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A SIMPLIFIED LOWER BOUND FOR IMPLICATIONAL LOGIC

EMIL JEŘÁBEK

Abstract. We present a streamlined and simplified exponential lower bound on the length
of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler’s dag-like
natural deduction.

§1. Introduction. Frege proof systems (often called Hilbert-style systems
outside proof complexity) are among the simplest and most natural proof
systems for classical and nonclassical propositional logics. By results of
Reckhow and Cook [7, 31], all classical Frege systems are not only
polynomially equivalent to each other, but also to natural deduction systems
and to sequent calculi (with cut), which is further testimony to their
robustness and fundamental status. Although it is commonly assumed
for all classical propositional proof systems that some tautologies require
exponentially large proofs, this has been proven so far only for relatively
weak proof systems, such as constant-depth Frege, polynomial calculus,
and cutting planes (see, e.g., [5, 25]). Unrestricted Frege systems are far
beyond the reach of current techniques: nothing better is known than a
linear lower bound on the number of proof lines and a quadratic bound on
the overall proof size [3, 23].

Interestingly, the state of affairs is much better in nonclassical logics:
Hrubeš [13–15] proved exponential lower bounds on the number of lines
in Frege proofs for some modal logics and intuitionistic logic, which was
generalized by Jeřábek [19] to all transitive modal and superintuitionistic
logics with unbounded branching, and by Jalali [17] to substructural logics.
Even though the techniques are based on variants of the feasible disjunction
property (i.e., given a proof of ϕ ∨ �, we can decide in polynomial time
which of ϕ or � is provable), and as such ostensibly require disjunction,
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Jeřábek [20] showed that the superintuitionistic exponential lower bounds
hold for a sequence of purely implicational intuitionistic tautologies.

In a series of papers, Gordeev and Haeusler [9–12] claim to prove that all
intuitionistic implicational tautologies have polynomial-size proofs in a dag-
like version of (Gentzen/Prawitz-style) natural deduction, which—if true—
would imply NP = PSPACE. These claims are wrong, as they contradict
the above-mentioned exponential lower bounds on the length of proofs
of implicational tautologies in intuitionistic proof systems. Unfortunately,
this fact may not be so obvious to readers unfamiliar with nonclassical
proof complexity literature, and in any event, the full proof of the lower
bound requires tracking down multiple papers: the Frege lower bound for
implicational tautologies in [20] builds on a lower bound for unrestricted
intuitionistic tautologies, as proved in either of [14, 15, 19]; these in turn
rely on an exponential lower bound on the size of monotone circuits
separating the Clique–Colouring disjoint NP pair which—in view of an
observation of Tardos [32]—follows from Alon and Boppana [1] (improving
a superpolynomial lower bound by Razborov [30]). Finally, one needs
a polynomial simulation of natural deduction by Frege systems: this is
originally due to Reckhow and Cook [7, 31], but they state it for a sequent-
style formulation of natural deduction rather than Prawitz-style, let alone
the further variant introduced only recently by Gordeev and Haeusler; while
it is clear to a proof complexity practitioner that the argument can be easily
adapted to all such variants, this is, strictly speaking, not explicitly proved
in any extant literature.

The primary goal of this paper is to give a simple direct proof of an
exponential lower bound on the length of proofs of intuitionistic implica-
tional tautologies in Gordeev and Haeusler’s dag-like natural deduction.
The streamlined argument replaces all proof-theoretic components of the
lower bound mentioned above (intuitionistic lower bound, reduction to
implicational logic, simulation of natural deduction by Frege), thus it is
self-contained except for the combinatorial component (i.e., a monotone
circuit lower bound; to simplify our tautologies, we will use a lower bound
by Hrubeš and Pudlák [16] instead of Alon–Boppana). It is based on the
efficient Kleene slash approach employed in [8, 18, 19, 27]. While we strive
to keep the proof of the main result as simple as possible, we also briefly
indicate how to generalize it to recover almost the full strength of the lower
bound from [20].

The intended audience of the paper is twofold:

• Readers with some general background in logic or computer science,
but unfamiliar with proof complexity. For them, the paper gives a
simple, yet detailed, exposition of an exponential lower bound on
intuitionistic implicational logic so that they cannot be fooled by the
fact that Gordeev and Haeusler’s claims have been published.
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• Researchers in proof complexity—not necessarily interested in Gordeev
and Haeusler’s claims—for whom the paper brings a new, much shorter
proof of the known implicational lower bound, bypassing implicational
translation of full intuitionistic logic. We stress that even though the
proof system for which it is formulated is not traditional, it is quite
natural, and anyway the lower bound also applies to the standard
Frege system for implicational intuitionistic logic as the latter obviously
embeds in dag-like natural deduction (up to subproofs of Frege axioms,
it can be thought of as natural deduction without the →-introduction
rule).

Our proof of the main lower bound does not involve any proof system
other than dag-like natural deduction itself. However, for the sake of
completeness, we include an appendix showing the equivalence of dag-
like natural deduction with the standard intuitionistic implicational Frege
system up to polynomial increase in proof size, as well as the polynomial
equivalence of both systems to their tree-like versions (adapting the
original result of Krajı́ček along the lines of [20]). Thus, dag-like natural
deduction does not offer any significant shortening of proofs compared
to the conventional tree-like natural deduction. The appendix may be of
independent interest as we took some effort to optimize the bounds.

An anonymous source pointed out that since Gordeev and Haeusler’s
“horizontal compression” only changes the shape of the proof, but does not
introduce any new formulas, their claims also contradict other well-known
results in proof complexity, namely constant-depth Frege lower bounds
such as Beame et al. [2]. For a sketch of the argument, take a sequence
of tautologies exponentially hard for constant-depth proofs, such as the
pigeonhole principle, and convert it to a sequence of (intuitionistically
valid) implicational tautologies ϕn of polynomial size and constant
depth (measured, say, using the definition dp(ϕ → �) = max{1 + dp(ϕ),
dp(�)}). Each ϕn has a cut-free sequent proof of polynomial height (and
exponential size), which only involves formulas of constant depth by the
subformula property, and thus translates to a natural deduction proof of
polynomial height using only formulas of constant depth (with polynomially
many distinct formulas). Gordeev and Haeusler’s claims imply that this
can be compressed to a polynomial-size dag-like natural deduction proof
using formulas of constant depth. The latter, however, can be converted
to a polynomial-size (classical) constant-depth sequent or Frege proof,
contradicting the hardness of the tautologies. We will not pursue this
connection further in this paper, and leave the details to an interested
reader.

The paper is organized as follows. In Section 2 we review the needed
prerequisites such as dag-like natural deduction and monotone Boolean
circuits. Section 3 is devoted to the proof of the main exponential lower
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bound; we discuss extensions of the lower bound in Section 4, and we
conclude with a few remarks in Section 5. We present the equivalence of dag-
like natural deduction to a Frege system in Appendix A, and the equivalence
of both systems to their tree-like versions in Appendix B.

§2. Preliminaries. The set Form of implicational formulas (or just
formulas if no confusion arises) is the smallest set that includes the set
of propositional variables (or atoms) Var = {pn : n ∈ �}, and such that if ϕ
and � are formulas, then (ϕ → �) is a formula. The size |ϕ| of a formula ϕ
is the number of occurrences of variables and connectives in ϕ, i.e., |pn| = 1
and |(ϕ → �)| = 1 + |ϕ| + |�|. We may omit outer brackets in ϕ → �, and
we treat → as a right-associative operator so that, e.g., ϕ → � → � → �
stands for (ϕ → (� → (� → �))). (Despite these conventions, we may leave
various redundant brackets in place to highlight the formula structure.) We
will denote formulas with lower-case Greek letters, and for convenience, we
will often use lower-case Latin letters (with indices and/or other decoration)
other than pn for variables. We write �p for a finite tuple of variables
〈pi : i < n〉, especially if n is immaterial; the notation ϕ( �p) indicates that
all variables occurring in ϕ are among �p.

Upper-case Greek letters will usually denote finite sets or sequences of
formulas. Our indices generally start from 0; in particular, 〈ϕi : i < n〉, or
more concisely 〈ϕi〉i<n, denotes the sequence 〈ϕ0, ... , ϕn–1〉 (which is the
empty sequence 〈〉 if n = 0). The length of a sequence Γ = 〈ϕi〉i<n, denoted
|Γ|, is n, and the size of Γ, denoted ‖Γ‖, is

∑
i<n |ϕi |. If Γ = 〈ϕi〉i<n is a

sequence of formulas and � ∈ Form, we introduce the abbreviation Γ → �
for the formula1

ϕn–1 → ··· → ϕ1 → ϕ0 → �.
Formally, Γ → � is defined by induction on n: 〈ϕi〉i<0 → � is � and
〈ϕi〉i<n+1 → � is ϕn → 〈ϕi〉i<n → �.

A substitution is a mapping � : Form → Form such that �(ϕ → �) =
(�(ϕ) → �(�)) for all ϕ,� ∈ Form. If Γ ⊆ Form, we write �(Γ) = {�(ϕ) :
ϕ ∈ Γ}.

The intuitionistic implicational logic IPC→ is defined by its consequence
relation 	 ⊆ P(Form) × Form: we put Γ 	 ϕ iff ϕ belongs to the smallest
subset of Form that is closed under the rule of modus ponens

ϕ,ϕ → � / �,

1It might appear more visually pleasing to define it as ϕ0 → ϕ1 → ··· → ϕn–1 → �, but
the reverse order will be technically more convenient, e.g., in some inductive arguments in
Appendix A.
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and includes Γ and the logical axioms

ϕ → � → ϕ
(ϕ → � → �) → (ϕ → �) → (ϕ → �)

for ϕ,�, � ∈ Form. As is conventional, we omit braces around formulas
on the left-hand side of 	, and write commas in place of ∪, so that, e.g.,
Γ, ϕ, � 	 � stands for Γ ∪ {ϕ,�} 	 �; we may also coerce finite sequences Γ
to sets. We write	 ϕ for∅ 	 ϕ, in which case we say thatϕ is an intuitionistic
implicational tautology, or IPC→ tautology for short.

Lemma 2.1 (deduction theorem). Let Π ⊆ Form, ϕ ∈ Form, and let Γ be
a finite sequence of formulas. Then

Π,Γ 	 ϕ ⇐⇒ Π 	 Γ → ϕ.
A Kripke model is a structure 〈W,≤,�〉, where ≤ is a partial order on W,

and � ⊆W × Form satisfies

x � ϕ =⇒ ∀y ≥ x y � ϕ,
x � ϕ → � ⇐⇒ ∀y ≥ x (y � ϕ =⇒ y � �)

for all x ∈W and ϕ,� ∈ Form. Unwinding the definitions, we see that for
any sequence Γ = 〈ϕi〉i<n,

x � Γ → � ⇐⇒ ∀y ≥ x
(
(∀i < n y � ϕi) =⇒ y � �

)
.

A formula ϕ holds in 〈W,≤,�〉 if x � ϕ for all x ∈W .
Intuitionistic logic is complete w.r.t. Kripke semantics, even if we only

consider finite frames (see e.g., [6, 33]):

Theorem 2.2 (finite model property). A formula is an IPC→ tautology if
and only if it holds in all finite Kripke models.

