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Twisted trace Paley—Wiener theorems for
special and general linear groups

Paul Mezo

ABSTRACT

Let G be a real special or general linear group and oy be the transpose-inverse involution.
We characterize the image of f +— tr(w(f)w(0¢)) for irreducible representations 7 of
G % (00), and K-finite f € C°(G).

1. Introduction

From the perspective of representation theory, the Fourier transform of an integrable function f is
given by integration against the irreducible unitary representations 7 of the real line

WH/RW(x)f(x) da.

The classical Paley—Wiener theorem is a characterization of the image under the Fourier transform
of the space of smooth compactly supported functions.

If, in place of the real line, one considers a connected real reductive group G, then the ‘Fourier
transform’ of a smooth compactly supported function f can be taken to be integration against the
unitary representations 7 induced from the discrete series or limits of discrete series. The resulting
integral is an operator rather than a scalar, but this operator is of trace class so one can consider
the transform

7Tr—>tr</G7T(x)f(x) dm) = tr(n(f)).

Clozel and Delorme have characterized the image of this transform for smooth compactly sup-
ported functions which are finite under the action of a maximal compact subgroup [CD84, CD90].
This constitutes what is known as a trace Paley—Wiener theorem for G.

One can continue to generalize by supposing that ¢ is an automorphism of G of finite order.
One can then consider the representations 7 induced from the discrete series or limits of discrete
series of the group G x (o), and the transform

wotr( [ #(0)f(e)don(o)) = x(a( o).

A twisted trace Paley—Wiener theorem for G is the characterization of the image of such a transform
on the space of smooth compactly supported functions which are finite under the action of a maximal
compact subgroup. Delorme has proven a twisted trace Paley—Wiener theorem when G is a complex
Lie group and o is the automorphism provided by complex conjugation. The goal of this work is to
prove twisted trace Paley-Wiener theorems for G equal to one of SL(n,R), SL*(n,R) or GL(n,R).

The principal result is a op-twisted trace Paley-Wiener theorem (Theorem 1) in which oy is the
automorphism of SL(n,RR) given by transposing and inverting. Instead of dealing with the group
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SL(n,R) x (op) and its representations, we work with SL(n,R) and its og-stable representations.
The two classes of representations are essentially the same (cf. [Del91, § 1]). Sections 3-5 are
concerned with the identification of the og-stable representations and § 6 handles their associated
intertwining operators. There are two families of intertwining operators, each of which is distin-
guished by a Weyl group which either includes or ignores an action of R groups. These two families
lead to a dichotomy in the og-twisted trace Paley—Wiener theorems of § 7. In § 8 we set forth a
necessary compatibility condition and a conjecture, which together eliminate this dichotomy.

The final section is concerned with applications of the op-twisted trace Paley—Wiener theorems.
We begin by indicating how to obtain further twisted trace Paley—Wiener theorems for the groups
SL(n,R) and GL(n,R). We conclude with an application needed for the twisted invariant Arthur—
Selberg trace formula. This application depends on the conjecture of § 8 if the underlying group is
SL(n,R) and n is even. In all other cases, the application follows unconditionally.

2. Preliminaries

The reader is assumed to be familiar with the basic theory of Lie groups and their representations.
We shall therefore set up our notation without references.

Set G = SL(n,R). The subgroup of upper-triangular matrices Fy is a minimal parabolic subgroup
of G. A parabolic subgroup P C G is said to be standard if P O Py. Suppose P is a standard
parabolic subgroup. Then it has a Levi decomposition P = MUy, where U)y is its unipotent radical
and M is a Levi subgroup containing M, the diagonal subgroup. The subgroup P also has a
Langlands decomposition P = M LYApUps, in which Ay is the connected component of the centre
of M and M" is the subgroup formed by the elements of M having determinant +1. The subgroup
M' is isomorphic to

l
{(xl,...,xg) € SL*(ny,R) x --- x SL*(ny, R) : Hdet(xj) = 1},
j=1

for some positive integers n1,...,n, such that 25:1 nj = n. In other words, M?* (and M) are block
diagonal subgroups of G. We shall refer to the integers ny,...,ny as the block sizes of M or M.
We shall say that an element x € G permutes the blocks of M if x='Mzx is a Levi subgroup
containing My, and has the same block sizes as M.

These notions make sense for arbitrary parabolic subgroups, but we shall only require them for
standard parabolic subgroups. With this in mind, for any Levi subgroup L containing M, define Pr,
to be the unique standard parabolic subgroup whose Langlands decomposition is Pr, = L'A;Ur.
In particular, for P and M as above we have P = Py,;.

