0) = 0.

3. Slodowy slices

Let g be a simple complex Lie algebra and G its adjoint group. Let x ∈ g be a nilpotent element.
According to the Jacobson–Morozov theorem, there is a nilpotent element y ∈ g and a semisimple
element h ∈ g such that [h, x] = 2x, [h, y] =−2y and [x, y] = h. The resulting triple {x, h, y},
called a Jacobson–Morozov triple for x, defines a Lie algebra homomorphism sl2→ g that is
non-zero and hence an embedding if x 6= 0. Slodowy [Slo80a, 7.4] showed that the affine space

S = x+ Ker(ad y)

is a transverse slice to the conjugacy class of x. One obtains a natural C∗-action on g as
follows. The ad h-action yields a decomposition g =

⊕
d∈Z g(d) into weight spaces g(d) = {z ∈ g |

[h, z] = dz}. Define ρt(z) = t2−dz for z ∈ g(d) and extend linearly. This action fixes the nilpotent
element x and stabilises the slice S. Nilpotent orbits that intersect S do so transversely. This
is clear at x, hence in some open neighbourhood of x in S, then everywhere as C∗ acts with
positive weights.

Each fibre of ϕ : g→ g//G contains a unique conjugacy class of a semisimple element. In
this sense, ϕ maps an element z ∈ g to the class [zs] of its semisimple part. In particular, its
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central fibre is the nilpotent cone N ⊂ g. Choose once and for all a Cartan subalgebra h⊂ g

containing h. Let W be the associated Weyl group. According to Chevalley, the inclusion h⊂ g

induces an isomorphism C[g]G→ C[h]W , hence an identification h/W ∼= g//G. The morphism
ϕ : g→ h/W is called the adjoint quotient.

According to classic results of Kostant [Kos63] extended by Slodowy [Slo80a, 5.2] and
Premet [Pre02, 5], its restriction ϕS : S→ h/W to the Slodowy slice is faithfully flat (hence
surjective) with irreducible, normal complete intersection fibres of dimension dim S − rk g whose
smooth points are exactly the regular elements of g contained in the fibre. In particular, the
central fibre S0 = S ∩N is an irreducible normal complete intersection whose regular points are
the regular nilpotent elements in S.

The Lie bracket on g extends uniquely to a Poisson structure on the symmetric algebra
Sg = C[g∗]. By construction, the invariant subalgebra (Sg)G Poisson commutes with all elements
in Sg. Identifying g with g∗ via the Killing form defines a Poisson structure on g relative to h/W .

According to Gan and Ginzburg the Slodowy slice S inherits a C∗-invariant Poisson structure
of weight −2 via a Hamiltonian reduction [GG02, 3.2]. This description also shows that on
regular points of the fibres, this Poisson structure corresponds to the Kostant–Kirillov–Souriau
symplectic form (see also [Yam95]).

Thus, ϕS : S→ h/W is a Poisson deformation of the central fibre S0.

4. Q-factoriality of the nilpotent cone

The nilpotent cone decomposes into the disjoint union of finitely many nilpotent orbits. The
dense orbit of maximal dimension corresponding to regular nilpotent elements in g is called
the regular orbit Oreg; its complement N\Oreg also contains a dense orbit, corresponding to
subregular nilpotent elements in g, the so-called subregular orbit Osub. If S is a Slodowy slice
to an element in Osub, then S0 = S ∩N is a surface singularity of ADE-type, and as such a
quotient C2/Γ(g) for a finite subgroup Γ(g)⊂ SL2.

Proposition 4.1. Let m= |Γ(g)|. The nilpotent cone is analytically locally m-factorial.

Recall that a normal variety Z is locally m-factorial if for any local Weil divisor D of Z, the
divisor mD is Cartier.

Proof. Recall the following general facts. Let X be a reduced complex analytic space and consider
a Whitney stratification on X. Denote by Xi the union of the strata of dimension less than or
equal to i. The rectified homological depth of X is said to be greater than or equal to n if, for
any point x ∈Xi\Xi−1, there is a fundamental system (Uα) of neighbourhoods of x in X such
that, for any α, we have Hk(Uα, Uα\Xi; Z) = 0 for k < n− i. The vanishing of homology still
holds if we replace Uα by a sufficiently small contractible open neighbourhood U of x. The basic
result we will use is that if X is locally a non empty complete intersection, then the rectified
homological depth of X is equal to the dimension of X (see [HL91, Corollary 3.2.2] and use the
relative Hurewicz theorem).

Recall that N is a complete intersection. We will apply the above for the stratification given
by the orbits. Our proof is by induction on the codimension d(O) of the orbit inside N . Note
that d(O) is even. When d(O) = 0, every point z ∈O is actually a smooth point of N , so the
claim holds trivially. When d(O) = 2, then N has ADE singularities along O, and hence N is
m-factorial at x ∈O as a quotient C2/Γ(g). In the general case, consider a Weil divisor D in an
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open contractible Stein neighbourhood U of x ∈N . Let B be the intersection of the orbit of x
with U . Note that B ⊂ Sing(U) but that B itself is smooth of codimension greater than or equal
to four in U .

By induction, for w ∈ Sing(U)\B, we know that mD is Cartier in an open neighbourhood of
w ∈N . Hence we may assume that mD is Cartier in U\B, i.e. that there is a line bundle L on
U\B and a section s in L such that mD is the zero locus of s. Consider the exact sequence of
the pair (U, U\B)

H2(U, Z)→H2(U\B, Z)→H3(U, U\B; Z). (4.1)

Note that H2(U, Z) = 0, as U is Stein and contractible. Moreover we have H3(U, U\B; Z) = 0,
as the rectified homological depth of N is equal to the dimension of N and B is of codimension
greater than or equal to 4. By the universal coefficient theorem, it follows that H3(U, U\B; Z) = 0
because H3(U, U\B; Z) = 0.

From the exact sequence (4.1), we see that H2(U\B, Z) = 0. Now since U is Cohen–Macaulay
and codimU B > 4, we know that H i(U\B,O) = 0 for i6 2. Using the exponential sequence, we
see that H1(U\B,O∗)∼=H2(U\B, Z) = 0 so that we have Pican(U\B) = 0. It follows that L is
trivial on U\B. The section s extends by normality. Hence mD is Cartier on U . 2

In the algebraic case, the result follows from parafactoriality of complete intersections.

Remark 4.2. The nilpotent cone is algebraically locally m-factorial.

Proof. The assertion is clear on the open subset U =Oreg ∪ Osub. Let V ⊃ U be an open subset
of N such that V is locally m-factorial.

Let η be a generic point of N\V and let D be a Weil divisor on T = Spec(ON,η). By the
choice of V , there is a line bundle L on T\{η} and a section s in L such that mD is the zero
locus of s.

Now the local ring ON,η is a complete intersection of dimension greater than or equal to four
and hence parafactorial according to Grothendieck [Gro68, Théorème 3.13(ii)]. This implies that
Pic(T\{η}) = 0. In particular, L is trivial and the section s extends to a section in Γ(T,OT ) as
T is normal. This shows that mD is Cartier on T .