Let us now present Gordeev and Haeusler’s dag-like natural deduction
calculus NM→ based on [10]. An NM→-proof skeleton is a finite directed
acyclic graph (dag) 〈V,E〉with a unique node of out-degree 0, called the root,
and with all nodes having in-degree at most 2; nodes of in-degree 0, 1, and 2
are called leaves (assumptions), (→I)-nodes, and (→E)-nodes, respectively.
If 〈u, v〉 ∈ E, then u is a premise2 of v. A thread is a directed path starting
from a leaf; a thread is maximal if it ends in the root. An NM→-derivation
〈V,E, �〉 is an NM→-proof skeleton 〈V,E〉 endowed with a vertex labelling
� = 〈�v : v ∈ V 〉 with �v ∈ Form, such that for all v ∈ V :

2In [10], proofs go upside down so that edges are directed from conclusions to premises;
we reversed them to a more natural order. Also, they include an auxiliary repetition rule that
we omit for simplicity (it can be eliminated from any NM→ derivation without increasing its
size).
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• if v is an (→I)-node, it is labelled with an implication α → 	 such that
the premise of v is labelled with 	 ;

• if v is an (→E)-node, there are formulas α, 	 such that v is labelled with
	 , and the two premises of v are labelled withα andα → 	 , respectively.

A thread with leaf v is discharged if it contains an (→I)-node labelled with
α → 	 where α = �v . Let ϕ ∈ Form and Γ ⊆ Form. An NM→-derivation is
an NM→-derivation of ϕ from Γ if the root is labelled ϕ and the leaves of all
undischarged maximal threads are labelled with elements of Γ. An NM→-
proof of ϕ is an NM→-derivation of ϕ from ∅. The number of lines of an
NM→-derivation Π = 〈V,E, �〉 is |V |, and the size of Π is ‖Π‖ =

∑
v∈V |�v |.

It may be difficult to verify the condition on discharging maximal threads
directly from the definition. As observed in [10], it can be checked efficiently
as follows. Given an NM→-derivation Π = 〈V,E, �〉, we define for each
v ∈ V a set Av ⊆ {�u : u is a leaf} by well-founded recursion:

Av =

⎧⎪⎨
⎪⎩

{�v}, v is a leaf,
Au \ {α}, v is an (→I)-node with premise u and �v = α → 	,
Au0 ∪ Au1 , v is an (→E)-node with premises u0 and u1.

Note that given Π, we can compute 〈Av : v ∈ V 〉 in polynomial time.

Lemma 2.3 [10]. An NM→-derivation 〈V,E, �〉 with root 
 is a derivation of
�
 from Γ if and only if A
 ⊆ Γ.

Proof. Show that Av is the set of labels of undischarged threads ending
in v by well-founded induction on v. �

Likewise, we can show the soundness of NM→-derivations by well-
founded induction on v, using the deduction theorem.

Lemma 2.4. For any NM→-derivation 〈V,E, �〉 and v ∈ V , Av 	 �v .
On the other hand, tree-like NM→ derivations are the same as the

implicational fragment of the usual Gentzen–Prawitz natural deduction
(see, e.g., [26, 28]). This implies the completeness of the calculus, as observed
in [10].

Lemma 2.5. A formula ϕ is an IPC→ tautology if and only if it has an
NM→-proof.

We assume familiarity with classical propositional logic, but briefly, we
consider formulas built from propositional variables using the connectives
{→,∧,∨,¬,�,⊥}. An assignment to a set of variables X is a function
a : X → 2, where 2 = {0, 1}. We denote the set of all such assignments as
2X . For any a ∈ 2X and a formula ϕ over variables X, we define the relation
a � ϕ (in words, a satisfies ϕ) in the usual way:

a � p ⇐⇒ a(p) = 1, p ∈ X,

https://doi.org/10.1017/bsl.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.6


A SIMPLIFIED LOWER BOUND FOR IMPLICATIONAL LOGIC 59

a � (ϕ → �) ⇐⇒ a � ϕ or a � �,
a � ¬ϕ ⇐⇒ a � ϕ,

and so on for the other connectives. A formula ϕ is a classical tautology if
a � ϕ for all assignments a to the variables of ϕ.

We also need a bit of circuit complexity. A monotone circuit over a set X of
variables is C = 〈V,E, g〉 where 〈V,E〉 is a dag with a unique node 
 of out-
degree 0 (the root), endowed with a labelling g : V → X ∪ {∧,∨} such that
nodes v with g(v) ∈ X have in-degree 0. Nodes v ∈ V are also called gates,
and edges e ∈ E are called wires. We may write C ( �p) to denote that C is a
circuit over a finite tuple of variables �p. The size of a circuit C = 〈V,E, g〉
is |C | = |E| (i.e., the number of wires). By well-founded recursion, any
assignment a : X → 2 extends to a unique function â : V → 2, called the
evaluation of C, such that

â(v) =

⎧⎨
⎩
a(g(v)), g(v) ∈ X,
inf {â(u) : 〈u, v〉 ∈ E}, g(v) = ∧,
sup{â(u) : 〈u, v〉 ∈ E}, g(v) = ∨,

where inf ∅ = 1, sup∅ = 0 (thus ∧- and ∨-gates without inputs act as
constants� and⊥, respectively). A circuit C with root 
 computes a Boolean
function f : 2X → 2 if f(a) = â(
) for each a ∈ 2X . More generally, a
disjoint pair is P = 〈P0, P1〉 where P0, P1 ⊆ 2X and P0 ∩ P1 = ∅; a circuit
C separates P if â(
) = i for each i ∈ 2 and a ∈ Pi . We will write a � C for
â(
) = 1.

Let �p, �q, and �r be pairwise disjoint tuples of variables, and ϕ( �p, �q) and
�( �p, �r) classical formulas. Then a circuit C ( �p) interpolates the implication
ϕ → � (which must be a classical tautology) ifϕ( �p, �q) → C ( �p) andC ( �p) →
�( �p, �r) are classical tautologies (i.e., a � ϕ =⇒ a � C and a � C =⇒
a � � for all assignments a ∈ 2{ �p,�q,�r}), or in other words, if C separates the
interpolation pair Itpϕ,� = 〈Itp0

�, Itp1
ϕ〉, where

Itp0
� = {a ∈ 2 �p : ∃c ∈ 2�r 〈a, c〉 � �},

Itp1
ϕ = {a ∈ 2 �p : ∃b ∈ 2�q 〈a, b〉 � ϕ}.

For any n ≥ 2, we define the Colouring–Cocolouring disjoint pair CCn =
〈CC0

n,CC1
n〉 over the set of variables Xn =

([n]
2

)
(i.e., the set of unordered

pairs of elements of [n] = {0, ... , n – 1}) by

CC0
n =

{
E ⊆ Xn : the graph 〈[n], E〉 is k-colourable

}
,

CC1
n =

{
E ⊆ Xn : the graph 〈[n], E〉 is k-colourable

}
,

where E = Xn \ E, k = �
√
n� – 1, and we identify E ⊆ Xn with its char-

acteristic function Xn → 2. To see that CC0
n ∩ CC1

n = ∅, observe that if
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c0, c1 : [n] → [k] are k-colourings of 〈[n], E〉 and 〈[n], E〉, respectively, then
c0 × c1 : [n] → [k] × [k] is an injection, thus n ≤ k2.

An exponential lower bound on the monotone circuit complexity (and
even monotone real circuit complexity) of CCn was proved by Hrubeš and
Pudlák [16, Theorem 10], using machinery from Jukna [21]:

Theorem 2.6. For n � 0, all monotone circuits separating CCn have size
2Ω(k1/4) = 2Ω(n1/8).

Strictly speaking, Hrubeš and Pudlák work with bounded fan-in monotone
circuits, i.e., such that the in-degree of all gates is at most 2, and they measure
size by the number of gates. This makes no difference, as a d-ary ∧- or ∨-
gate can be simulated by d – 1 binary gates using 2(d – 1) wires, thus any
monotone circuit with s wires can be transformed to a bounded fan-in
monotone circuit with s ′ ≤ 2s wires; moreover, a circuit with s ′ wires has
at most s ′ + 1 gates (we may associate each node other than the root with
an outgoing wire). This mild size increase does not affect the shape of the
lower bound in Theorem 2.6.

§3. An exponential lower bound. In this section, we will prove our
main lower bound, viz. there is an explicit sequence of implicational
intuitionistic tautologies that require NM→-proofs with exponentially many
lines.

Let us start with construction of the IPC→ tautologies, which will express
the disjointness of CCn. Intuitionistic tautologies expressing disjointness
of the Clique–Colouring pair were first considered by Hrubeš [14]; they
were made negation-free in Jeřábek [19], and implicational in [20]. We
will further simplify the tautologies from [20] by using a somewhat more
direct translation to implicational logic, and by replacing Clique–Colouring
with the Colouring–Coclouring pair, which leads to more symmetric
(and shorter) formulas. Fix n ≥ 2 and k = �

√
n� – 1. Our tautologies will

employ variables pij and p′i,j (i < j < n), representing the edge relation
of a graph G = 〈[n], E〉 and its complement, and variables qil and ril
(i < n, l < k), representing a k-colouring of G and of its complement
(respectively).

To motivate the formal definition below, we can state in classical
propositional logic that �q define a (possibly multivalued) k-colouring of
G by the formula

∧
i<n

∨
l<k

qil ∧
∧
i<j<n
l<k

¬(qil ∧ qjl ∧ pij),
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and similarly for the complement, thus the disjointness of CCn is expressed
by the classical tautology

( ∧
i<n

∨
l<k

qil →
∨
i<j<n
l<k

(qil ∧ qjl ∧ pij)
)
∨

( ∧
i<n

∨
l<k

qil →
∨
i<j<n
l<k

(ril ∧ rjl ∧ ¬pij)
)
,

which can be made negation-free using the �p ′ variables:
∧
i<j<n

(pij ∨ p′ij) →
(∧
i<n

∨
l<k

qil →
∨
i<j<n
l<k

(qil ∧ qjl ∧ pij)
)

∨
(∧
i<n

∨
l<k

ril →
∨
i<j<n
l<k

(ril ∧ rjl ∧ p′ij)
)
.

This turns out to be an intuitionistic tautology as well. In order to convert it
to an implicational tautology, we introduce further auxiliary variables u, v,
and w: the idea is to rewrite an implication � → � as (� → u) → (� → u),
where � → u and � → u can be written using implicational formulas when
� and � are monotone formulas. After some manipulation we end up with
the following.

Definition 3.1. Let n ≥ 2 and k = �
√
n� – 1. We define the following

implicational formulas in variables pij , p′ij , qil , ril , u, v, and w, where i <
j < n and l < k:

αn( �p, �q, v) =
〈
〈qil → v〉l<k → v

〉
i<n

→ 〈qil → qjl → pij → v〉i<j<n
l<k

→ v,

�n( �p, �p ′, �q, �r, u, v, w) =
〈
(pij → u) → (p′ij → u) → u

〉
i<j<n

→
(
αn( �p, �q, v) → u) → (

αn( �p ′, �r, w) → u
)
→ u.

(The order in which we enumerate the multiply-indexed sequences such as
〈... 〉i<j<n does not matter.)

Observation 3.2. |�n| = O(n2k) = O(n5/2).

Lemma 3.3. The formulas �n are intuitionistic implicational tautologies.

Proof. Assume for contradiction that �n does not hold in a finite
Kripke model 〈W,≤,�〉. This means that there exists x ∈W such that
x � (pij → u) → (p′ij → u) → u for all i < j < n, x � αn( �p, �q, v) → u, x �
αn( �p ′, �r, w) → u, but x � u. Replacing x with some x̃ ≥ x if necessary, we
may assume that x is maximal such that x � u, i.e., x′ � u for all x′ > x.