We denote the Lie algebra of Ay by aps. Its dual is denoted by a},. The complexification of
a vector space shall be denoted by a subscript C. For example, the complex dual of ay; is aj; .
There is a canonical embedding of aj; into ayy,. The Killing form provides an inner product on a]’\/[o
which by restriction is an inner product on ay;. Given two Levi subgroups L C M we write aJLVI for
the orthogonal dual of ay; in ar. We extend this notation to the duals and complex duals in the
obvious way.

The set of (equivalence classes of) discrete series or non-degenerate limit of discrete series
representations of M?! is denoted by (M ). Given § € (M)gs and A € ajp;c we can form the
representation ¢ ® e* of M by defining

(6 @ e*)(m,a) = Alog(a)) - 6(m), me M, ac Ay.
We can extend this representation trivially to P and induce to G in order to obtain the representation
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indg(é ® e*). Such induced representations may of course be formed for any parabolic subgroup
of G, standard or not. The above induction is assumed to be normalized so that ind%(5 @ ) is
unitary whenever \ € iaj,.

Set K = SO(n,R). It is a maximal compact subgroup of G. We shall adopt the compact picture
of induction so that the vectors in the space of ind%(§ @ ) are functions on K.

Suppose € G and H is a subgroup of G. If 7 is a representation of ! Hz define
zm(h) = n(z 'hz), heH.

Similarly, if 7'Mz is a Levi subgroup of G and \ € a then set

1 Mz,C
zA(X) = MAd(z) " 1(X)), X €ay.

Here, Ad : G — GL(ays) is the adjoint homomorphism.

As usual we define the Weyl group W (Ays : G) as the quotient of the normalizer of ays by the
centralizer of ay; with respect to the adjoint action. If w € W (A, : G), 7 is a representation of M?!,
and \ € aj‘wc, then we define wm and wA by choosing a representative for w and following the
previous scheme. Clearly, the equivalence class of wr is independent of the choice of representative.
We shall often confuse an element of a Weyl group with one of its representatives.

Suppose H is a group and h € H. We define the automorphism o of H by
on(x) =h"tzh, € H.
Given an automorphism o and a representation m of H set
7 (z) =m(o(z)), =€ H.

Notice that 7» = hm when H = SL(n,R). The representation 7 is said to be o-stable if it is
equivalent to m7. The representation 77 is called the o-conjugate of .

The automorphism of principal interest to us is the involution oy of SL(n,R) given by taking
the transpose and inverse of a matrix. By the definition of K = S0(n,R), oo fixes K pointwise.
The differential of o¢ is easily seen to send X € ap to —X. This induces the map A — —A
on ay e

Given a real number ¢ > 0, we define [c| to be the greatest integer less than or equal to c.

3. Necessary conditions for og-stable representations

Suppose Py = M AUy is a standard parabolic subgroup of G, p is an irreducible tempered rep-
resentation of M1, and \ € ay, ¢ with its real part lying in the open Weyl chamber of a}, determined
by Pus. The Langlands classification of irreducible admissible representations [Kna86, Theorem 8.54]
tells us that indgM (p® e*) has a unique irreducible admissible quotient .J(Pyy, p, \), the Langlands
quotient. Moreover, it tells us that every irreducible admissible representation of G is equivalent
to some Langlands quotient. As the composition of indJGgM (p® e)‘) with og preserves subquotients,
the representation (J(Par,p,A))?° is the unique irreducible quotient of (indgM (p®er))o. In the
compact picture, the vector spaces of (ind]GgM (p @ e))?0 and indUG0 Py, (P70 @ e7) are identical, for
the elements of K are fixed by og. A simple computation shows that their actions on this vector
space are also identical; that is

(indf,, (p @ ") = indG p (07 @ ).

The real part of the element —A € aj, - lies in the open Weyl chamber determined by ooPps,
which is opposite to Pjs, so the representation on the right has a unique Langlands quotient
J(ooPur, p7°, —N). As a result, (J(Par, p, A))?° is equal to J(ogPar, p7°, —A).