The assertion follows by noetherian induction. 2

5. Simultaneous resolutions

Let g be a simple complex Lie algebra and let h⊂ g be a Cartan subalgebra as in § 3. Let G be
the adjoint group and T ⊂G the maximal torus corresponding to h. For any Borel subgroup B
with T ⊂B ⊂G and with Lie algebra b consider the commutative diagram

G×B b
πB //

ϕB

��

g

ϕ

��
h

π // h/W

(5.1)

where π is the quotient map and πB and ϕB are defined as follows. For a class [g, b] ∈G×B b

let b= b0 + b1 be the decomposition corresponding to b = h⊕ [b, b]. Then ϕB([g, b]) = b0 and
πB([g, b]) = Ad(g)b. According to Grothendieck, the above diagram is a simultaneous resolution
for ϕ. The central fibre of ϕB is the cotangent bundle T ∗(G/B) of the flag variety G/B.
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The map

πB,0 : T ∗(G/B)→N (5.2)

is a crepant resolution. The exceptional locus E is a normal crossing divisor whose components
correspond bijectively to the simple roots defined by the choice of b (see [Slo80b, 3.2]).

Let z ∈N be a non-regular nilpotent element. Choose an open neighbourhood V ⊂ T ∗(G/B)
of the fibre Fz = π−1

B,0(z) such that the inclusion Fz ⊂ V is a homotopy equivalence. As πB,0 :
T ∗(G/B)→N is proper we may choose a contractible open Stein neighbourhood U ⊂N of z
such that Ũ := π−1

B,0(U)⊂ V .

Lemma 5.1. The map Pican(Ũ) c1−−→H2(Ũ ; Z) is an isomorphism. Moreover, Pican(Ũ)Q has a

basis given by the line bundles O(Ei), where the Ei are the components of Ũ ∩ E.

Proof. We know that Ũ → U is a resolution of rational singularities. As U is Stein, it follows
from Leray’s spectral sequence Hp(U, RqπB,0∗OŨ )⇒Hp+q(Ũ ,O

Ũ
) that the cohomology groups

H i(Ũ ,O) vanish for i= 1, 2. Hence the exponential cohomology sequence

H1(Ũ ,O)→H1(Ũ ,O∗)→H2(Ũ , Z)→H2(Ũ ,O) (5.3)

yields the first assertion.

Let D̃ ⊂ Ũ be a prime divisor distinct from any Ei. Then D = πB,0(D̃) is a Weil divisor
on U . As U is analytically Q-factorial by Proposition 4.1, there is an integer m such that
mD is Cartier. As U is Stein and contractible, Pican(U) = 0 by a result of Grauert, and hence
there is an analytic function s ∈ O(U) such that mD = {s= 0}. It follows that {π∗B,0(s) = 0}=
mD̃ +

∑
miEi for suitable coefficients. This shows that Pican(Ũ)Q is generated by the line

bundles O(Ei).

It remains to see that these line bundles are linearly independent. Note that every Ei maps
surjectively to a component of the singular locus of U as πB,0 : T ∗(G/B)→N is semismall.
Choose a surface A⊂ U that intersects every component of the singular locus non-trivially
and in such a way that Ã= π−1

B,0(A) is smooth (Bertini). Let Cj be the components of the
exceptional fibres of Ã→A. By a result of Grauert, the intersection matrix of the curves Cj is
negative definite. In particular, the classes of the line bundles O

Ã
(Cj) are linearly independent.

A fortiori, the line bundles O(Ei) are linearly independent. 2

Keeping the notation we have furthermore the following lemma.

Lemma 5.2. Let z′ ∈ U be a non-regular nilpotent element. Then the composition

H2(Fz,Q) res−1

−−−−→H2(V,Q) res−−−→H2(Fz′ ,Q) (5.4)

is injective. In particular, if v ∈N is an arbitrary non-regular nilpotent element such that z ∈G.v,
then dimH2(Fz,Q) 6 dimH2(Fv,Q).

Proof. As before, we may choose an open neighbourhood V ′ ⊂ Ũ of the fibre Fz′ = π−1
B,0(z′)

such that the inclusion Fz′ ⊂ V ′ is a homotopy equivalence and an open contractible Stein
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neighbourhood U ′ ⊂ U of z′ such that Ũ ′ := π−1
B,0(U ′)⊂ V ′. We get the following diagram of

restriction maps.

H2(V,Q) a //

i
��

H2(V ′,Q)

i′

��

H2(Ũ ,Q)
b //

p

��

H2(Ũ ′,Q)

p′

��
H2(Fz,Q) H2(Fz′ ,Q)

(5.5)

Since pi and p′i′ are isomorphisms, i and i′ are injective and p and p′ are surjective. Next,
b is injective: to see this it suffices by Lemma 5.1 that every component Ei of Ũ ∩ E intersects
with Ũ ′ non-trivially. However, this is clear as Ei maps surjectively to the singular locus of
U , and hence hits z′. Since i and b are injective, it now follows that a is injective. Finally,
p′i′a is injective as claimed. The assertion on the dimension follows of course from the fact
that the orbit of v intersects U and that points in the same nilpotent orbits have isomorphic
fibres.

Proposition 5.3. Let z ∈N be a non-regular nilpotent element. The restriction map
H2(T ∗(G/B),Q)→H2(Fz,Q) is injective. In particular, it is an isomorphism if and only if
dimH2(Fz,Q) = rk g.

Proof. Choose a subregular nilpotent element p ∈ U . Then we have the following diagram of
restriction maps.

H2(Fz,Q) H2(V,Q)
reszoo resp // H2(Fp,Q)

H2(T ∗(G/B),Q)

az

hhQQQQQQQQQQQQ
a

OO

ap

66mmmmmmmmmmmm
(5.6)

The map resz is an isomorphism by the choice of V . By [Slo80b, 4.5 Corollary], the map ap is
injective, and hence az is injective as well. 2

Let S be a Slodowy slice to an element x ∈N as in § 3. Define SB := π−1
B (S). The induced

commutative diagram

SB
π

BS //

ϕ
BS

��

S

ϕS

��
h

π // h/W

(5.7)

is a simultaneous resolution of S→ h/W according to Slodowy [Slo80a, 5.3]. It yields a projective
crepant resolution αB : SB → S ×h/W h.

Theorem 5.4. Assume that x satisfies the following condition:

dimH2(Fx,Q) = rk g. (∗)

Then every projective crepant resolution α′ : S′→ S ×h/W h is isomorphic to αB for some Borel
subgroup B with T ⊂B.

We will prove the theorem in several steps.

129

https://doi.org/10.1112/S0010437X11005550 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005550


M. Lehn, Y. Namikawa and Ch. Sorger

Proposition 5.5. Assume condition (∗) holds. Then the natural restriction map

H2(G×B b,Q)−→H2(SB,Q) (5.8)

is an isomorphism.

Proof. We denote by SB,0 the central fibre of ϕBS . Consider the following commutative diagram.

G×B b
πB // g

T ∗(G/B)
/�

??���
// N

/�
??����

Fx � o

��???