For each i < j < n, x � (pij → u) → (p′ij → u) → u implies that x �

pij → u or x � p′ij → u. Since u is true in all x′ > x, we obtain

∀i < j < n (x � pij or x � p′ij). (3.1)
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Sincex � αn( �p, �q, v) → u, we havex � αn( �p, �q, v), thus there exists y ≥ x
such that y � 〈qil → v〉l<k → v for all i < n, and y � qil → qjl → pij → v
for all i < j < n and l < k, but y � v. As above, we may assume that y ′ � v
for all y ′ > y. Then for every i < n, y � 〈qil → v〉l<k → v implies y � qil →
v for some l < k, whence y � qil by maximality. That is, we can find a
colouring function c : [n] → [k] such that y � qi,c(i) for all i < n.

If i < j < n are such that c(i) = c(j) = l , then y � qil → qjl → pij → v
and y � v implies y � pij , and a fortiori x � pij . This shows that c is a
proper k-colouring of the graph 〈[n], E〉, where E =

{
{i, j} : x � pij

}
.

Since x � αn( �p ′, �r, w) → u, the same argument gives a k-colouring
c ′ : [n] → [k] of 〈[n], E ′〉, where E ′ =

{
{i, j} : x � p′ij

}
. But then (3.1)

implies that the function c × c ′ : [n] → [k] × [k] is injective, thus n ≤ k2 <
n, a contradiction. �

The remaining task is to prove a form of monotone feasible interpolation
(based on feasible disjunction property) for NM→, which will imply an
exponential lower bound for the �n tautologies using Theorem 2.6. There
are many ways how to prove the disjunction property of intuitionistic logic
and various intuitionistic theories, one of them being Kleene’s slash [22].
Efficient versions of Kleene’s slash were used by Ferrari, Fiorentini, and
Fiorino [8] (under the umbrella machinery of “extraction calculi”) to prove
the feasible disjunction property for the intuitionistic natural deduction
system (which was originally proved by Buss and Mints [4] using a form
of cut elimination); by Mints and Kojevnikov [27] to prove the polynomial
equivalence of intuitionistic Frege systems using admissible rules (with a
considerably simplified argument given by Jeřábek [18]); and by Jeřábek [19]
to prove an exponential lower bound on intuitionistic Extended Frege
proofs. We will adapt the argument from [19] to a purely implicational
setting, using a disjunction-free analogue of the disjunction property.

Definition 3.4. If P ⊆ Form, a P-slash is a unary predicate | on Form
such that

|(ϕ → �) ⇐⇒
(
‖ϕ =⇒ |�

)

for all ϕ,� ∈ Form, where we define the short-hand

‖ϕ ⇐⇒ |ϕ and ϕ ∈ P.

If Γ is a set of formulas, we write ‖Γ if ‖ϕ for all ϕ ∈ Γ. When we need
to consider several slash operators at the same time, we may distinguish
them by subscripts, which are carried over to ‖. We warn the reader that a
P-slash is not uniquely determined by P, as we have liberty in defining |p
for p ∈ Var; however, an arbitrary choice of | on Var has a unique extension
to a P-slash.
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If Π = 〈V,E, �〉 is an NM→-derivation, a set P ⊆ Form is Π-closed if
Av ⊆ P =⇒ �v ∈ P for all v ∈ V .

Unwinding the definition, we obtain:

Observation 3.5. If Γ is a finite sequence of formulas, and ϕ ∈ Form,
then

|(Γ → ϕ) ⇐⇒
(
‖Γ =⇒ |ϕ

)
.

We first verify that being Π-closed is enough to ensure the soundness of
the slash:

Lemma 3.6. Let Π be an NM→-proof of ϕ, P be a Π-closed set of formulas,
and | be a P-slash. Then ‖ϕ.

Proof. We prove

‖Av =⇒ ‖�v (3.2)

by well-founded induction on v ∈ V . This is trivial if v is a leaf. Let v be
an (→E)-node with premises u0, u1, such that �u0 = α, �u1 = (α → 	), and
�v = 	 , and assume ‖Av . Since Aui ⊆ Av , the induction hypothesis gives
‖α and ‖(α → 	). Then the definition of |(α → 	) ensures |	 , and Av ⊆ P
implies 	 ∈ P as P is Π-closed, thus ‖	 .

Finally, let v be an (→I)-node with premise u such that �u = 	 and �v =
(α → 	), and assume ‖Av . Then Av ⊆ P implies �v ∈ P as P is Π-closed,
hence it suffices to show |(α → 	). Thus, assume ‖α; since Au ⊆ Av ∪ {α},
we have ‖Au , thus ‖	 by the induction hypothesis. �

Next, we need to furnish ourselves with Π-closed sets.

Definition 3.7. Let Π = 〈V,E, �〉 be an NM→-derivation andP ⊆ Form.
The Π-closure of P, denoted clΠ(P), isP|V |, where we definePi for each i ∈ �
by

P0 = P,
Pi+1 = Pi ∪ {�v : v ∈ V,Av ⊆ Pi}.

Lemma 3.8. Let Π be an NM→-derivation and P ⊆ Form.

(i) The set clΠ(P) ⊇ P is Π-closed.
(ii) P 	 ϕ for all ϕ ∈ clΠ(P).

Proof. (i): Let Π = 〈V,E, �〉 and t = |V |. It is clear from the definition
that if Pi = Pi+1, then Pi is Π-closed, and Pi = Pj for all j ≥ i . Thus,
it suffices to shows that Pi = Pi+1 for some i ≤ t. If not, then P = P0 �
P1 � ··· � Pt+1, thus |Pi \ P| ≥ i for each i ≤ t + 1 by induction on i; but
Pi ⊆ P ∪ {�v : v ∈ V }, thus t ≥ |Pt+1 \ P| ≥ t + 1, a contradiction.

(ii): We can prove P 	 ϕ for all ϕ ∈ Pi by induction on i using
Corollary 2.4. �
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It will be crucial in what follows that Π-closure is efficiently computable:
e.g., it is easy to see that it is computable in polynomial time; but what we will
actually need is that it is computable by polynomial-size monotone circuits
in the following sense.

Lemma 3.9. Let Π = 〈V,E, �〉 be an NM→-derivation with t = |V | lines,
F = {ϕi : i < n} ⊆ Form be such that {�v : v ∈ V } ⊆ F , and ϕ ∈ F .

Then there exists a monotone circuit C of size O(t3) over variables X =
{xi : i < n} such that for every assignment a ∈ 2X ,

a � C ⇐⇒ ϕ ∈ clΠ
(
{ϕi : a(xi) = 1}

)
.

Proof. We may assume ϕ = ϕ0. If ϕ /∈ FΠ = {�v : v ∈ V }, then ϕ ∈
clΠ(P) ⇐⇒ ϕ ∈ P, which is computable by the trivial circuit C = x0,
thus we may assume ϕ ∈ FΠ. More generally, we observe that clΠ(P) =
P ∪ clΠ(P ∩ FΠ), thus we may assume F = FΠ; in particular, n ≤ t.

We consider a circuit C with nodes yi,j for i < n and j ≤ t, and zv,j for
v ∈ V and j < t, wired such that

yi,0 ≡ xi ,
yi,j+1 ≡ yi,j ∨

∨
v∈V
�v=ϕi

zv,j ,

zv,j ≡
∧
i<n
ϕi∈Av

yi,j .

We define the root of C to be y0,t (and we remove nodes from which y0,t is
not reachable to satisfy the formal definition of a circuit). It follows from the
definition by induction on j that if a ∈ 2X and P = {ϕi : a(xi) = 1}, then

â(yi,j) = 1 ⇐⇒ ϕi ∈ Pj,
â(zv,j) = 1 ⇐⇒ Av ⊆ Pj,

where â is the evaluation of C extending a. Consequently, ϕ ∈ clΠ(P) iff
a(y0,t) = 1.

In order to determine |C |, for each j < t there are n wires going from
yi,j to yi,j+1, t wires (one for each v ∈ V ) going from zv,j to yi,j+1 where
�v = ϕi , and

∑
v |Av | ≤ nt wires going from yi,j to zv,j such that ϕi ∈ Av .

Thus, |C | ≤ (n + t + nt)t = O(nt2) = O(t3), using n ≤ t. �

Pudlák [29] showed that the feasible disjunction property of intuitionistic
calculi can serve a similar role as feasible interpolation for classical proof
systems, and as such implies conditional lower bounds on the length of
intuitionistic proofs. Hrubeš [14] discovered how to modify the set-up to
obtain an analogue of feasible monotone interpolation (first considered
by Krajı́ček [24]), which yields unconditional exponential lower bounds

https://doi.org/10.1017/bsl.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.6


A SIMPLIFIED LOWER BOUND FOR IMPLICATIONAL LOGIC 65

utilizing monotone circuit lower bounds such as Alon and Boppana [1].
These results naturally rely on the presence of disjunction. Jeřábek [20]
obtained a lower bound on implicational intuitionistic logic based using
implicational translations of intuitionistic formulas, but here we follow
a more direct approach: we introduce a version of feasible monotone
interpolation based on a “disjunction-free disjunction property”. This is the
main new idea of this paper. To help the reader with intuition, we first prove
a most simple version of disjunction-free feasible disjunction property3,
although we will not really use this statement later.

Lemma 3.10. Given an NM→-proof Π of a formula ϕ of the form

(α0 → u) → (α1 → u) → u,
where the variable u does not occur inα0 andα1, we can compute in polynomial
time an i ∈ {0, 1} such that 	 αi .

Proof. Put P = clΠ(α0 → u, α1 → u), and let | be a P-slash such that
�u. Since |ϕ by Lemmas 3.6 and 3.8, we have ∦(αi → u) for some i < 2 by
Observation 3.5. In view of (αi → u) ∈ P, this means �(αi → u), thus ‖αi .
That is, we have verified

α0 ∈ P or α1 ∈ P.
Given Π, we can compute P in polynomial time, hence we can compute i < 2
such that αi ∈ P. It remains to verify that this implies 	 αi . Lemma 3.8 gives

α0 → u, α1 → u 	 αi .
But u does not occur in αi , hence we may substitute it with �, obtaining
	 αi . �

We now generalize this argument to a Hrubeš-style feasible monotone
interpolation.

Theorem 3.11. Let �p = 〈pi : i < n〉, �p ′ = 〈p′i : i < n〉, �q, �r, and u be
pairwise disjoint tuples of variables, and assume that a formula ϕ of the form
〈
(pi → u) → (p′i → u) → u

〉
i<n

→
(
α0( �p, �q) → u) → (

α1( �p ′, �r) → u) → u
has an NM→-proof with t lines. Then there exists a monotone circuit C ( �p) of
size O(t3) that interpolates the classical tautology

¬α1(¬ �p, �r) → α0( �p, �q),
where ¬ �p denotes 〈¬pi : i < n〉.

3It is not surprising that α0 ∨ α1 can be expressed by an implicational formula as in
Lemma 3.10; what is supposed to be novel here is the way to prove the feasible disjunction
property for this formulation without reintroducing disjunctions.
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Proof. Let Π = 〈V,E, �〉 be a proof of ϕ with s lines. If I ⊆ [n], we write
pI = {pi : i ∈ I }, and similarly for p′I . We define

P = {(pi → u) → (p′i → u) → u : i < n} ∪ {αj → u : j < 2},
PI,J = clΠ(P ∪ pI ∪ p′J )

for each I, J ⊆ [n]. Let |I,J be a PI,J -slash such that �I,J u and |I,J x for all
variables x �= u.

If i ∈ I , then ‖I,Jpi , thus �I,J (pi → u), and |I,J (pi → u) → (p′i → u) → u
by Observation 3.5. Likewise if i ∈ J , using �I,J (p′i → u). In view of (pi →
u) → (p′i → u) → u ∈ PI,J , we obtain

I ∪ J = [n] =⇒ ‖I,J
{
(pi → u) → (p′i → u) → u : i < n

}
.