207

https://doi.org/10.1112/50010437X03000095 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X03000095

P. MEzo

Now suppose that J(Pys, p, A) is equivalent to (J(Par, p,A))?°. Then the uniqueness statement
of Langlands’ classification [Lan89, Lemma 3.14] implies the existence of an element wy, belonging
to the normalizer of Ay; in G, such that

oo Py = wy ' Pyrwy, (1)
_wo)\ = )‘7 (2)
wo(p”°) = p. (3)

If we translate wy on the right by an element in M in this statement then the same conclusions still
hold. Indeed, M normalizes oy Py; and is equal to the centralizer of Aj; in G. In other words, the
conclusions depend only on the class of wg in W (A : G).

Equation (1) implies that Py contains wgooPywy 1 as Py is standard. It is well-known that
Borel subgroups of linear algebraic groups are conjugate. Therefore, there exists an element m € Py
such that

m_lPom = wOUOPOwal.
It is easy to see that we may actually take m to belong to M. This means that (mwg) ! Pymwy is
the parabolic subgroup of GG opposite to Fy. This fact and the invariance under M described in the

previous paragraph allow us to assume that wq is equal to the unique skew-diagonal matrix in G
which also lies in

o --- 0 1

1 0
0 1 :
£ 0 --- 0

Having ascertained the class of wg in W (A, : G), we may compute directly from Equation (1)
that the block sizes ny,...,ng of M satisfy n; = ny1_; for 1 < j < £. We may also compute directly
from Equation (2) that A is restricted to a subspace of aj; - of complex dimension |(£+ 1)/2].

With regard to p we know [Kna86, Theorem 14.91] that there exists a standard parabolic
subgroup Py, contained in Py, with Langlands decomposition L'A; Uy, a representation & € (ﬁ)lds,
and v € i(a}!)* such that

p= ind%[;liw ®eY).
We shall use this expansion to describe equivalence (3). We do so in three steps. First, observe that
the earlier argument for (indgM (p® €))7 can be mimicked to conclude that (ind% 10 pr(d®e))oo
is equal to ind%}LﬂMl(dao ®e").

Second, the only Levi subgroups of G supporting discrete series or limit of discrete series
representations are those whose blocks are of rank one or two. Observe that the involution oy
acts on SL*(1,R) = {1, —1} as the identity, and on SL*(2,R) as conjugation by (% ¢). It follows
that there exists a permutation matrix wy € L', which depends solely on the block sizes of L,
and satisfies §7° = wrd. This implies that left multiplication by the operator §(wy) intertwines

indM, 1 (670 @ ™) with indM, (5@ eY).
Third, it is a simple exercise to show that the operator defined by
- . 1 _
(A(wo)p)(x) = p(wy awy), @ € ind}p pn (6 @e™),
intertwines ind% ;Lﬂ 11 (0 ®e™) with indfl\fo IUO Prws M

These three equivalences taken together with (3) imply that

(wpd ® eV,

. 1 o 1 _
(mdgli(d ®e"))70 = mdﬁaoPnglli(woé ® e~ oY),
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According to [Kna86, Theorem 14.91] there exists an element wys € M such that wy woArwy 1w]T/[1
= Ar, —wpywor = v, and wywed = . Among other things, we have proved the following lemma.

LEMMA 1. Suppose Py = M'Ay Uy D P, = L'ApU;p are the Langlands decorrlzpositions of
standard parabolic subgroups. Suppose § € (L)gs and v € i(a?!)* such that indjl‘.fILﬂMl(d ® e¥)
is irreducible. Finally, suppose the real part of A\ € a}‘wc lies in the open positive Weyl chamber

determined by Py, and J(PM,ind%[;li(é ® €"),\) is ogp-stable. Then the block sizes, ni,...,ng,
of M satisty

n; =ngp1—5, 1<j <Y,

ooPy = woPMwO_l, and wg\ = — \. Furthermore, there exists wy; € M such that U)J\/ﬂquL(uu\/ﬂuo)*1
= Ayp, wpywod =9, and wpwor = —v.

4. The construction of some og-stable representations

We wish to produce a set of Levi subgroups and representations which furnish o(-stable representa-
tions under parabolic induction. Our approach here shall be quite concrete in that we shall provide
explicit intertwining operators demonstrating og-stability.

Suppose Py = MY AUy O Pr, = LY ApUr, and wy are as in the conclusion of Lemma 1. Notice
that oy sends each of these parabolic subgroups to its opposite parabolic subgroup. Conjugation
by wo has the same effect on P,;. However, conjugation by wy does not necessarily send Py, to its
opposite parabolic subgroup. In fact, unless we place some restrictions on L, the element wgy need
not even belong to the normalizer of L. This suggests that we assume L satisfies the conditions of
the next few paragraphs.