/�
??���

SB //

OO

S

OO

SB,0

OO

//
/�

??���
S0

OO

/�
??���

(5.9)

Firstly, H2(G×B b,Q)→H2(T ∗(G/B),Q) is an isomorphism. Indeed, as we know that
T ∗(G/B) =G×B [b, b], this is clear from the inclusion [b, b]⊂ b. Secondly, H2(SB,Q)→
H2(SB,0,Q) is an isomorphism. This follows from the fact that ϕBS : SB → h is a trivial fibre
bundle of C∞-manifolds [Slo80b, Remark at the end of § 4.2]. It follows that (5.8) is an
isomorphism if and only if the restriction

H2(T ∗(G/B),Q)→H2(SB,0,Q) (5.10)

is. Now Fx is the fibre over the unique C∗ fixed point x of the proper equivariant map SB,0→ S0.
Hence Fx→ SB,0 is a homotopy equivalence and the restriction

H2(SB,0,Q) ∼−−→H2(Fx,Q) (5.11)

is an isomorphism. The proposition now follows, using Proposition 5.3, from condition (∗). 2

Let Amp(αB)⊂H2(G×B b) be the relative nef cone of αB :G×B b→ g×h/W h and similarly
let Amp(αBS )⊂H2(SB, R) be the nef cone of αBS : SB → S ×h/W h.

Proposition 5.6. Assume that condition (∗) holds. The restriction isomorphism H2(G×B
b, R)−→H2(SB, R) maps Amp(αB) onto Amp(αBS ).

Proof. As any relatively ample line bundle L on G×B b restricts to a relatively ample line
bundle on SB, it is clear that the image of Amp(αB) is contained in Amp(αBS ). The nef cone
Amp(αB) is a simplicial rational polyhedral cone in H2(G×B b, R) spanned by line bundles
Li =G×B C(χ−1

i ) where C(χi) is the one dimension representation of B corresponding to the
character χi and χ1, . . . , χrk g are the fundamental weights of B. If L is a general element in
the one codimensional face of Amp(αB) opposite to Li, then the morphism ϕ|mL| associated to L
contracts for every positive m at least one of the rational curves in any fibre Fp for p subregular.
In particular, the restriction of L to SB cannot be ample and hence is contained in the boundary
of Amp(α

BS). This shows that ∂ Amp(αB) is mapped to ∂ Amp(α
BS). 2

Proof of Theorem 5.4. Recall that under the isomorphism

H2(G×B b, R)∼=H2(G/T, R)∼= h∗R (5.12)

the nef cone Amp(αB) is mapped to the Weyl chamber determined by the choice of B. As h∗R
is the union of all Weyl chambers, it follows that

H2(G×B b, R) =
⋃
w∈W

Amp(α
w(B)

) (5.13)
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where w(B) = wBw−1. Proposition 5.6 implies that

H2(SB, R) =
⋃
w∈W

Amp(α
w(B)S

). (5.14)

Now recall the following general fact. Suppose that β′ : Z ′→ Z and β′′ : Z ′′→ Z are projective
crepant resolutions of an affine normal Gorenstein variety Z. Then the rational map γ : Z ′ 99K
Z ′′ is an isomorphism in codimension one and induces an isomorphism γ∗ :H2(Z ′′, R) ∼−−→
H2(Z ′, R). Assume that λ ∈Amp(β′) ∩ γ∗(Amp(β′′)) is a class corresponding to line bundles
L′ ∈ Pic(Z ′/Z) and L′′ ∈ Pic(Z ′′/Z). Replacing L′ and L′′ by a sufficiently high power, we assume
that L′ and L′′ are relatively very ample. For codimension reasons, H0(Z ′, L′)∼=H0(Z ′′, L′′). In
particular, Z ′ and Z ′′ are embedded with the same image into some projective space PnZ . Phrased
differently, if γ : Z ′ 99K Z ′′ is not a isomorphism then the ample cones must be disjoint.

Applying this argument to the variety S, we infer from (5.14) that any resolution of S must
be of the form ϕB : SB → S. 2

6. Universal Poisson deformations

We now go back to the situation of the preceding sections and consider for a given Borel subgroup
B ⊃ T the simultaneous resolution of (5.7).

SB
πB //

ϕ
BS

��

S

ϕS

��
h // h/W

(6.1)

We have seen in § 3 that S has a natural Poisson structure relative to h/W as well as SB relative
to h.

We start proving Theorem 1.2. The strategy is to show that the commutative diagram of
Slodowy slices coincides with the abstract one constructed in § 2.

Let us consider ϕBS : SB → h and denote by SB,0 the central fibre of ϕBS . Equivalence classes
of infinitesimal Poisson deformations of SB,0 are classified by the second hypercohomology of the
Lichnerowicz–Poisson complex [Nam08b, Proposition 8]

∧1ΘSB,0

δ−−→∧2ΘSB,0

δ−−→ · · · ,

where ∧pΘSB,0
is placed in degree p. Since the Poisson structure of SB,0 comes from a symplectic

structure, the Lichnerowicz–Poisson complex can be identified with the truncated De Rham
complex

Ω1
SB,0

d−−→ Ω2
SB,0

d−−→ · · · .
Using the fact that

H1(SB,0,OSB,0
) =H2(SB,0,OSB,0

) = 0,

we see [Nam08b, Corollary 10] that

H2(SB,0, Ω>1
SB,0

) =H2(SB,0, C).

In the language of the Poisson deformation functor (cf. § 2) we have

TPDSB,0
=H2(SB,0, C).
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The relative symplectic 2-form of SB/h defines a class in H2(SB,t, C) for each fibre SB,t of
SB → h. Identifying H2(SB,t, C) with H2(SB,0, C) we get a period map

κ : h→H2(SB,0, C),

which can be regarded as the Kodaira–Spencer map for the Poisson deformation SB → h.

Proposition 6.1. Suppose condition (∗) holds. Then ϕBS : SB → h is the formal universal
Poisson deformation of SB,0.

Proof. Consider the Kodaira–Spencer maps κ : h→H2(SB,0, C) and κ′ : h→ TPDT∗(G/B)
=

H2(T ∗(G/B), C) associated to the Poisson deformation ϕBS : SB → h of SB,0 and G×B b→ h of
T ∗(G/B), respectively. As the relative symplectic structure of SB is the restriction of the relative
symplectic structure of G×B b, the following diagram is commutative.

h
κ′

vvnnnnnnnn κ

&&MMMMMM

H2(T ∗(G/B), C) // H2(SB,0, C)
(6.2)

We have seen in the proof of Proposition 5.5 that the horizontal restriction map is an
isomorphism. By [Nam10, Proposition 2.7], the Poisson deformation G×B b→ h is formally
universal at 0 ∈ h. Hence κ′ is an isomorphism, and so is κ. This means that ϕBS is
formally semiuniversal. By [Nam11, Corollary 2.5], ϕBS is formally universal. 2

We next treat ϕS : S→ h/W . By Proposition 6.1 and Theorem 2.1, the base space of the
universal Poisson deformation of S0 can be written as h/H for some finite subgroup H ⊂Gl(h).
The following proposition asserts that H is actually the Weyl group W and finishes the proof of
Theorem 1.2.

Proposition 6.2. Suppose condition (∗) holds. Then ϕS : S→ h/W is the formally universal
Poisson deformation of S0.