On the other hand, |I,Jϕ by Lemmas 3.6 and 3.8, thus assuming I ∪ J = [n],
Observation 3.5 implies ∦I,J (αj → u) for some j < 2. Since αj → u is in
PI,J , this means �I,J (αj → u), which implies ‖I,Jαj . That is,

I ∪ J = [n] =⇒ α0 ∈ PI,J or α1 ∈ PI,J .

Applying this to J = I := [n] \ I , and using the monotonicity of clΠ, we
obtain

∀I ⊆ [n]
(
α0 ∈ PI,[n] or α1 ∈ P[n],I

)
. (3.3)

Put F = P ∪ p[n] ∪ p′[n] ∪ {�v : v ∈ V }. By Lemma 3.9, there is a mono-
tone circuit of size O(t3) that determines whether α ∈ clΠ(S) for a given
S ⊆ F , using variables corresponding to eachpi ∈ F , which we may identify
with pi itself, variables corresponding to formulas inP ∪ p′[n], which we may
substitute with �, and variables corresponding to other formulas from F,
which we may substitute with ⊥. We obtain a monotone circuit C ( �p) of size
O(t3) such that

a � C ⇐⇒ α ∈ PI (a),[n] (3.4)

for all assignments a, where I (a) = {i < n : a(pi) = 1}.
We claim that C interpolates ¬α1(¬ �p, �r) → α0( �p, �q). Let a ∈ 2{ �p,�q,�r}. On

the one hand, assume a � C ; we need to show a � α0. We have α0 ∈ PI (a),[n]
by (3.4). Since all formulas in P are implied by u, we have

pI (a), p
′
[n], u 	 α0( �p, �q)

by Lemma 3.8. But α0 does not contain the variables p′i or u, hence we may
substitute these with �, obtaining

pI (a) 	 α0( �p, �q).
Since a � p

I (a), also a � α0.
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On the other hand, assume a � C ; we will verify a � α1(¬ �p, �r). We have
α0 /∈ PI (a),[n] by (3.4), hence α1 ∈ P[n],I (a) by (3.3), thus

p[n], p
′
I (a)
, u 	 α1( �p ′, �r)

by Lemma 3.8. Substituting � for �p and u, we obtain

p′
I (a)

	 α1( �p ′, �r).
Finally, we can substitute p′i with ¬pi for each i, getting

¬p
I (a)

	 α1(¬ �p, �r)
(in intuitionistic or classical logic with ¬). Since a satisfies the left-hand side,
this implies a � α1(¬ �p, �r). �

We are ready to prove the main lower bound by applying Theorem 3.11
to the �n tautologies from Definition 3.1; we only need to observe that
interpolation of the implication ¬αn(¬ �p, �r, w) → αn( �p, �q, v) is essentially
identical to separation of the CCn disjoint pair.

Theorem 3.12. If n is sufficiently large, then every NM→-proof of �n has at
least 2Ω(n1/8) lines.

Consequently, there are infinitely many intuitionistic implicational tautolo-
gies ϕ such that every NM→-proof of ϕ needs to have at least 2Ω(|ϕ|1/20)

lines.

Proof. It suffices to prove the first part; the second part then follows
using Observation 3.2.

If �n has an NM→-proof with t lines, there is a monotone circuit C ( �p) of
size O(t3) that interpolates

¬αn(¬ �p, �r, w) → αn( �p, �q, v) (3.5)

by Theorem 3.11. We claim that C separates CCn, which implies t = 2Ω(n1/8)

by Theorem 2.6.
LetE ⊆

([n]
2

)
, and let e be the corresponding assignment to �p, i.e., for each

i < j < n,

e(pij) = 1 ⇐⇒ {i, j} ∈ E.
Assume that 〈[n], E〉 is k-colourable; we need to show e � C . Fix a vertex
colouring c : [n] → [k], and extend e to an assignment on �q and v by e(v) = 0
and

e(qil ) = 1 ⇐⇒ c(i) = l

for each i < n and l < k. Then for every i < n, e � qi,c(i) → v, thus e �
〈qil → v〉l<k → v. Likewise, for every i < j < n and l < k, e � qil → qjl →
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pij → v, i.e., e � qil ∧ qjl ∧ pij : if c(i) = l = c(j), then {i, j} /∈ E as c is
a proper colouring. Thus, e � αn( �p, �q, v), which implies e � C ( �p) as C
interpolates (3.5).

A symmetrical argument shows that if 〈[n], E〉 is k-colourable, then e
extends to an assignment such that e � αn(¬ �p, �r, w), whence e � C ( �p). �

§4. Extensions. The goal of the previous section has been to get to the
basic lower bound (Theorem 3.12) as directly and as simply as possible.
However, if we expend more effort, we can improve the result in various
ways—more or less up to the strength of Theorem 4.22 of [20]. We briefly
indicate these modifications and their difficulty below, but we omit most
details, and keep this section informal, as it is essentially an extended remark.
We refer the reader to [19, 20] for missing definitions.

4.1. Logics of unbounded branching. We proved the lower bound for a
proof system for IPC→, but it can be generalized to analogous proof
systems for some stronger logics, namely implicational fragments of
superintuitionistic (si) logics of unbounded branching. A si logic L has
branching at most k if it is complete w.r.t. a class of finite Kripke models
such that every node has at most k immediate successors (or if it is included
in such a logic); if L does not have branching at most k for any k ∈ �, it
has unbounded branching. We consider NM→ extended with finitely many
axiom schemata as proof systems for such logics. Any implicational logic
of unbounded branching is included in BD2 (the logic of Kripke models of
depth 2), which can be axiomatized over IPC by the schema

((ϕ → ((� → �) → �) → �) → ϕ) → ϕ (4.1)

(this is an implicational version of the more familiar axiom ϕ ∨ (ϕ → (� ∨
¬�))). It is not a priori clear that the implicational fragment of BD2 is also
axiomatized by (4.1) over IPC→, but this can be shown using the criterion
in [20, Lemma 4.11]. Thus, it suffices to prove our lower bound for NM→
extended with axioms (4.1). This can be done by a minor modification of
the proof of Theorem 3.11: for each instance � of (4.1) used in Π, we
include � itself as well as ϕ → ((� → �) → �) → � in P. These formulas
are classically valid, hence they will not affect the final argument showing
that C interpolates ¬α1(¬ �p, �r) → α0( �p, �q), and their presence in P easily
implies ‖I,J�.

4.2. Full propositional language. It is straightforward to generalize dag-
like natural deduction to the full language {→,∧,∨,⊥} of intuitionistic
logic, including a suitable version of Lemma 2.3. The lower bound still
holds for this proof system: we can extend Definition 3.4 using the standard
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Kleene slash conditions

|(ϕ ∧ �) ⇐⇒ |ϕ and |�,
|(ϕ ∨ �) ⇐⇒ ‖ϕ or ‖�,

and �⊥; then we can prove the analogue of Lemma 3.6, and the rest of the
argument goes through unchanged.

The only problem is that this generalization interferes with the extension
to logics of unbounded branching from Paragraph 4.1. While positive
fragments (i.e., {→,∧,∨}) of logics of unbounded branching are still
included in BD2, this is not true for fragments including ⊥: then we only get
that logics of unbounded branching are included in either BD2 or KC + BD3

(see [19, Theorem 6.9]; KC denotes the logic of weak excluded middle).
The proof of the lower bound in the full language works fine for logics
included in BD2 as indicated above, but unfortunately we do not know
a direct way of proving it for KC + BD3. It seems that in this case we
need the reduction to the ⊥-free fragment as given in [19, Lemma 6.30] or
[20, Section 4.1].

4.3. Frege and Extended Frege. As we already mentioned in the introduc-
tion, the result applies to the Frege system for IPC→, as this is essentially a
fragment of NM→ without the (→I) rule (see Theorem A.5 in the appendix
for more details). However, the argument can be adapted to Frege systems
directly, using closure under modus ponens (MP) in place of Π-closure.
This also works for Frege systems of si logics included in BD2 in the full
propositional language as explained above. Since the lower bound is on the
number of lines rather than overall proof size, it also applies to Extended
Frege systems.

4.4. Separation from Substitution Frege. We have only shown that the �n
formulas are IPC→ tautologies, but more constructively, they have proofs
of polynomial size (and polynomial-time constructible) in the Substitution
Frege proof system for IPC→. This can be demonstrated along the lines of the
proof of [20, Theorem 4.22] or [19, Lemma 6.29]. Thus, for all proof systems
subject to the lower bound, we actually obtain an exponential separation
from the IPC→ Substitution Frege system.

4.5. Larger bounds. The Colouring–Cocolouring tautologies can be
made shorter using bit encoding of the colouring functions: instead of the
variables qil for i < n, l < k as in Definition 3.1, we use variables qile for
i < n, l < �logk�, and e ∈ {0, 1}, with intended meaning “the lth bit of the
colour assigned to node i is e”, and likewise for �r. This reduces the size of �n
to O(n2 log n) while keeping the same proof size lower bound in terms of n,
thus the lower bound in terms of |ϕ| improves to 2|ϕ|

1/16–o(1)
(i.e., Ω(2|ϕ|

1/16–ε
)

for arbitrarily small ε > 0).
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Instead of Colouring–Cocolouring tautologies, we can use tautologies
based on the original Clique–Colouring disjoint pair as in [13–15, 19, 20]
(and in a preliminary version of this paper). They have larger size, viz.
O(n2k2), but the monotone circuit size lower bound increases even more
to 2Ω(k1/2) by Alon–Boppana [1]. For k ≈

√
n, this improves the bound in

Theorem 3.12 to 2Ω(|ϕ|1/12); if we raise k to ≈ n2/3–o(1) (the largest value to
which the Alon–Boppana result applies), it improves further to 2|ϕ|

1/10–o(1)
.

Any improvements of the underlying monotone circuit size lower bounds
directly translate to improvements of the proof size lower bounds. Recently,
S. de Rezende and M. Vinyals (pers. comm.) proved a strengthening
of the Alon–Boppana lower bound to nΩ(k) for k ≤ n1/2–o(1), and of
the Hrubeš–Pudlák bound (our Theorem 2.6) to 2k

1/2–o(1)
. This implies

improvements of Theorem 3.12 to 2|ϕ|
1/10–o(1)

for the Colouring–Cocolouring
tautologies from Definition 3.1, 2|ϕ|

1/8–o(1)
for the bit-encoded Colouring–

Cocolouring tautologies, and 2|ϕ|
1/6–o(1)

for Clique–Colouring tautologies
with k = n1/2–o(1). In fact, their results apply to a restricted version of
the Clique–Colouring problem where the graph of size n = (k + 1)m is
(k + 1)-partite with each element of the clique chosen from a specific part
of size m ≈ k1/2+o(1), and the colours of nodes from a given part are
chosen from a palette of constant size; moreover, each colour occurs in
the palettes of only O(1) parts. The corresponding IPC→ tautologies have
size O(km2) = O(k3+o(1)), yielding a 2|ϕ|

1/3–o(1)
proof size lower bound.

The best circuit size lower bounds one could hope to achieve with this
line of reasoning would be a 2Ω(k) bound on Clique–Colouring with k a
constant fraction of n (i.e., with m = O(1)), implying a 2Ω(k) bound on
Colouring–Cocolouring. These would translate to a 2Ω(|ϕ|1/5) proof size
lower bound for the Colouring–Cocolouring tautologies, 2Ω(|ϕ|1/4–o(1)) for
bit-encoded Colouring–Cocolouring, 2Ω(|ϕ|1/4) for Clique–Colouring with
k = Θ(n), and an optimal 2Ω(|ϕ|) lower bound for the restricted Clique–
Colouring tautologies, matching the basic 2O(|ϕ|) upper bound on the size of
intuitionistic proofs. (All these bounds are essentially tight for the respective
tautologies.)