Let us begin with the description of L. The subgroup L' is isomorphic to

k
{(xl,...,xk) € SLE(ry,R) x --- x SLE(ry, R) : Hdet(xj) = 1}, (4)
j=1
for some 71, ..., = 1,2 satisfying Z?:l rj = n. Obviously, this subgroup is completely determined
by the integers rq,. .., ry. Suppose 0 < ¢t < [n/2] is an integer and I; is the identity matrix of rank j.
If n is even let w; be the unique element in

o --- 0 0 1

o --- 0 1 0

: 0 IQt 0 :

o 1 0 --- 0

+£1 0 --- 0 0

which belongs to G. If n is odd let w; be the unique element in

o - 0 0 1
o --- 0 1 0
: 0 Iy4r O

0 1 0 - 0
+1 0 0 0

which belongs to G. Note that this definition is consistent with the definition of wy in § 3.
The element w; is meant to fulfill the role of wy;wp as in Lemma 1.

Let L(t) be the set of Levi subgroups L D My for which L! is of the form (4) and satisfies the
following additional requirements:
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1) wiLw, ' = L;
2) there is an integer 1 < s < k such that ijl rj =t;
3) at most two of the block sizes in the sequence, rgi1,...,7rp_s, are equal to one.

For the remainder of this section suppose that L belongs to £(¢). The element w; has been chosen
so that wio0Prw, lis a parabolic subgroup with Levi component L. Unfortunately, wio0Prw; !
might not be a standard parabolic subgroup. After all, w; does nothing at all to the ‘middle’ blocks
of L, whereas oy sends P, to its opposite parabolic subgroup. To correct this discrepancy, we shall
eventually turn to some intertwining operators of Knapp and Stein. Before this, we present the
relevant parabolic subgroups.

In keeping with the earlier definitions, we specify a Levi subgroup M, ; D L by referring to its
block sizes 7/, ..., r,. Working under the assumptions of the previous paragraph, set My, = L if
k = 2s. Otherwise set

k—s
r;-:rj, 1<j<s, 1= Z T, TQSH,]-:?“}:T]-, 1<y <s.
j=s+1
Clearly, the standard parabolic subgroup Py, = M i +Amp Uny, contains Pr. It is easy to see
that Uy, , is contained in U, and it is left as an exercise to the reader to show that

’U)tJ()PL’U);l = (JoPL N ML,t)UMLVt- (5)

We now list sets of representations that are attached to L € £(t) and w; in terms of Weyl groups.
Let g be the Lie algebra of G. The set of useful roots A of (g,ar) forms a root system [Kna86,
Theorem 14.39]. We fix a set of positive roots AJLF with respect to the parabolic subgroup Pr.
Given an irreducible tempered representation & of L', set Ws to be the subgroup of the Weyl group
of A7 which stabilizes the equivalence class of . The group Wy is the semidirect product of two
abstract Weyl groups [Kna86, ch. XIV, § 9]. One of them is the R group Rs and is, as we shall soon
see, isomorphic to Z/27Z. The R group normalizes the other subgroup W50 C Ws, which is the Weyl
group of a root system Ag C Ayr. We fix the set of positive roots of Ag to be Ag N AJLF.

By applying a well-known property of Weyl groups [Kna86, ch. IV, § 4, property (2)], one can
show that the subgroup Zyy, (Rs) of elements in W5 which are centralized by R; is an abstract Weyl
group. In fact, its root system is the direct product of the root system of Rs and the subset of roots
in Ag which are fixed by Rs. If R is non-trivial then AZ determines a unique positive root ap in
the root system of Ry [Kna86, Theorem 14.64]. We may therefore fix a set of positive roots for the
above direct product by taking the union of ar with the intersection of A}f and the second root
system in the product.

Define (L)145+ to be the subset of (L)1s given by those § € (L)iqs such that wy is (a representative
of) the longest element in either W or Zy, (Rs).

Given an element w € W(Ap : G), define af to be the subspace of aj, spanned by the elements
X € ar, which satisfy Ad(w)(X) = —X. We denote the relevant dual spaces and their complexifica-
tions as we do for ay,.

PROPOSITION 1. Suppose § is (a representative of a class) in (L)gs; and v € (ap'c)”. Then indIG;:L (0®
e”) is op-stable.