Proof. Let X→ h/H be the universal C∗-equivariant Poisson deformation of S0. As
Spec(πB∗OSB

)∼= h×h/W S the morphism h→ h/H factors through the quotient map h→ h/W
and the classifying morphism h/W → h/H for the Poisson deformation S→ h/W of S0. (Strictly
speaking the morphisms h→ h/W → h/H are first defined on the respective completions of the
origin. As C∗ acts with strictly positive weights on all three spaces and all maps are equivariant,
the morphisms are defined as stated above.)

Consider the following commutative diagram.

SB
πB //

��

S //

��

X

��
h // h/W // h/H

(6.3)

It follows from the factorisation h→ h/W → h/H that W ⊂H. We need to prove the converse
inclusion.
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Let h ∈H. Define S′ to be the fibre product.

S′
h′

∼
//

��

SB

��
h×h/H X ∼

h×id // h×h/H X

(6.4)

Note that h×h/H X = h×h/W S. Since ϕ′ is a crepant resolution, by Theorem 5.4 there exists an
element w ∈W and a commutative diagram.

Sw(B)
q

∼
//

!!DDDDDDDD S′

����������

h×h/H X

(6.5)

On the other hand, w defines a map

w′ :G×B b→G×w(B) ad(w)(b), [g, ξ] 7→ [gw−1, ad(w)(ξ)] (6.6)

and induces a cartesian diagram.

SB
w′

∼
//

��

Sw(B)

��
h×h/H X

w×id
∼

// h×h/H X

(6.7)

By construction, h′qw′ : SB → SB induces the identity on the central fibre φ−1
B (0), and hence the

composite diagram

SB
h′qw′

∼
//

ϕB

��

SB

ϕB

��
h

hw
∼

// h

(6.8)

is an automorphism of the universal Poisson deformation of SB,0. It follows that hw = id, hence
h ∈W . 2

When (∗) is not satisfied, dim h< b2(SB,0, C). Since the base spaces of universal Poisson
deformations of SB,0 and S0 should have dimension b2(SB,0, C), none of ϕBS : SB → h or
ϕS : S→ h/W is universal when (∗) does not hold.

We will investigate when (∗) is satisfied in the following sections.

7. The simply laced case

It remains to prove the following proposition.

Proposition 7.1. Condition (∗) holds for all non-regular nilpotent element x in a simple Lie
algebra of type A, D, E.

Proof. Note that in (5.6) the map ap is an isomorphism by [Slo80b, 4.5], and hence ax is an
isomorphism as well. 2
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8. Lie algebras of type C

Let g be a classical Lie algebra of type Bn or Cn. The nilpotent orbits may by labelled by
partitions d= [d1 > d2 > · · ·> d`] of 2n+ 1, respectively 2n, corresponding to the Jordan type
of the elements in the orbit. For Lie algebras of type B, i.e. g = so2n+1, the map d 7→ Od defines a
bijection between the set of those partitions where each even part appears with even multiplicity
and the set of nilpotent orbits [CM93, Theorem 5.1.2]. Similarly, for Lie algebras of type C,
i.e. g = sp2n, the map d 7→ Od defines a bijection between the set of those partitions where each
odd part appears with even multiplicity and the set of nilpotent orbits [CM93, Theorem 5.1.3].
The set of partitions is partially ordered by the rule

d6 d′ :⇔
k∑
i=1

di 6
k∑
i=1

d′i for all k. (8.1)

By a theorem of Gerstenhaber and Hesselink [CM93, Theorem 6.2.5], Od ⊂Od′ if and only if
d6 d′.

In this section, we study Slodowy slices for the Lie algebra g = sp(2n) for n> 2.

Proposition 8.1. Let d be the Jordan type of a non-regular nilpotent orbit in sp2n, and let
Fd denote the isomorphism type of the fibre π−1(x) over an element x ∈ Od under the Springer
resolution π :G×B b→ g.

(1) For d= [n, n] and d= [2n− 2i, 2i], where i= 1, . . . , bn/2c, dimH2(Fd,Q) = n+ 1.

(2) For all other d, dimH2(Fd,Q) = n.

As a consequence, condition (∗) holds for all non-regular nilpotent orbits except d= [n, n]
or d= [2n− 2i, 2i] for some i= 1, . . . , bn/2c. This proves part (Cn) of Theorem 1.3. In the
proof, we will use the following interpretation of the fibres of the Springer resolution: the fibre
Fd = π−1(x) can be identified with the set of Borel subalgebras in g containing x. Borel algebras b

in the symplectic Lie algebra sp2n correspond in turn to flags [W ] : W1 ⊂W2 ⊂ · · ·Wn ⊂ C2n

of isotropic subspaces, and the condition x ∈ b translates into x(Wi)⊂Wi−1 and x(W1) = 0.
Sending a flag [W ] to the line W1 defines a morphism ψ : F[n,n]→ P(Ker(x)). For a given line
[W1] ∈ P(Ker(x)), we may consider the symplectic vector space V =W⊥1 /W1

∼= C2n−2 with the
induced nilpotent endomorphism x̄. If d denotes the Jordan type of x, then the fibre ψ−1([W1])
is isomorphic to Fd. This observation will allow us to argue by induction on the dimension of
the symplectic space.

Proof. For any partition d of length greater than or equal to 3, we have d6 [2n− 2, 1, 1], whereas
for any partition d of length 2, we have [n, n] 6 d.

(1) We first consider the case of a partition d= [2n− k, k] with two parts. As the multiplicity
of each odd part needs to be even, this leaves the cases [2n− 2i, 2i] and additionally, if n is odd,
the partition [n, n].

The subregular nilpotent orbit has Jordan type [2n− 2, 2]. It is well known (cf. [Slo80a])
that the fibre F[2n−2,2] is the union of n+ 1 projective lines intersecting in a Dn+1-configuration,
so that dimH2(F[2n−2,2],Q) = n+ 1. Moreover, the ordering of the partitions of length 2 takes
the form [2n− 2, 2]> [2n− 4, 4]> · · ·> [n, n]. By Lemma 5.2 it suffices to prove assertion (1)
of the proposition for the partition [n, n]. The case n= 2 is already covered, and we proceed
by induction. We work with the following model for a 2n-dimensional symplectic vector space
with a nilpotent endomorphism of type [n, n]: let the action of x on V = 〈v1, . . . , vn, w1, . . . , wn〉
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be given by xvi = vi+1, xwi = wi+1 and xvn = xwn = 0, and let the symplectic form be fixed by
ω(vi, wj) = (−1)i−1δi+j,n+1 and vi ⊥ vj , wi ⊥ wj for all i, j. Consider now the map ψ : F[n,n]→
P(Ker(x)) = P1 sending a flag [W ] of isotropic subspaces W1 ⊂ · · · ⊂Wn to the line W1 ⊂Ker(x).
In order to identify the fibre ψ−1(W1) we need to determine the Jordan type of the induced
endomorphism x on V =W⊥1 /W1.