§5. Conclusion. We have shown how to prove a disjunction-free for-
mulation of feasible disjunction property for implicational intuitionistic
logic directly using an efficient version of Kleene’s slash, without rein-
troducing disjunctions into the proof. More generally, we demonstrated
an implicational version of Hrubeš-style feasible monotone interpolation,
and exploited it to prove exponential lower bounds on the number of lines
in dag-like natural deduction NM→ for intuitionistic implicational logic
(or equivalent familiar systems such as Frege). This provides a simple
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refutation of Gordeev and Haeusler’s claims that all IPC→ tautologies have
polynomial-size proofs in NM→ that should be accessible to a broad logic-
aware audience.

Our approach consolidated the proof-theoretic components of the
exponential lower bound to a single argument, obviating the need for
translation of intuitionistic logic to its implicational fragment, or of dag-
like natural deduction to Frege systems. The lower bound is not fully
self-contained as we still rely on monotone circuit lower bounds; this
combinatorial component of our lower bound has a quite different flavour
from the proof-theoretic part and uses quite different techniques, thus it
does not look very promising to try to combine them. Fortunately, we believe
there is no pressing need for that, as monotone circuit bounds are now a
fairly well-understood part of standard literature. The proof of the original
Alon–Boppana bound in [1] is neither long nor difficult to follow; likewise,
the relevant arguments in [16, 21] are easily accessible.

§A. Equivalence with Frege. Our objective in Section 3 was to prove an
exponential lower bound on the size of NM→-proofs as directly as we
could, and in particular, we avoided translation of NM→ to other proof
systems such as Frege. However, no treatment of the proof complexity of
NM→ can be complete without showing that it is, after all, polynomially
equivalent to the (intuitionistic implicational) Frege proof system F→. This
is implicit in Reckhow [31] and Cook and Reckhow [7], but they work with
a different formulation of natural deduction, and with classical logic, hence
it is worthwhile to spell out the reduction adapted to our situation, which is
the main goal of this section (Theorems A.5, A.10, and A.16).

Let us mention that even though we formulate the results in this and the
next section as only bounds on proof size (and other parameters), they are all
constructive in that the relevant proofs can be computed by polynomial-time
algorithms.

We start by defining the intuitionistic implicational Frege system F→.

Definition A.1. A (sequence-like) F→-derivation of ϕ ∈ Form from
Γ ⊆ Form is a finite sequence of formulas Π = 〈�i : i < t〉 such that t > 0,
�t–1 = ϕ, and for each i < t: �i ∈ Γ, or �i is an instance of one of the logical
axioms

α → 	 → α, (A1)

(α → 	 → �) → (α → 	) → (α → �) (A2)

for some α, 	, � ∈ Form, or �i is derived from �j and �k for some j, k < i by
the rule of modus ponens

α, α → 	 / 	, (MP)
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i.e., �k = (�j → �i). The number of lines of Π is t, and the size of Π is
‖Π‖ =

∑
i<t |�i |.

A dag-like F→-derivation of ϕ from Γ is Π = 〈V,E, �〉, where 〈V,E〉 is a
finite dag with a unique node 
 of out-degree 0 (the root), all nodes have
in-degree 0 (the axioms or leaves) or 2 (the (MP)), � = 〈�v : v ∈ V 〉 is a
labelling of nodes by formulas such that �
 = ϕ, all leaves are labelled with
elements of Γ or instances of (A1) or (A2), and if v is an (MP) with premises
v0 and v1, then �v is derived from �v0 and �v1 by (MP). The number of lines
of Π is |V |, and the size of Π is ‖Π‖ =

∑
v∈V |�v |.

A sequence-like or dag-like F→-proof of ϕ is a sequence-like or dag-like
(resp.) F→-derivation of ϕ from ∅.

The height of a dag-like F→-derivation or NM→-derivation 〈V,E, �〉 is the
maximal length of a directed path from a leaf to the root. Such a derivation
is tree-like if the underlying dag 〈V,E〉 is a tree, i.e., all nodes have out-
degree at most 1. Tree-like F→-derivations and NM→-derivations are also
called F∗

→-derivations and NM∗
→-derivations (respectively), and likewise for

F∗
→-proofs and NM∗

→-proofs.
The formula size of a dag-like F→- or NM→-derivation 〈V,E, �〉 is

maxv∈V |ϕv |, and likewise for sequence-like F→-derivations.

Observe that NM∗
→ is the implicational fragment of the standard natural

deduction system. It is well known that sequence-like and dag-like Frege are
just different presentations of the same proof system.

Lemma A.2. A sequence-like (dag-like) F→-derivation of ϕ from Γ can be
converted to a dag-like (sequence-like, resp.) F→-derivation of ϕ from Γ with
at most the same size, number of lines, and formula size.

Proof. Given a sequence-like derivation 〈�i : i < t〉 of ϕ from Γ, put
V = [t]. Let I be the set of i < t such that �i is not an axiom (from Γ, or an
instance of (A1) or (A2)); for each i ∈ I , fix i0, i1 < i such that �i is derived
from �i0 and �i1 by (MP), and let E = {〈ij , i〉 : i ∈ I, j ∈ {0, 1}}. Observe
that 〈V,E〉 is acyclic as E ⊆ < � [t]. Then 〈V,E, 〈�i : i < t〉〉 is a dag-like
F→-derivation of ϕ from Γ, possibly after eliminating nodes from which the
root t – 1 is not reachable.

Conversely, let 〈V,E, �〉 be a dag-like F→-derivation of ϕ from Γ, and
t = |V |. Since 〈V,E〉 is acyclic, we can find an enumerationV = {vi : i < t}
such that E ⊆ {〈vi , vj〉 : i < j} (a “topological ordering” of 〈V,E〉). The
root
 ∈ V is the only node without a successor, hence we must have
 = vt–1.
Then 〈�vi : i < t〉 is a sequence-like F→-derivation of ϕ from Γ. �

The sequence-like definition is simpler, and is usually taken as the official
definition of Frege systems (we follow this usage). Nevertheless, the dag-
like definition has other benefits, in particular it allows the introduction of
tree-like proofs and the height measure: this cannot be done directly with
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sequence-like proofs as it depends on the choice of the dag structure, which
may not be uniquely determined by the proof sequence alone.

Let us also note basic dependencies between the various proof parameters.

Observation A.3. An NM→- or (dag-like) F→-derivation with formula
size r and t lines has size at most rt and at least max{r, t}. A derivation with
height h has less than 2h+1 lines.

Proof. The first part is obvious. In a dag with in-degree 2 and root 
,
there are at most 2l paths of length l ending in 
. Thus, if 
 is reachable from
any node in at most h steps, there are at most

∑
l≤h 2l = 2h+1 – 1 nodes. �

We mostly consider formula size to be an auxiliary measure that can
be used to conveniently bound size as per Observation A.3; it is not that
interesting on its own.

A simple, yet very useful, property of Frege and natural deduction systems
is that instances of any derivable schema have linear-size proofs. This is
convenient for construction of asymptotically short proofs without worrying
too much about the choice of basic axioms: we can use any valid schematic
axioms and rules in a given argument as long as the number of different
schemata is kept fixed.

Lemma A.4. Fix Γ ⊆ Form and ϕ ∈ Form in variables {pi : i < k} such
that Γ 	 ϕ. Then for all substitutions �, there are F∗

→-derivations and NM∗
→-

derivations of �(ϕ) from �(Γ) with O(1) lines and size O(s), where s =∑
i<k |�(pi)|. (The constants implied in the O(... ) notation depend on Γ and

ϕ.) Moreover, we may assume the derivations use each axiom from �(Γ) only
once.

Proof. Let Π = 〈�i : i < t〉 be a fixed F∗
→-derivation of ϕ from Γ such

that all variables occurring in Π are among {pi : i < k}. Then for any
substitution �, 〈�(�i) : i < t〉 is an F→-derivation of �(ϕ) from �(Γ) with
t lines and size at most ‖Π‖ s . The argument for NM∗

→ is completely
analogous.

Instead of applying the argument directly to Γ 	 ϕ, we may apply it to
the IPC→ tautology 	 Γ → ϕ. This yields tree-like proofs of �(Γ → ϕ) with
O(1) lines and size O(s), which we can turn into derivations of �(ϕ) from
�(Γ) by |Γ| applications of (MP)/(→E); this ensures that each axiom from
�(Γ) is used only once. �

The simulation of F→ by NM→ is completely straightforward:

Theorem A.5. If ϕ has a dag-like F→-derivation from Γ with t lines, height
h, formula size r, and size s, then ϕ has an NM→-derivation from Γ with
O(t) lines, height h +O(1), formula size O(r), and size O(s). If the original
F→-derivation is tree-like, the NM→-derivation can also be taken tree-like.

https://doi.org/10.1017/bsl.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.6


74 EMIL JEŘÁBEK

Proof. Let Π = 〈V,E, �〉 be a dag-like F→-derivation of ϕ from Γ.
Reinterpreting the (MP)-nodes as (→E)-nodes, Π becomes an NM→-
derivation from Γ plus the instances of (A1) and (A2) that appear in Π.
By Lemma A.4, each of the latter can be replaced by a tree-like NM→-
subproof withO(1) lines (thus heightO(1)) and size linear in the size of the
axiom instance, yielding an NM→-derivation of ϕ from Γ with the stated
parameters. �

For the converse simulation of NM→ by F→, we will need proofs of
some auxiliary formulas. As proved in [20, L. 2.3], there are short proofs of
“structural rules” for Γ → ϕ, showing in particular that we can arbitrarily
reorder Γ so that we can treat it as a set. We include here optimized proofs
of some special cases.

Definition A.6. We extend the Γ → ϕ notation to sequences indexed
by finite subsets of integers. If I ⊆ [m] and Γ = 〈αi : i ∈ I 〉 = 〈αi〉i∈I , we
define Γ → ϕ by induction on |I |: 〈αi〉i∈∅ → ϕ is ϕ, and if I �= ∅, then
〈αi〉i∈I → ϕ is αh → 〈αi〉i∈I\{h} → ϕ, where h = max I . (I.e., 〈αi〉i∈I → ϕ
is 〈αij 〉j<n → ϕ, where 〈ij : j < n〉 is an increasing enumeration of I.)

If Γ = 〈αi〉i∈I , we put dom(Γ) = I , |Γ| = |I |, and ‖Γ‖ =
∑
i∈I |αi |. We

write Γ � J = 〈αi〉i∈I∩J . If Δ = 〈	i〉i∈J , we write Γ ⊆ Δ when I ⊆ J and
αi = 	i for all i ∈ I .

First, a general observation that we will keep using to construct proofs of
small height.

Lemma A.7. Given a sequence of formulas 〈ϕi : i ≤ n〉, n ≥ 1, there is an
F∗
→-derivation of ϕ0 → ϕn from {ϕi → ϕi+1 : i < n} with O(n) lines, height
O(log n), formula size O(r), and size O(rn) that uses each assumption ϕi →
ϕi+1 only once, where r = maxi |ϕi |.

Proof. We arrange the implications in a balanced binary tree with n
leaves. Formally, we construct for each4 k ≤ �log n� and i < n such that
2k | i a derivation Πki of ϕi → ϕmin{i+2k ,n} by induction on k as follows: Π0

i

is the trivial derivation ofϕi → ϕi+1 from itself. Let k < �log n� and i < n be
such that 2k+1 | i . If i + 2k ≥ n, we put Πk+1

i = Πki ; otherwise, we combine
Πki and Πk

i+2k to Πk+1
i using an instance of the schematic rule

α → 	, 	 → � 	 α → 	,
i.e., an F∗

→-derivation of ϕi → ϕmin{i+2k+1,n} from ϕi → ϕi+2k and ϕi+2k →
ϕmin{i+2k+1,n} with O(1) lines and size O(r) that uses each assumption only
once, which exists by Lemma A.4.