Proof. We shall define an operator 7'(J) intertwining (indIGDL(d ® €))% with indIGDL (d®e”). As in
earlier considerations, we see that (indJGDL(d ® €))% is equal to indUG0 p, (070 ® e7"). The latter

representation is equivalent to

nd® L (W (07°) ® e~ ") = ind® H(we(69°) ® €¥)

wioo Prw, wioo Prw,
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by virtue of the intertwining operator
(A(w)p)(@) = plwy awy), ¢ € indGp, (657 @ ™).

The intertwining operator d(wy) (which depends only on L) defined in § 3 intertwines the repre-
sentation on the right with

G
UJtUOPL’LU;l (wt(S ® ey)'

As wid = 0, [Kna86, Theorem 14.91] provides an element ws € L N K such that left multiplication
by d(ws) intertwines the above representation with

ind® L(6®e). (6)
Knapp and Stein have defined a normalized intertwining operator

A(Pr : thOPLw;1 20 :v)

tUOPLwt_l((S ® e”) with indIG;:L (0 ®e”), for v in a dense open subset of (a%c)*
[Kna86, § 6, XIV]. It follows from Equation (5) and the inductive definition of this operator that it
is induced from an intertwining operator

A(Pp N Mit cooPL N Mll,,t 10 VM),

which intertwines indg

where vy, , is the orthogonal projection of v to (aﬁ%’t)*. It is an immediate consequence of the

definitions that
M
wiy = v, Vi € (ClLfé’t)*.

From this equation and the fact that w;v = —v it follows that vy, , = 0. By [Kna86, Proposition
14.20(d)], the operator A(Pr, N Mi’t s ooPr N Mit : 0 :0) is defined. We may therefore use it to

intertwine representation (6) with indgL(é ® e). For convenience, we shall identify A(Py N M}, :

ooPr, N Mi,t : 6 :0)~! with its corresponding induced operator on indfijPLw;1 (f®ev).

After working through these equivalences in reverse, we find that
T(6) = A(PLNMj,:ooPLN M}, :6:0) " (wy )o(wy ") A(w; )
is an intertwining operator between ind]GgL (0 ®€e”) and (indIG;:L (6 ®e”))%0. O

We can simplify the notation in the definition of 7'(§) somewhat by defining operators L(w) and
R(w) on ¢ € indIG;:L (0 ®e”) by

(L(w)p)(@) = plw2),  R@)P)@) = plaw), we K.
Unraveling the definitions, and noting that
APLNMrpy 00PN Mp:6: 0)71 = AlooPLNMp: PLNMp,:6:0)
[Kna86, Lemma 14.18], we see that 7'(d) reduces to
T(5) = AlooPL, N My : PN\ Mgy : 6 : 0)L(wy 'wy 'we)R(w; ). (7)

It is valuable to note that 7'(6) is independent of v € (a} )"

5. The exhaustion of the og-stable representations

Our goal here is to show that every irreducible og-stable admissible representation is equivalent to
a quotient of indgL (8 @ V), where L € L(t), §' € (L')1gss, and N € (af/ )" for some 0 <t <
|n/2]. This is not a classification of the irreducible og-stable representations for we have provided
neither a uniqueness assertion nor a description of the quotients of indgL (0'® e)‘l). These additional
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features may be derived from a careful application of the Langlands classification and [Kna86,
Theorem 14.91]. (For a better impression of these issues, consult the example at the beginning
of § 6.) In any case, the characters of irreducible o(-stable representations may be recovered in a
prescribed fashion from the characters of the representations indIG;:L (6’ ® ') as above (cf. [Art89,

§ 5]).

In light of Lemma 1, we will achieve the above goal if we prove the following proposition.

PROPOSITION 2. Suppose Py, Pr, 0, and v are as in the conclusion of Lemma 1. Set n' = net1)/2 if
¢ is odd and n' = 0 otherwise. Then there exist 0 <t <n/, L' € L(t), &' € (L')iass, and v/ € i(alft)*
such that Py, C Py and ind%lliw ® €") is equivalent to indg;li(cy ® e”).

Indeed, the integer n’ of this proposition has been chosen so that w;A = wy\ whenever \ €
(ayp )" Therefore, one may take the X occurring in the above representation ind% (8’ ®eN) equal
to A+ 1/ € (a7} )*. The proof of this proposition will consume this entire section.