Assume first that n is odd. The kernel of x is spanned by vn and wn, and if W1 = 〈αvn + βwn〉,
then W⊥1 is spanned by the elements αvi + βwi, i= 1, . . . , n and γvi + δwi, i= 2, . . . , n,
where γ, δ are constants with αδ − βγ 6= 0. Then V is spanned by the classes of αvi + βwi,
i= 1, . . . , n− 1 and γvi + δwi, i= 2, . . . , n. As the action of x can be easily read off from
this bases we see that x has Jordan type d= [n− 1, n− 1]. More precisely, this description
shows that ψ : F[n,n]→ P1 is a fibre bundle with fibres F[n−1,n−1]. In particular, R2ψ∗Q is a local
system on P1,an, and by induction its rank is n. Since P1 is simply connected, this local system is
trivial. Finally, all fibres have vanishing first cohomology groups and the Leray spectral sequence
Hp(P1, Rqψ∗Q) =⇒ Hp+q(F[n,n],Q) shows that H2(F[n,n],Q)∼= Qn+1.

Assume now that n is even. We keep the notation of the previous paragraph. However,
in the even case the structure of the fibre ψ−1(〈αvn + βwn〉) does depend on the choice of
W1 = 〈αvn + βwn〉. If α 6= 0 6= β, then W⊥1 /W1 is generated by αvi + βwi, i= 2, . . . , n− 1, and
αvi − βwi, i= 1, . . . , n. It follows that ψ−1(U)→ U := P1\{[1 : 0], [0 : 1]} is a fibre bundle (in
the Zariski topology) with fibres F[n,n−2]. On the other hand, if W1 = 〈vn〉, then W⊥1 /W1 is
generated by vi, i= 1, . . . , n− 1 and wi, i= 2, . . . , n, so that ψ−1([1 : 0])∼= F[n−1,n−1]. Similarly,
one shows that ψ−1([0 : 1])∼= F[n−1,n−1]. By induction, we know that the second Betti number
both of F[n−1,n−1] and F[n,n−2] equals n. We claim that R2ψ∗Q is a local system on P1,an of rank
n; we can then complete the argument as in the odd case.

In order to prove the claim, let W1 ⊂OP1 ⊗Ker(x)⊂OP1 ⊗ C2n denote the tautological
subbundle and let V =W⊥1 /W1 denote the corresponding quotient bundle, endowed with a
nilpotent endomorphism x. For any point p ∈ P1 there are sections s1, . . . , s2n−2 in V defined
over an open neighbourhood U that form a standard basis for the symplectic structure ω on V.
The matrix coefficients x(si) =

∑
j xjisj define a classifying morphism f : U → sp2n−2, and we

obtain a diagram with cartesian squares.

F[n,n]

��

⊃ ψ−1(U) //

��

Sp2n−2 ×B̄ b̄

��
P1 ⊃ U // sp2n−2

If n> 4, as we assume, the classifying morphism f takes value in the closure of the subregular
nilpotent orbit. Let ξ1, . . . , ξn denote a basis of the germ (R2ψ∗Q)p =H2(ψ−1(p),Q)∼= Qn. On
an appropriate open neighbourhood U ′ of p, this basis forms a set of linearly independent vectors
in (R2ψ∗Q)q for all q ∈ U ′ by Lemma 5.2. As the rank of the second Betti number is constant,
they form in fact a basis. This shows that R2ψ∗Q is indeed a local system.

(2) Consider now the opposite case of a partition d with at least 3 parts.
Any such partition is dominated by [2n− 2, 1, 1], and it suffices to show that
dimH2(F[2n−2,1,1],Q) = n. A model for a nilpotent symplectic endomorphism of Jordan
type [2n, 1, 1] is given as follows. Let V = 〈v1, . . . , v2n−2, u1, u2〉 with xvi = vi+1 and
xv2n−2 = xu1 = xu2 = 0. The symplectic structure is defined by ω(vi, vj) = (−1)iδi+j,2n−1

and ω(u1, u2) = 1, the other matrix entries of ω being 0. In this case, ψ : F[2n−2,1,1]→
P(Ker x) = P2 is an isomorphism over P2\{[v2n−2]} with ψ−1([v2n−2])∼= F[2n−4,1,1]. More
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precisely, the rational map ψ−1 extends to an embedding of the blow-up Bl[v2n−2](P2)
into F[2n−2,1,1]. By induction one obtains the following description: F[2n−2,1,1] is
the union S1 ∪ S2 ∪ · · · ∪ Sn−1 of (n− 1) Hirzebruch surfaces Si ∼= F1, i= 1 . . . , n− 1,
where Sk and Sk+1 are glued along a line which has self-intersection +1 in Sk and self-intersection
−1 in Sk+1. It is clear from this description that H2(F[2n−2,1,1],Q) = n. 2

It remains to exhibit the hypersurface in the Slodowy slice to a nilpotent orbit in sp2n of
type [2n− 2, 1, 1]. We will give matrices and formulae for n= 4; the general pattern can easily
be derived from these data. The matrices,

x=



0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, y =



0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

are nilpotent and belong to the Lie algebra sp2n with respect to the skew-symmetric form

J =



0 0 0 0 0 −1 0 0
0 0 0 0 1

5 0 0 0
0 0 0 − 1

10 0 0 0 0
0 0 1

10 0 0 0 0 0
0 −1

5 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


.

The entries are inverses of binomial coefficients. The matrix x has Jordan type [2n− 2, 1, 1], and
the Slodowy slice to the orbit of x is parameterised by the matrix

s :=



0 1 0 0 0 0 0 0
5 t1 0 2 0 0 0 0 0
0 4 t1 0 3 0 0 0 0

10 t2 0 3 t1 0 4 0 0 0
0 4 t2 0 2 t1 0 5 0 0
t3 0 t2 0 t1 0 b a

−a 0 0 0 0 0 y −z
b 0 0 0 0 0 x −y


,

depending on parameters a, b, x, y, z, t1, . . . , tn−1. The characteristic polynomial of s has the
form

χs(λ) = (2n− 3)!(a2x+ 2aby + b2z) + (λ2 + xz − y2)χs′(λ),
where s′ is upper left block of the matrix s. Solving the coefficients of the terms λ2n−2i,
i= 1, . . . , n, recursively for the variables t1, . . . , tn−1 finally leaves the equation

f = (2n− 3)!(a2x+ 2aby + b2z)− (xz − y2)n.

Up to a rescaling of the coordinates, this is the formula given in Example 1.4.
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9. Lie algebras of type B

In this section, we consider the Lie algebra g = so(2n+ 1) for n> 2.

Proposition 9.1. Let d be the Jordan type of a non-regular nilpotent orbit Od in so2n+1, and
let Fd denote the isomorphism type of the fibre π−1(x) over an element x ∈ Od under the Springer
resolutionπ :G×B b→ g.

(1) For d= [2n− 1, 1, 1], i.e. the subregular orbit, dimH2(Fd,Q) = 2n− 1.

(2) For all other d, dimH2(Fd,Q) = n.

The proposition implies part (Bn) of Theorem 1.3. As in the case of Lie algebras of type C,
we may identify points in Fd with flags W1 ⊂ · · · ⊂Wn ⊂ C2n+1 of isotropic subspaces. We use
the same techniques and notations as in the previous section. As the proof proceeds along similar
lines we only indicate the differences.

Proof. As so5
∼= sp4, the case n= 2 is already covered by Proposition 8.1. We may therefore

assume that n> 3 and proceed by induction.
For the subregular orbit the transversal slice S0 = S ∩N is a surface singularity of type A2n−1

(cf. [Slo80b, § 1.8]) so that the fibre F[2n−1,1,1] is the union of 2n− 1 copies of P1 and its second
Betti number is 2n− 1. By Lemma 5.2 it suffices to prove the assertion for the next smaller orbit
of type [2n− 3, 3, 1].