Then Π�log n	
0 is the desired derivation of ϕ0 → ϕn. �

4In this paper, log denotes base-2 logarithm.
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Lemma A.8. Given sequences of formulas Γ and Δ such that Δ ⊆ Γ, and
ϕ ∈ Form, there exists an F∗

→-proof of

(Δ → ϕ) → (Γ → ϕ) (A.1)

with O(n) lines, height O(log n), formula size O(s), and size O(sn), where
n = max

{
|Γ|, 2

}
and s = ‖Γ‖ + |ϕ|.

Proof. We may assume Γ = 〈αi〉i<n and Δ = 〈αi〉i∈I , I ⊆ [n]. For each
i ≤ n, let ϕi denote the formula (Δ � [i ] → ϕ) → (Γ � [i ] → ϕ). Then ϕi →
ϕi+1 is an instance of one of the schemata

( → �) → ( → α → �),
( → �) → ((α → ) → α → �)

with  = (Δ � [i ] → ϕ), � = (Γ � [i ] → ϕ), and α = αi , depending on
whether i ∈ I . Thus, it has an F∗

→-proof with O(1) lines and size O(s) by
Lemma A.4. Using Lemma A.7, we can combine these proofs to a proof of
ϕ0 → ϕn withO(n) lines, heightO(log n), formula sizeO(s), and sizeO(sn).
Since ϕn is (A.1), it remains to detach the IPC→ tautology ϕ0 = (ϕ → ϕ),
which has a proof with O(1) lines and size O(|ϕ|). �

Lemma A.9. Given sequences of formulas Γ, Δ, and Θ, and ϕ,� ∈ Form,
there are F∗

→-proofs of

(Γ → ϕ → �) → (Γ → ϕ) → (Γ → �), (A.2)

Γ → (Γ → ϕ) → ϕ, (A.3)

(Γ → Γ → ϕ) → (Γ → ϕ), (A.4)

(Θ → Γ → Δ → ϕ) → (Θ → Δ → Γ → ϕ) (A.5)

with O(n) lines, height O(log n), formula size O(s), and size O(sn), where
n = max

{
|Γ| + |Δ| + |Θ|, 2} and s = ‖Γ‖ + ‖Δ‖ + ‖Θ‖ + |ϕ| + |�|.

Proof. We prove (A.2) using the same strategy as in Lemma A.8: putting

ϕi = (Γ � [i ] → ϕ → �) → (Γ � [i ] → ϕ) → (Γ � [i ] → �)

for each i ≤ |Γ|, ϕi → ϕi+1 has a proof with O(1) lines and size O(s) as it
is an instance of the schema

(	 → � → ) → ((α → 	) → (α → �) → (α → )).

These proofs combine to a proof of ϕ0 → ϕ|Γ| with the stated parameters
using Lemma A.7. Then ϕ|Γ| is (A.2), and ϕ0 = (ϕ → �) → (ϕ → �) has a
short proof.
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For (A.3), we put ϕi = ((Γ → ϕ) → Γ � [i ] → ϕ) → Γ � [i ] → (Γ →
ϕ) → ϕ. Then ϕ0 is an instance of α → α, and ϕi → ϕi+1 is an instance of

((α → 	) → ) → (α → � → 	) → � → 

(with α = (Γ → ϕ), 	 = (Γ � [i ] → ϕ), � = �i , and

 = (Γ � [i ] → (Γ → ϕ) → ϕ),

where Γ = 〈�i〉i<|Γ|). Thus, using Lemmas A.4 and A.7, we obtain an F∗
→-

proof of ϕ|Γ| with O(n) lines, height O(log n), formula size O(s), and size
O(sn). Detaching the premise (Γ → ϕ) → Γ → ϕ of ϕ|Γ| yields (A.3).

(A.4) follows by (MP) from (A.3) and (A.2).
(A.5): We have (Γ → Δ → ϕ) → (Δ → Γ → Δ → Γ → ϕ) from (A.1),

and (Δ → Γ → Δ → Γ → ϕ) → (Δ → Γ → ϕ) from (A.4), thus we obtain
(A.5) when Θ = ∅. The general case follows by applying (A.2). �

Theorem A.10. If ϕ has an NM→-derivation from Γ with t lines, height h,
and size s, then ϕ has a dag-like F→-derivation from Γ withO(t2) lines, height
O(h), formula size O(s), and size O(st2). If the original NM→-derivation is
tree-like, the F→-derivation can be taken tree-like as well.

Proof. Let Π = 〈V,E, �〉be an NM→-derivation ofϕ from Γ. Let 〈� ′i 〉i<t′ ,
t′ ≤ t, be an injective enumeration of the set {�v : v ∈ V }, and for each v ∈
V , letA′

v denote the sequence 〈� ′i : i < t′, � ′i ∈ Av \ Γ〉; notice that ‖A′
v‖ ≤ s .

We consider the collection of IPC→ tautologies 〈A′
v → �v : v ∈ V 〉, and

complete it to a valid F→-derivation from Γ using Lemmas A.8 and A.9.
In more detail, for every v ∈ V , we construct an F∗

→-derivation Πv of
A′
v → �v from {A′

u → �u : 〈u, v〉 ∈ E} ∪ Γ with O(t) lines, height O(log t),
and formula size O(s). Moreover, each assumption A′

u → �u is used only
once, and the path from it to the conclusion has length O(1); both of these
properties are obtained by constructing a derivation of 〈A′

u → �u〉〈u,v〉∈E →
A′
v → �v from Γ and applying (MP):

• If v is a leaf, then either �v ∈ Γ and A′
v = ∅, in which case we take the

trivial derivation of �v from itself, or A′
v = 〈�v〉, in which case we find

an F∗
→-proof of �v → �v with O(1) lines and size O(s) by Lemma A.4.

• If v is an (→I)-node with premise u, we have �v = (α → 	) and �u = 	
for some α and 	 , and A′

v = A′
u \ {α} as a set. If α ∈ A′

u , then (A′
u →

	) → (A′
v → α → 	) is an instance of (A.5), otherwise it is an instance

of (A.1).
• If v is an (→E)-node with premises u0 and u1, then �u0 = α, �u1 = (α →
	), and �v = 	 for some α and 	 . We have A′

ui
⊆ A′

v , hence (A.1) gives
F∗
→-proofs of (A′

u0
→ α) → A′

v → α and (A′
u1

→ α → 	) → A′
v →

α → 	 . We infer (A′
u1

→ α → 	) → (A′
u0

→ α) → A′
v → 	 using the
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instance (A′
v → α → 	) → (A′

v → α) → A′
v → 	 of (A.2) and O(1)

additional proof lines by Lemma A.4.

Combining these derivations Πv along the shape of the original derivation
Π yields an F→-derivation (tree-like if Π is tree-like) of ϕ from Γ withO(t2)
lines, height O(h + log t) = O(h) (cf. Observation A.3), formula size O(s),
and size O(st2) as promised. �

The bottleneck in the proof of Theorem A.10 is that formulas of the form
Γ → ϕ with long Γ are cumbersome to operate as ϕ is nested deep inside,
and when untangling it we need to keep copying large parts of the formula.
This could be avoided if we had a conjunction connective: using

∧
Γ → ϕ

instead,ϕ sits right at nesting depth 1; if we arrange the big conjunction
∧

Γ
in a balanced binary tree, the individual entries of Γ are also easy to access
at nesting depthO(log n), and wholesale manipulations such as Lemma A.8
can be done using a divide-and-conquer approach that saves size.

We do not have ∧ in implicational logic, as it is not definable in terms
of →. However, we may observe that if we fix a formula ϕ, then formulas
α, 	 of the form Φ → ϕ do have a definable conjunction operation: α is
equivalent to (α → ϕ) → ϕ, and likewise for 	 , thus alsoα ∧ 	 is equivalent
to (α ∧ 	 → ϕ) → ϕ, which can be written as (α → 	 → ϕ) → ϕ. This idea
was introduced in [20, Prop. 2.6] to prove polynomial simulation of Frege
by tree-like Frege for purely implicational logic (cf. Theorem B.3), but here
we will use it to improve the bounds in Theorem A.10.

Definition A.11. For any formulas ϕ, α, and 	 , we put

αϕ = (α → ϕ) → ϕ,
α ∧ϕ 	 = (α → 	 → ϕ) → ϕ.

For all sequences of formulas Γ = 〈αi : i ∈ I 〉, I ⊆ [m], we define
∧ϕ
i∈I αi ,

also denoted
∧ϕ Γ, by induction on m:

∧ϕ

i∈I
αi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�, I = ∅,

αϕi0 , I = {i0},
∧ϕ

i∈I –2k

α2k+i , I ⊆ [2k, 2k+1),

( ∧ϕ

i∈I∩[2k ]

αi

)
∧ϕ

(∧ϕ

i∈I –2k

α2k+i

)
, I ⊆ [2k+1],
I ∩ [2k] �= ∅ �= I ∩ [2k, 2k+1),

where � is a fixed IPC→ tautology, k ≥ 0, and I – 2k = {i : 2k + i ∈ I }.
We write

∧ϕ
i<n αi for

∧ϕ
i∈[n] αi .

The idea is that
∧ϕ
i<2k
αi consists of ∧ϕ arranged in a perfect binary tree of

height k, while if I ⊆ [2k], then
∧ϕ
i∈I αi conforms to the same arrangement
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except that unused leaves and non-splitting inner nodes are omitted; this
ensures that the layouts of

∧ϕ
i∈I αi and

∧ϕ
i∈J αi for any I, J ⊆ [2k] are

compatible, facilitating efficient manipulation of
∧ϕ Γ in a divide-and-

conquer manner.

Lemma A.12. |
∧ϕ Γ| = ‖Γ‖ +O

(
|ϕ| n

)
, where n = max

{
|Γ|, 1

}
.

Proof. Observe that the inductive definition introduces ∧ϕ only when
the sequences on both sides are nonempty. Thus,

∧ϕ Γ is a binary tree of ∧ϕ
with n leaves where every inner node splits, thus there are n – 1 inner nodes.
Since α and 	 occur only once in α ∧ϕ 	 , each node of the tree gives rise
to only one subformula of

∧ϕ Γ; thus,
∧ϕ Γ consists of one occurrence of

each αi of total size ‖Γ‖, and O(1) occurrences of ϕ and → per each node
of the tree of total size O

(
|ϕ| n

)
. �

The following is a
∧ϕ-version of Lemma A.8 that also handles unions of

two sequences.

Lemma A.13. Let ϕ ∈ Form and Γ = 〈αi : i ∈ I 〉 be a sequence of for-
mulas with |Γ| = n ≥ 1 and I ⊆ [m], m ≥ 2. Let Γu = Γ � Iu for u = 0, 1, 2,
where Iu ⊆ I are such that I2 ⊆ I0 ∪ I1. Then there is an F∗

→-proof of

∧ϕ
Γ0 →

∧ϕ
Γ1 →

∧ϕ
Γ2 (A.6)

with O(n) lines, height O(logm), formula size O(s + |ϕ| n), and size O
(
(s +

|ϕ| n) logm
)
, where s = ‖Γ‖.