Let v1, . . . , v2n−3, v′1, v
′
2, v
′
3, v′′ be a basis of V = C2n+1, let the action of x be given

by xvi = vi+1, xv′i = v′i+1 and xv2n−3 = xv′3 = xv′′ = 0, and let the quadratic form on V be
given by b(vi, vj) = (−1)i−1δi+j,2n−2, b(v′i, v

′
j) = (−1)i−1δi+j,4 and b(v′′, v′′) = 1, all other matrix

coefficients of b being 0. Then Ker(x) = 〈v2n−3, v
′
3, v
′′〉. A vector αv2n−3 + βv′3 + γv′′ is isotropic

if and only if γ = 0. Thus sending a flag to its one-dimensional part defines a morphism
F[2n−3,3,1]→ P〈v2n−3, v

′
3〉= P1. Let W1 = 〈αv2n−3 + βv′3〉. If [α : β] = [1 : 0], then the induced

endomorphism x on W⊥1 /W1 is of type [2n− 5, 3, 1]. If on the other hand β 6= 0, then the
induced endomorphism is of type [2n− 3, 1, 1]. It follows by induction that R2ψ∗(Q)[1:0]

∼= Qn−1

and that the restriction of R2ψ∗(Q) to P1\{[1 : 0]} is a trivial local system of rank 2n− 3. Taking
global sections, we find that dimH0(R2ψ∗Q) = n− 1, and the Leray spectral sequence gives the
desired value b2(F[2n−3,3,1]) = n. 2

10. The Lie algebra of type G2

The Lie algebra g2 has five nilpotent orbits: the regular, the subregular, the ‘subsubregular’, the
minimal and the trivial orbit of dimensions 12, 10, 8, 6 and 0, respectively. The orbit closures
are linearly ordered by inclusion.

Proposition 10.1. Let Fx denote the fibre of the Springer resolution for a nilpotent element x
in g2. Then dimH2(Fx,Q) = 4, 3 and 2, if x belongs to the subregular, the subsubregular and
the minimal orbit, respectively.

In the course of the proof we will also establish the formula for the polynomial f in
Example 1.5.

Proof. Similarly to the previous section, the transversal slice to the subregular orbit is a surface
singularity, this time of type D4 (cf. [Slo80b, § 1.8]), so that the Springer fibre is the union of
four copies of P1 and its second Betti number is 4.
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The slice to the minimal orbit in the nilpotent cone will be shown to be a six-dimensional
symplectic hypersurface. We will determine the second Betti number of the fibre via an explicit
resolution of the singularities.

In order to facilitate calculation in the Lie algebra g2 we will use the Z/3-grading of g2

with graded pieces g
(0)
2 = sl3, g

(1)
2 = C3, and g

(2)
2 = C3∗, where C3 and C3∗ denote the standard

representation of sl3 and its dual (see for example [FH91, 22.2]). Representing the latter as
column and row vectors, respectively, we may write a general element of g2 in block form as

(
A v

w 0

)
=


h1 a12 a13 v1

a21 h2 − h1 a23 v2

a31 a32 −h2 v3

w1 w2 w3 0

.
The Lie bracket is given by the canonical maps sl3 × sl3→ sl3, sl3 ×C3→ C3, sl3 ×C3∗→ C3∗,
C3 × C3 ∧−−→ C3∗, C3∗ × C3∗ ∧−−→ C3 and

C3 × C3∗→ sl3, (v, w) 7→ 3
4(vw − 1

3(wv)I),

where the factor 3
4 is thrown so as to make the Jacobi identity hold. In this notation, the

representation ρ : g2→ so7 can be written as

ρ :
(
A v

w 0

)
7→


A

1√
2
v M(wt)

− 1√
2
w 0 − 1√

2
vt

M(v)
1√
2
wt −At

,

where M(v) is the 3× 3-matrix of the linear map u 7→ v × u, the vector cross product. The two
components of the coadjoint quotient map χ= (χ2, χ6) : g2→ C2 are the coefficients of t5 and t,
respectively, in the characteristic polynomial u 7→ det(tI − ρ(u)), and are of degree two and
six, respectively. They can be expressed in terms of sl3-invariants as follows:

χ2 = 3
2wv − tr(A2),

χ6 = −det(A)2 + 3
2 det(A)(wAv) + 3

16(wAv)2 + 1
4 tr(A2)2(wv) + 1

4 tr(A2)(wv)2

− 1
2(wA2v) tr(A2) + 1

16(wv)3 − 3
4(wA2v)(wv) + 1

2 det(v|Av|A2v)
− 1

2 det(wt|(wA)t|(wA2)t).

Consider now the sl2-triplet

x=


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, h=


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

, y =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

.
The Slodowy slice to x consists of all elements of the form

ξ :=


1
2b 1 0 0
u 1

2b p 2q
s 0 −b a

2r 0 c 0

.
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The coordinates a, b and c have degree two, whereas p, q, r, s have degree three and u has degree
four. Calculation shows

χ2(ξ) =−2(u− 3
4(ac− b2)).

In particular, the derivative of χ|S has rank one. Modulo χ2, we can express u in terms of the
coordinates a, b, c. This simplifies considerably the expression for χ6. In fact,

χ6(ξ) = t1t3 − t22 − 1
2(t24a+ 2t4t5b+ t25c)− 1

2(at3 − 2bt2 + ct1)χ2(ξ) + 1
4(ac− b2)χ2(ξ)2,

where

t1 = a(ac− b2) + 2(q2 − rp), z1 = as− 2br + cq,
t2 = b(ac− b2) + (rq − ps), z2 = ar − 2bq + cp,
t3 = c(ac− b2) + 2(r2 − qs).

Note that χ−1(0)⊂ C8 is isomorphic to the hypersurface X = {f = 0} ⊂ C7 with f = z2
1a−

2z1z2b+ z2
2c+ 2(t22 − t1t3). The polynomials t1, t2, t3, z1, z2 are a minimal set of equations

for the reduced singular locus Σ of X.

Let π′ :X ′→X denote the blow-up of X along Σ. As X and Σ are defined by explicitly given
polynomials, the calculation can be done with a computer algebra system. We used the program
SINGULAR [GPS01]. Inspection of the five affine coordinate charts for X ′ shows that π is
semismall, that the singular locus Σ′ of X ′ is irreducible and smooth, and that X ′ has transversal
A1-singularities along Σ′. A second blow-up π′′ :X ′′→X ′ along Σ′ finally yields a symplectic
resolution of X. Let F ′ := (π′)−1(0). Then F ′ is the hypersurface in P4 = P(x0, x1, x2, y0, y1)
given by the equation x0x2 − x2

1. The intersection of Σ′ with F ′ equals set-theoretically the
singular locus of F ′. It is, however, defined by the equations x0 + 2x1y1 + x2y

2
1, x2(x1 + 2y1), x3

2

on the affine chart U0 = {y0 = 1}, and by analogous equations on the affine chart U1 = {y1 = 1}.
Note that the singular locus of F ′ is covered by U1 ∪ U2. For an appropriate coordinate change,
we get F ′ ∩ U1 = A1 × Z with Z = {u1u3 − u2

2} ⊂ A3, and where the centre of the blow-up is
defined by u1, u2u3, u

3
3. The blow-up of Z along this ideal has a cell decomposition A2 t A1. As

the part not covered by the two charts is isomorphic to a smooth quadric in P3, we obtain, in
fact, a cell decomposition of F ′′ := (π′′ ◦ π′)−1(0) = (π′′)−1(F ′):

F ′′ = (A0 t A1) t (A1 t A0)× (A2 t A1) = A0 t 2A1 t 2A2 t A3.

In particular, H2(F ′′, Z) = Z2. As F ′′ and the fibre Fx have the same Betti numbers, this proves
the proposition for the minimal orbit.

Similar techniques can be used to treat the subsubregular orbit. It turns out that the slice is
again a hypersurface, which is in fact isomorphic to the hypersurface slice to the orbit of type
[4, 1, 1] for sp6. In particular, the Betti number of the fibre is 3 in this case. 2

11. The Lie algebra of type F4

Proposition 11.1. Let Fx denote the Springer fibre of a nilpotent element x in f4. Then
dimH2(Fx,Q) = 0, 6 or 4 if x belongs to the regular, the subregular or any other orbit,
respectively.
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For the discussion of the Lie algebra f4 we follow a path different from the other Lie algebras.
In [CLP88], De Concini, Lusztig and Procesi describe a general method of how to construct a
partition of the Springer fibre of a nilpotent element into locally closed subvarieties. In the case
of classical Lie algebras, this partition actually yields a cell decomposition. For the exceptional
Lie algebras the situation is more complicated. Fortunately, the situation simplifies when the
nilpotent element in question is distinguished in the sense of Bala and Carter [BC76]. This is
the case for a nilpotent element in the subsubregular orbit (i.e. the third largest nilpotent orbit)
of the Lie algebra f4. We outline the method of [CLP88].

Let x ∈ g be a nilpotent element in a simple Lie algebra. By the Jacobson–Morozov theorem,
there are elements h, y ∈ g such that x, h, y form a standard sl2-triplet in g. One can choose a
Cartan subalgebra h⊂ g containing h and a root basis ∆ = {αi}i=1,...` such that αi(h) > 0 for
all i= 1, . . . , `. In fact, by a result of Dynkin, αi(h) ∈ {0, 1, 2}. Thus one may associate to x
a weighted Dynkin diagram, where the node corresponding to the root αi is labelled by αi(h).
Following Dynkin, associating to x its weighted Dynkin diagram gives an injective map from the
set of conjugacy classes of nilpotent elements in g to the set of Dynkin diagrams labelled with
numbers 0, 1, or 2. For instance, the unique nilpotent orbit in f4 of dimension 44, to which we
will refer as the subsubregular orbit in the following, belongs to the weighted Dynkin diagram

0 2 > 0 2. (11.1)

Let g =
⊕

i g(i) be the weight decomposition for the action of h on g, i.e. g(i) = {v ∈ g | [h, v] =
iv}. Then g(0) is a reductive subalgebra of g, and for every i, the homogeneous component
g(i) is a natural representation of g(0). Moreover, by construction x ∈ g(2), and the map
ad(x) : g(0)→ g(2) is surjective. The element x is distinguished in the sense of Bala and Carter
if and only if this map is also bijective.

For the proof of the proposition, we need to understand the Lie algebra structure of f4(0)
and the structure of f4(2) as an f4(0)-representation for the case of the subsubregular orbit in f4.
After removal of all nodes with nonzero labels, the Dynkin diagram (11.1) decomposes into two
A1-diagrams. Let sl2(α1) and sl2(α3) denote the corresponding Lie subalgebras. Then

f4(0) = (sl2(α1)⊕ sl2(α3)) + h.

Let (abcd) denote the root space in f4 corresponding to the root aα1 + bα2 + cα3 + dα4. Then
f4(2) is the direct sum of all root spaces (abcd) with 0 · a+ 2 · b+ 0 · c+ 2 · d= 2. Using the
explicit list in [Bou81, planche VIII], it is not difficult to see that f4(2) is eight-dimensional and
is spanned by the following spaces.

(0001) // (0011)

(0100) //

��

(0110) //

��

(0120)

��
(1100) // (1110) // (1120)

Moreover, in this diagram, horizontal and vertical arrows denote the action of (0010)⊂ sl2(α3)
and (1000)⊂ sl2(α1), respectively. From this we see that

f4(2) = V3 ⊕ (V1 ⊗ S2(V3)),

where V1 and V3 denote the two-dimensional irreducible representations of sl2(α1) and sl2(α3),
respectively.

Proof of Proposition 11.1. According to results of Spaltenstein [Spa82, Table, p. 250], all
nilpotent orbits in f4 that are neither regular or subregular are contained in the closure of the
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unique orbit of dimension 44. It is well known that the second Betti number of the Springer fibre
for the subregular orbit is 6, as the Springer fibre itself is an E6-tree of projective lines. It therefore
suffices to show that the second Betti number of the Springer F fibre for the subsubregular orbit
is 4. The same then holds for all smaller nilpotent orbits by Lemma 5.2.

We may take a general element x ∈ f4(2) = V3 ⊕ (V1 ⊗ S2(V3)) as a representative of the
subsubregular orbit. Since x is distinguished, the algorithm of De Concini, Lusztig and Procesi
yields a decomposition F =

⋃
U FU into locally closed subvarieties FU , each of which is a vector

bundle FU →XU over a smooth subvariety XU ⊂F , the flag variety associated to the reductive
Lie algebra f4(0). The index U runs through the set of all linear subspaces of f4(2) that are
invariant under a fixed chosen Borel subalgebra b0 ⊂ f4(0). Note that F ∼= P(V1)× P(V3) =
P1 × P1.

For a given b0-invariant subspace U , the manifolds XU are defined as follows: a point in F
represented by a Borel subalgebra b⊂ f4(0) is contained in XU if and only if x ∈ [b, U ]. It is shown
in [CLP88] that all XU are smooth projective varieties. Moreover, codimF (XU ) = dim(f4(2)/U)
and dim(FU ) = dim(F) = 2 for all U . In particular, FU cannot contribute to the second Betti
number of F unless codimF (XU ) 6 1, or, equivalently, unless U equals f4(2) or a b0-invariant
hyperplane therein. More precisely,

dimH2(F ; Q) = dimH2(P1 × P1; Q) +
∑

codim U=1

dimH0(XU ; Q).

It remains to determine all b0-invariant hyperplanes U in f4(2) and for each U the number of
connected components of XU ⊂ P1 × P1.

In fact, there are exactly two b0-invariant hyperplanes U1 and U2 given as follows. If W1 ⊂ V1

and W3 ⊂ V3 denote the unique b0-invariant lines, then

U1 = ker(f4(2)→ V3→ V3/W3)

and

U2 = ker(f4(2)→ V1 ⊗ S2V3→ V1/W1 ⊗ S2(V3/W3).