Proof. We construct the proofs by induction on �logm�. If m = 2 or
n = 1, then (A.6) has a proof with O(1) lines and size O(s + |ϕ|) by
Lemma A.4. If I ⊆ [2k, 2k+1) for some k, we can just apply the induction
hypothesis (without changing the proof) to Γ′ = 〈α2k+i : i ∈ I – 2k〉 and
Γ′
u = Γ′ � (Iu – 2k), as

∧ϕ Γu =
∧ϕ Γ′

u .
Assume that I ⊆ [2k+1] and I 0, I 1 �= ∅, where I 0 = I ∩ [2k] and I 1 = I –

2k . For each u < 3, put I 0
u = Iu ∩ [2k] and I 1

u = Iu – 2k . Let Γ0 = Γ � I 0,
Γ1 = 〈α2k+i : i ∈ I 1〉, and Γvu = Γv � I vu for each v < 2, u < 3. There are
proofs of

∧ϕ
Γu →

∧ϕ
Γvu,

∧ϕ
Γ0
u →

∧ϕ
Γ1
u →

∧ϕ
Γu (A.7)

with O(1) lines and size O(s + |ϕ| n) using Lemma A.4: if I vu = ∅ for
some v < 2, then

∧ϕ Γu =
∧ϕ Γ1–v

u and
∧ϕ Γvu = �; otherwise,

∧ϕ Γu
is

(∧ϕ Γ0
u

)
∧ϕ

(∧ϕ Γ1
u

)
, thus (A.7) are instances of the valid schemata

(α0 → ϕ) ∧ϕ (α1 → ϕ) → (αv → ϕ) and α → 	 → α ∧ϕ 	 (observe that
each

∧ϕ Γvu is of the form α → ϕ for some formula α).
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Using (A.7), we can construct proofs of
(∧ϕ

Γ0
0 →

∧ϕ
Γ0

1 →
∧ϕ

Γ0
2

)
→

(∧ϕ
Γ1

0 →
∧ϕ

Γ1
1 →

∧ϕ
Γ1

2

)

→
(∧ϕ

Γ0 →
∧ϕ

Γ1 →
∧ϕ

Γ2

)

(A.8)

withO(1) lines and sizeO(s + |ϕ| n). The induction hypothesis for Γ0 and Γ1

gives us proofs of
∧ϕ Γv0 →

∧ϕ Γv1 →
∧ϕ Γv2 for v < 2, and these together

yield (A.6).
We can imagine the resulting proof as a binary tree of (A.8) inferences.

Since each application of (A.8) corresponds to splitting I to two nonempty
disjoint subsets, each inner node has two children, and the tree has at most n
leaves. Thus, the proof hasO(n) lines. Each application of (A.8) also strictly
decreases �logm�, hence the height of the proof is O(logm). The formula
size is O(s + |ϕ| n) using Lemma A.12.

As for the size of the proof, the root of the tree contributesO(s + |ϕ| n). Its
two children contributeO(s0 + |ϕ| n0) andO(s1 + |ϕ| n1), where s0 + s1 = s
and n0 + n1 = n, thusO(s + |ϕ| n) together. Continuing the same way, each
level of the tree consists of inferences of size O(s + |ϕ| n), and there are
at most O(logm) levels, hence the total size is O

(
(s + |ϕ| n) logm

)
. (More

formally, we can prove such a bound by induction on �logm�.) �

We cannot use
∧ϕ A′

v → �
ϕ
v with a fixed formula ϕ instead ofA′

v → �v for
the simulation of NM→ by F→ as in the proof of Theorem A.10, because
the (→I)-rule would translate to an unsound inference

∧ϕ
A′
v → αϕ → 	ϕ 	

∧ϕ
A′
v → (α → 	)ϕ.

We will in fact work with
∧�v A′

v → �v , but this necessitates that we are able
to transform

∧ϕ Γ to
∧� Γ for given ϕ, �:

Lemma A.14. Let ϕ,� ∈ Form and Γ = 〈αi : i ∈ I 〉 be a sequence of
formulas with I ⊆ [m], m ≥ 2. Then there is an F∗

→-proof of
∧ϕ

Γ →
(∧�

Γ
)ϕ

(A.9)

with O(n) lines, height O(logm), formula size O(s + |ϕ| n + |�| n), and size
O

(
(s + |ϕ| n + |�| n) logm

)
, where n = max

{
|Γ|, 1

}
and s = ‖Γ‖.

Proof. We construct the proofs by induction on �logm�, similarly to
Lemma A.13. Ifm = 2 or n = 1, then (A.9) has a proof withO(1) lines and
size O(s + |ϕ| + |�|) by Lemma A.4. If I ⊆ [2k, 2k+1) for some k, we can
apply the induction hypothesis to Γ′ = 〈α2k+i : i ∈ I – 2k〉without changing
the proof. If I ⊆ [2k+1] and I 0, I 1 �= ∅, where I 0 = I ∩ [2k] and I 1 = I – 2k ,
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the induction hypothesis applied to Γ0 = Γ � I 0 and Γ1 = 〈α2k+i : i ∈ I 1〉
gives proofs of

∧ϕ
Γ0 →

(∧�
Γ0

)ϕ
,

∧ϕ
Γ1 →

(∧�
Γ1

)ϕ
.

These yield (A.9) using an instance of the schema

(α → 	ϕ) → (� → ϕ) → α ∧ϕ � → (	 ∧� )ϕ

(we invite the reader to check this is indeed a valid schema).
The resulting proof has the stated size parameters by the same argument

as in Lemma A.13. �
Before we get to the improved simulation of NM→ by F→, we need

to introduce one more size parameter so that we can state the bounds
accurately:

Definition A.15. The inferential size of a NM→-derivation or dag-like
F→-derivation 〈V,E, �〉 is

∑
v∈V sv , where sv = |�v | +

∑
〈u,v〉∈E |�u|.

Clearly, a derivation with t lines and formula size r has inferential size
O(rt). A tree-like derivation (or more generally, a derivation where each
node has bounded out-degree) of size s has inferential sizeO(s). We will see
later (Lemma B.2) that any dag-like F→-derivation of size s can be shortened
to a derivation with inferential size O(s), but we do not know whether the
analogue for NM→-derivations holds.

Theorem A.16. If ϕ has an NM→-derivation from Γ with t lines, height h,
formula size r, and inferential size s̃ , then ϕ has a dag-like F→-derivation from
Γ with O(t2) lines, height O(h), formula size O(rt), and (inferential ) size
O(s̃ t log t). If the original NM→-derivation is tree-like, the F→-derivation
can be taken tree-like as well.

Proof. We use the same notation and argument structure as in the proof
of Theorem A.10, but we work with the formulas v =

∧�v A′
v → �v in place

of A′
v → �v . Observe |v | = O

(
s + |�v | t

)
= O(rt), where s = ‖Π‖.

For each v ∈ V , we construct an F∗
→-derivation Πv of 〈u〉〈u,v〉∈E → v

from Γ with O(t) lines, height O(log t), formula size O(s + svt) = O(rt),
and size O

(
(s + svt) log t

)
, where sv = |�v | +

∑
〈u,v〉∈E |�u|:

• The case of v being a leaf is straightforward.
• If v is an (→I)-node with premise u, we have �v = (α → 	) and
�u = 	 for some α and 	 , and A′

u ⊆ A′
v ∪ {α} as a set. Lemma A.13

gives a proof of
∧	 A′

v → α	 →
∧	 A′

u , which (using α → α	) yields
u →

∧	 A′
v → �v . Combining this with

∧�v A′
v →

( ∧	 A′
v

)�v from
Lemma A.14 gives u →

∧�v A′
v → �v , i.e., u → v .

• If v is an (→E)-node with premises u0 and u1, then �u0 = α, �u1 = (α →
	), and �v = 	 for some α and 	 , and A′

ui
⊆ A′

v . Using Lemmas A.13
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and A.14, we obtain proofs of u0 →
∧	 A′

v → α	 and u1 →
∧	 A′

v →
(α → 	)	 , which yield u0 → u1 →

∧	 A′
v → 	 (i.e., u0 → u1 → v)

using the schema α	 → (α → 	)	 → 	 .

Combining the Πv derivations yields an F→-derivation (tree-like if Π is tree-
like) of ϕ from Γ withO(t2) lines, heightO(h), formula sizeO(rt), and size
O

(
st log t +

∑
v svt log t) = O(s̃ t log t). �

Remark A.17. We can improve the resulting F→-derivation to a tree-
like derivation of height O(log t) at the expense of a mild size increase: see
Theorem B.5.

If we have a real ∧, the |�v | terms from the size parameters disappear, and
we obtain a derivation with formula size O(s) and size O(st log t) rather
thanO(s̃ t log t). It is unclear how to achieve that in the purely implicational
setting. One possible improvement is to modify the inductive definition of∧ϕ so that

∧ϕ Γ = (Γ → ϕ) → ϕ whenever |Γ| ≤ �, where � ≥ 1 is an extra
parameter. Then

∧ϕ Γ has size O
(
‖Γ‖ + |ϕ| n�

)
, where n = max

{
|Γ|, �

}
.

The proofs in Lemma A.13 will have formula size O
(
s + |ϕ| n�

)
and size

O
(
s(logm + �) + |ϕ| n� logm

)
, and similarly for Lemma A.14. In the context

of the proof of Theorem A.16, the optimal choice is � ≈
√

(s̃/s) log t, which
yields an F→-derivation of ϕ from Γ with O(t2) lines, height O(log t),
formula size O

(
s + rt/�

)
, and size O

(
st log t +

√
s̃st2 log t

)
.

Remark A.18. Using similar arguments, we can also prove an efficient
version of Lemma 2.1: if ϕ has an F→-derivation from Γ = {αi : i < n} and
Δ with t ≥ n lines, height h, formula size r, and size s, then

∧ϕ Γ → ϕ and
Γ → ϕ have F→-derivations from Δ with O(t) lines, height O(h), formula
size O

(
r + ‖Γ‖ + |ϕ| n

)
, and size O

(
s + (‖Γ‖ + |ϕ| n)t

)
.

§B. Equivalence of dag-like and tree-like proofs. Our final task is to show
that NM→ and F→ are polynomially equivalent to their tree-like versions
NM∗

→ and F∗
→; more precisely, we will show that an F→-proof with t

lines can be converted to a polynomially larger tree-like proof of height
O(log t) (Theorem B.3), which implies a similar simulation of NM→ by
NM∗

→ (Theorem B.5).
The original argument by Krajı́ček [23, L. 4.4.8] (stated in the context

of classical logic, but intuitionistically valid) relies on conjunctions: given
a proof 〈�i : i < t〉, we consider the conjunctions �j =

∧
i<j �i , construct

short tree-like proofs of �i → �i+1, and combine them to a proof of �t . A
purely implicational version of the argument was sketched in [20, Prop. 2.6],
using the α ∧ϕ 	 formulas to emulate conjunctions. We now present the
argument in detail, incorporating an extra idea to save proof size: instead
of (an implicational emulation of) the long conjunctions �i → �i+1, we start
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with �′i → �i where �′i only consists of the premises needed to infer �i , and
we gradually merge these lists of premises in later stages of the proof.

Let us first observe that if we do not care about the exact values of the
polynomial bounds, an O(log t) height bound along with a polynomial
formula-size bound is all we need to show, as we will then get tree-like
polynomial-size proofs for free.

Lemma B.1. Let Π be a dag-like F→-derivation of ϕ from Γ of height h
and formula size r. Then there is a tree-like F→-derivation Π′ of ϕ from Γ of
height h and formula size r, hence with less than 2h+1 lines and size 2h+1r.

Proof. We can unwind a dag-like derivation 〈V,E, �〉 with root 
 to a
tree-like derivation 〈V ′, E ′, � ′〉 of the same height by taking for V ′ the set
of all paths ending in 
, with 〈p, q〉 ∈ E ′ if p initially extends q by one edge,
and � ′p = �v where v is the starting vertex of p. The bounds on the number
of lines and size follow from Observation A.3. �

Thus, a reader who is happy with any polynomial may ignore the exact
bounds on the number of lines below and concentrate on height bounds,
which are easier to verify.

We need one more structural property of F→-proofs so that we can
accurately estimate the resulting proof size. Let us say that an F→-derivation
is non-redundant if no formula occurs in it more than once.

Lemma B.2.

(i) Any F→-derivation of ϕ from Γ can be made non-redundant by omitting
some formulas.

(ii) A non-redundant dag-like F→-derivation of size s has inferential size
O(s).

Proof. (i): If we omit all but the first occurrence of each formula from a
(sequence-like) F→-derivation, it remains an F→-derivation.

(ii): Clearly, the total size of axioms (logical or from Γ) is at most s. As
for (MP) inferences, the size of an inference α, α → 	 / 	 is linear in the
size of its second premise α → 	 . In a non-redundant proof, each formula
of the form α → 	 can be used at most once as a second premise of an (MP)
inference, because the conclusion of such an inference can only be 	 , which
can only occur once in the derivation. Thus, the total size of (MP) inferences
is also O(s). �

We remark that property (ii) is specific to Frege systems based on (MP)
as the only rule of inference; we see no reason it should hold in general.
(Another such (MP)-specific property is the last part of Lemma A.4.)

Theorem B.3. If ϕ has an F→-derivation from Γ with t lines, formula size
r, and size s, then it has a tree-like F→-derivation from Γ withO(t log t) lines,
height O(log t), formula size O(s + |ϕ| t), and size O

(
(s + |ϕ| t)(log t)2

)
.
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Proof. Let Π = 〈�i : i < t〉 be a derivation of ϕ from Γ, which we may
assume to be non-redundant by Lemma B.2. We fix E ⊆ < � [t] that makes
〈[t], E, �〉 a dag-like derivation by Lemma A.2. For each j < t and k ≤
�log t� such that 2k | j, we put

Pkj =
{
i < j : ∃i ′ ∈ [j, j ′) 〈i, i ′〉 ∈ E

}
,

Γkj = 〈�i : i ∈ [j, j ′)〉,
Δkj = 〈�i : i ∈ Pkj 〉,

�kj =
∧ϕ

Δkj →
∧ϕ

Γkj ,

where j ′ = min{j + 2k, t}. Observe that |Γkj | ≤ 2k , |Δkj | = |Pkj | = O(2k),
and |�kj | = O

(
‖Γkj‖ + ‖Δkj‖ + |ϕ| 2k

)
= O(sk,j + |ϕ| 2k), where we put si =

|�i | +
∑

〈i ′,i〉∈E |�i ′ | as in Definition A.15, and sk,j =
∑
i∈[j,j′) si . Notice that∑

i si = O(s) by Lemma B.2, thus also
∑

2k |j sk,j = O(s) for each k.
We construct F∗

→-derivations Πkj of �kj from Γ by induction on k. For
k = 0, the formula �0

j is
∧ϕ〈�i : 〈i, j〉 ∈ E〉 → �ϕj , which has a derivation

from Γ with O(1) lines and size O(sj + |ϕ|) using Lemma A.4. Assume
that Πkj have been defined for all j < t such that 2k | j, and let j < t
be such that 2k+1 | j. If j + 2k ≥ t, we have �k+1

j = �kj , thus we can take
Πk+1
j = Πkj . Otherwise, we combine Πkj and Πk

j+2k to Πk+1
j using an F∗

→-

proof of �kj → �k
j+2k → �

k+1
j with O(2k) lines, height O(log t), formula size

O(sk+1,j + |ϕ| 2k), and size O
(
(sk+1,j + |ϕ| 2k) log t

)
that we construct as

follows. Observe that Γk+1
j is the concatenation of Γkj and Γk

j+2k , and

Δkj ⊆ Δk+1
j , while Δk

j+2k is a concatenation of a subsequence of Δk+1
j and

a subsequence of Γkj . Thus, Lemma A.13 gives us F∗
→-proofs of

�kj →
∧ϕ

Δk+1
j →

∧ϕ
Γkj ,

�kj+2k →
∧ϕ

Δk+1
j →

∧ϕ
Γkj →

∧ϕ
Γkj+2k ,∧ϕ

Γkj →
∧ϕ

Γkj+2k →
∧ϕ

Γk+1
j .

with the stated size parameters. These together imply �kj → �k
j+2k → �

k+1
j .

In the end, Π�log t	
0 is a derivation of � →

∧ϕ
i<t �i from Γ. This yields∧ϕ〈�t–1〉, i.e., ϕϕ , using Lemma A.13, and we can infer ϕ.

It is clear that the whole derivation has height O(log t) and for-
mula size O(s + |ϕ| t). The derivations Π0

j have together O(t) lines
and size O

( ∑
j(sj + |ϕ|)

)
= O(s + |ϕ| t). Likewise, for each k < �log t�,

there are t/2k+1 subproofs of �kj → �k
j+2k → �

k+1
j with O(2k) lines each,
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which together makes O(t) lines of size O
(∑

2k+1|j(sk+1,j + |ϕ| 2k) log t
)

=
O

(
(s + |ϕ| t) log t

)
. Summing over all k < �log t�, the whole derivation has

O(t log t) lines and size O
(
(s + |ϕ| t)(log t)2

)
. �

Remark B.4. We could avoid the machinery of
∧ϕ Γ formulas by defining

�kj = (Γkj → ϕ) → (Δkj → ϕ), and using Lemmas A.8 and A.9 in place
of Lemma A.13, yielding an F∗

→-derivation with O(t log t) lines, height
O(log t), formula size O(s), and size O(st + |ϕ| t log t).

If we have a real ∧, the |ϕ| terms from the size parameters disappear: we
obtain a derivation withO(t log t) lines, heightO(log t), formula sizeO(s),
and size5 O

(
s(log t)2

)
.

Back in the implicational setting, we can alternatively use
∧p in place

of
∧ϕ , where p is the right-most variable occurrence in ϕ, i.e., ϕ is of the

form Φ → p for some sequence Φ. This reduces all the |ϕ| terms in the size
parameters to O(1): we obtain a derivation of ϕp from Γ with O(t log t)
lines, height O(log t), formula size O(s), and size O

(
s(log t)2

)
. We can

construct a proof of ϕp → ϕ using Lemma A.9: two instances of (A.3)
give Φ → (((Φ → p) → p) → p) → p, and (A.5) yields (((Φ → p) → p) →
p) → Φ → p. We obtain an F∗

→-derivation of ϕ from Γ with O(t log t + n)
lines, heightO

(
log(t + n)

)
, formula sizeO(s), and sizeO

(
s(log t)2 + |ϕ| n

)
,

where n = |Φ| ≤ |ϕ|. Furthermore, if the IPC→ tautology Γ → ϕ is not a
substitution instance of any strictly smaller IPC→ tautology, then n = O(t)
because of [23, L. 4.4.4], which simplifies the bounds to O(t log t) lines,
height O(log t), formula size O(s), and size O

(
s(log t)2 + |ϕ| n

)
.

We can also modify the definition of
∧ϕ using an extra parameter � as

in Remark A.17. In the context of the proof of Theorem B.3, the optimal
choice is � ≈

√
|ϕ| t(log t)/s , which yields an F∗

→-derivation of ϕ from Γ
withO(t log t) lines, heightO(log t), formula sizeO

(
s +

√
|ϕ| st/ log t

)
, and

size O
(
s(log t)2 +

√
|ϕ| st(log t)3

)
.

Theorems A.10 or A.16, B.3, and A.5 imply a polynomial simulation of
NM→ by NM∗

→, but we can obtain better bounds by taking into account that
the building blocks of the proofs constructed in Theorems A.10 and A.16
are already tree-like.

Theorem B.5. If ϕ has an NM→-derivation from Γ with t lines, size s,
and inferential size s̃ , then it has an F∗

→-derivation and NM∗
→-derivation

from Γ with O(t2) lines, height O(log t), formula size O(st), and size
O

(
min{st2, s̃ t(log t)2}

)
.

5[23, L. 4.4.8] seemingly claims an even better bound O(s log t), but this is
a typo, as the argument only warrants size O(st log t); cf. https://www.karlin.mff.
cuni.cz/˜krajicek/upravy.html.
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Proof. In view of Theorem A.5, it is enough to construct an F∗
→-

derivation.
We combine the arguments in Theorems A.16 and B.3. Let Π = 〈V,E, �〉

be an NM→-derivation of ϕ from Γ. By considering a topological ordering
of 〈V,E〉, we may assume V = [t] and E ⊆ < � [t]. As in the proof of
Theorem A.16, let 〈� ′i 〉i<t′ , t′ ≤ t, be an injective enumeration of the set
{�i : i < t}, and for each i < t, let A′

i denote the sequence 〈� ′j : j < t′, � ′j ∈
Ai \ Γ〉. Put i =

∧�i A′
i → �i ; we have |i | = O(s + |�i | t).

Similarly to the proof of Theorem B.3, for all j < t and k ≤ �log t� such
that 2k | j, we put

Pkj =
{
i < j : ∃i ′ ∈ [j, j ′) 〈i, i ′〉 ∈ E

}
,

Γkj = 〈i : i ∈ [j, j ′)〉,
Δkj = 〈i : i ∈ Pkj 〉,

�kj =
∧ϕ

Δkj →
∧ϕ

Γkj ,

where j ′ = min{j + 2k, t}. We have |Γkj | ≤ 2k and |Δkj | = |Pkj | = O(2k),
thus |�kj | = O

(
‖Γkj‖ + ‖Δkj‖ + |ϕ| 2k

)
= O(s2k + sk,jt), where sk,j =∑

j≤i<j′ |�i | +
∑
i∈Pkj |�i | ≤ s . Observe sk,j ≤

∑
j≤i<j′ s0,i , thus for a fixed

k,
∑
j sk,j ≤

∑
i<t s0,i = s̃ . We will now construct F∗

→-derivations Πkj of �kj
from Γ by induction on k.

As shown in the proof of Theorem A.16, for each j < t, there is an F∗
→-

derivation of Δ0
j → j from Γ with O(t) lines, height O(log t), formula size

O(s + s0,j t), and sizeO
(
(s + s0,j t) log t

)
. We can infer

∧ϕ Δ0
j → �

ϕ
j , which

is �0
j , using O(1) extra lines of size O(s + s0,j t); we denote the resulting

derivation Π0
j . In total, these derivations have O(t2) lines, height O(log t),

formula size O(rt) (where r is the formula size of Π) and size O(s̃ t log t).
Let k < �log t� and j < t be such that 2k+1 | j. If j + 2k ≥ t, then �k+1

j =
�kj , and we put Πk+1

j = Πkj . Otherwise, we combine Πkj and Πk
j+2k to Πk+1

j

using an F∗
→-proof of �kj → �k

j+2k → �
k+1
j as constructed in the proof of

Theorem B.3: it has O(2k) lines, height O(log t), formula size O(s2k +
sk+1,j t) = O(st), and size O

(
(s2k + sk+1,j t) log t

)
; summing this over all j

for a fixed k gives O(t) lines of total size O(s̃ t log t).
Altogether, Π�log t	

0 has O(t2) lines, height O(log t), formula size O(st),
and sizeO

(
s̃ t(log t)2

)
. It is a derivation of � →

∧ϕ
i<t i from Γ. Since t–1 =

� → ϕ, we can inferϕ using Lemma A.13 without asymptotically increasing
any of the size parameters.

We can obtain the O(st2) size bound similarly, using i = A′
i → �i as in

the proof of Theorem A.10 in place of Theorem A.16; in this case, we can
avoid usage of the

∧ϕ formulas entirely as in Remark B.4. �
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We mention that if we have a real ∧, the size bound improves to
O

(
st(log t)2

)
.
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