The corresponding manifolds XU1 , XU2 ⊂ P1 × P1 are the zero-sets of sections in the line
bundles O(0, 1) and O(1, 2), respectively, and hence connected. This shows that dimH2(F ; Q) =
2 + 1 + 1 = 4. 2

12. Dual pairs and Slodowy slices

When g is of type Bn, Cn, F4 or G2, the Slodowy slice for the subregular orbit gives a Poisson
deformation of a surface singularity of type A2n−1, Dn+1, E6 or D4 respectively. They are not
universal. On the other hand, we also have Poisson deformations of these surface singularities
in the Lie algebras of type A2n−1, Dn+1, E6 and D4. They turn out to be universal. It would
be quite natural to expect similar phenomena for all slices listed in Theorem 1.2. In this section
we shall consider the Poisson deformation of the (complex analytic) germ (S0, x) instead of S0.
Theorem 1.2 holds true if we replace S (respectively S0) by (S, x) (respectively (S0, x)). One
can prove the following.

Proposition 12.1. Let ϕS1 : S1→ Cn be the restriction of the adjoint quotient map to the
Slodowy slice for x1 ∈O[2n−i,i] ⊂ so2n with i odd or i= n, and let ϕS2 : S2→ Cn−1 be the
restriction of the adjoint quotient map to the Slodowy slice for x2 ∈O[2n−i−1,i−1] ⊂ sp2n−2.
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Then there are a hyperplane L of Cn and a commutative diagram of germs of complex-analytic
spaces

(ϕ−1
S1

(L), x1) //

��

(S2, x2)

��
(L, 0) // (Cn−1, 0)

(12.1)

where the horizontal map on the first row is an isomorphism preserving the Poisson brackets up
to a reversal of sign. In particular, the universal Poisson deformation of (S2,0, x2) is realised as
a Slodowy slice in so2n with the reversed Poisson structure. Here S2,0 is the central fibre of ϕS2 .

Proof. Let V be a 2n-dimensional complex vector space with a non-degenerate symmetric form
( , )V and let U be a 2n− 2-dimensional complex vector space with a non-degenerate skew-
symmetric form ( , )U . For an element X ∈Hom(V, U), let X∗ ∈Hom(U, V ) be its adjoint,
characterised by (Xv, u)U = (v, X∗u)V . According to Kraft and Procesi [KP82], define maps

π : Hom(V, U)→ sp(U) and ρ : Hom(V, U)→ so(V )

by π(X) :=XX∗ and ρ(X) :=X∗X. Note that (A, B) ∈ SO(V )× Sp(U) acts on X ∈
Hom(V, U) by (A, B)X :=BXA−1. On the other hand, so(V ) and sp(U) have adjoint actions
of SO(V ) and Sp(U), respectively, and the maps π and ρ are Sp(U)-equivariant and SO(V )-
equivariant, respectively. Let Hom′(V, U)⊂Hom(V, U) be the open subset consisting of surjective
linear maps, and let D ⊂ so(V ) be the determinantal variety consisting of the endomorphisms
with rank less than or equal to 2n− 2. More precisely, D is cut out by the vanishing of the
pfaffian. By [KP82, Theorem 1.2], we have

Im(ρ) =D.

Restricting π and ρ to Hom′(V, U) we get a diagram:

D
ρ′←−−Hom′(V, U) π′−−→ sp(U).

Kraft and Procesi observed in [KP82, 13.5] that one can find an element X0 ∈Hom′(V, U) so
that π′(X0) ∈O[2n−i−1,i−1] and ρ′(X0) ∈O[2n−i,i], and so that both π′ and ρ′ are smooth at X0.

Let us recall here the notion of a dual pair introduced by Weinstein [Wei83] for C∞-manifolds.
Here we consider the analogous notion in the complex-analytic setting. A dual pair is a diagram

P1
j1←−− P j2−−→ P2

with P a holomorphic symplectic manifold, and Pi, i= 1, 2, Poisson manifolds such that both
j1 and j2 are Poisson mappings and j−1

i OPi for i= 1, 2 are mutual centralisers with respect to
{ , }P . If j1 and j2 are both smooth morphisms, it is called a full dual pair. For instance, when a
complex Lie group G acts freely on P preserving the symplectic form and provided its moment
map µ exists, the diagram

P/G←− P µ−−→ g∗

is a dual pair (cf. [Wei83, § 8]). Weinstein observed in [Wei83, Theorem 8.1], that if

P1
j1←−− P j2−−→ P2

is a full dual pair, then, for any point x ∈ P , the transverse Poisson structures on P1 and P2 at
j1(x) and j2(x) are anti-isomorphic as Poisson manifolds. In the remainder, we will apply this
result to the situation above.
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We define a symplectic 2-form ω on Hom(V, U) by ω(X, Y ) := 2 tr(XY ∗). Then Sp(U) and
SO(V ) act naturally on Hom(V, U) preserving ω, and π and ρ are the moment maps for these
actions under the identifications of sp(U) with sp(U)∗ and of so(V ) with so(V )∗ by the trace
maps. By [KP82, Proposition 11.1], Sp(U) acts freely on Hom′(V, U), and ρ′ factorises as

Hom′(V, U)→Hom′(V, U)/ Sp(U)⊂D,

where Hom′(V, U)/Sp(U) is an open subset of D. Now let us consider the adjoint quotient
map ϕ : so(V )→ Cn. One of the components of ϕ is the pfaffian pf, a square root of the
determinant and hence an invariant polynomial of weight n. Define a hyperplane L⊂ Cn by
the equation pf = 0. Then we can write D = ϕ−1(L). By this description, we see that the
standard Poisson structure of so(V ) restricts to give a Poisson structure on D. As an open
set, Hom′(V, U)/Sp(U) also inherits a Poisson structure. Since ρ is the moment map for the
SO(V )-action, this Poisson structure coincides with the natural Poisson structure induced by
the quotient map Hom′(V, U)→Hom′(V, U)/Sp(U). This implies that the diagram

D
ρ′←−−Hom′(V, U) π′−−→ sp(U)

is a full dual pair. The symplectic leaf of sp(U) passing through π′(X0) is the nilpotent orbit
O[2n−i−1,i−1]. Similarly, the symplectic leaf of D passing through ρ′(X0) is the nilpotent
orbit O[2n−i,i]. We then see that the transverse Poisson structure on D at ρ′(X0) and the
transverse Poisson structure on sp(U) at π′(X0) are anti-isomorphic by [Wei83, Theorem 8.1].
By the Sp(U)-action and the SO(V )-action, we may assume that x1 = ρ′(X0) and x2 = π′(X0).
Therefore, there is an anti-isomorphism (S1 ∩D, x1)∼= (S2, x2) of Poisson structures.

Let (L, 0) be the germ of L at the origin. Restricting the adjoint quotient map ϕ to S1 ∩D,
we get a map (S1 ∩D, x1)→ (L, 0). On the other hand, let ϕ′ : sp(U)→ Cn−1 be the adjoint
quotient map for sp(U). Restricting ϕ′ to S2, we get a map (S2, x2)→ (Cn−1, 0). Since the
isomorphism between (S1 ∩D, x1) and (S2, x2) preserves symplectic leaves, we finally have the
desired commutative diagram.

(S1 ∩D, x1) //

��

(S2, x2)

��
(L, 0) // (Cn−1, 0)

(12.2)

This completes the proof. 2
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