Proof of Proposition 2. Suppose that w € M permutes the blocks of L. Then the operator
S(w,8,v) = A(Pyrp—1 N M :wPrw™ N M wé : wv)L(w) (8)

(cf. § 4 with apologies for the double usage of L) is invertible and intertwines indJGDL(d ® e¥) with
indngMl (wé®e™”) for any v € i(ar)* [Kna86, Proposition 14.20(d)]. The upshot of this observation
is that in order to prove Proposition 2 it suffices to find an element w € M which permutes the
blocks of L such that the following properties are satisfied:

i) wLw™! = L' for some L' € L(t), 0 <t < n';
ii) wd € (ﬁ/)lds,tQ
ii) wr € i(ay))”.

We shall prove these three properties by portraying 6 as a k-tuple of representations of SL* (rj,R),
rj = 1,2, and providing permutations of these representations which will also place § and v into
the desired form. Suppose J and v are as in Lemma 1 and L' is of the form (4). Then there exists
an irreducible representation 6+ of

L* = SLE(r,R) x --- x SLE(rg, R),
+
|t
by Frobenius reciprocity 6% can be taken to be an irreducible subrepresentation of the induced
representation of § to L*. Clearly, we may express 6 uniquely as a k-tuple ((6%),...,(6%)) of
irreducible representations of SL* (71, R) x - - - x SL* (7, R). It is important to note that there may be
another inequivalent representation of L* whose restriction to L' contains 6. The following lemma
fully describes this possibility in terms of the non-trivial character sgn of SL*(1,R) = {1, —1}.

whose restriction 8%, to L' contains § as one of its two possible subrepresentations. Indeed,

LEMMA 2. Suppose 6% = ((6%)1,...,(6%)x) and 6 = ((0'F)1,...,(6"),) are irreducible represen-
tations of L* such that 5|iL1 and 6‘%1 contain  as a subrepresentation. Then (5;[ = 5;*, for1 <j<k
such that r; = 2. Furthermore, either (6%); = (§'F);, for all 1 < j < k such that r; = 1, or

(5i)] = sgn - ((Yi)j; for all 1 < ] < k such that i = 1.

Proof. Suppose 1 < j < k and r; = 2. Then, according to (and in the notation of) [Kna79, § 2], there
exist positive integers d;, d} such that (6%); and (§'F); are the respective induced representations

of D:l; and D;;. Moreover, we have ((5i)j)|SL(2,R) = D:l; © D, and ((5li)j)|SL(2,R) = D(}Z_ @ D;;.
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It follows that d; = dg» and the first assertion of the lemma is proven. Now set

k
H = {(:cl,...,xk) eL': xj =1, if r; =2, and Hdet(:cj) = 1}-
j=1

It is a simple exercise to show that if the one-dimensional representation (5@ is trivial then either

(6%); is the trivial character for all 1 < j < k such that r; = 1, or (6%); = sgn for all 1 < j < k

such that 7; = 1. The lemma now follows by replacing 5‘i in this exercise with 5@(5%)*1. O

H

We are assuming that wyrwgd = 6 as in Lemma 1. This implies that w Mumé‘ji1 contains ¢ as a

subrepresentation. Therefore, Lemma 2 tells us that either wy;wod™ is equivalent to *, or both the
trivial and sign characters of SL*(1,R) occur in ((6%)q,...,(6%);) an equal number of times and
wprwp sends each trivial character to a sign character. We shall prove the three properties (i)—(iii)
by considering each of these two cases separately.

First we fix some more notation for the representations occurring in 6*. Let 71, . . ., 7, be mutually
inequivalent representations of SL*(2,R) or SL*(1,R) such that every representation occurring in
the expansion ((6%)1,...,(6%)k) of 0% is equivalent to some 75, 1 < j < b, and vice versa. Let a;
be the number of representations in ((6%)i, ..., (6%),) which are equivalent to 7, 1 < j < b.

We now prove properties (i)-(iii) under the assumption that wywed™ is equivalent to &6%.
Recall that M is comprised of ¢ blocks. We define M* D L* in the obvious way. If (6%); is a
representation of a block of L* contained in the ith block of M™*, then wy;wd* = 6* implies that
it also occurs as a representation of a block of L* contained in the (¢ 4+ 1 — i)th block of M®.
It follows that when / is even the integers ai,...,a; are all even and that there exists w € M?"
which permutes the blocks of L such that wowd® = wd*.

On the other hand, suppose that £ is odd. Let ¢ be the number of integers in aq, . .., ap which are
odd. Using the same reasoning as in the case that £ is even, it is not difficult to see that there exists
w € M" which permutes the blocks of L in such a way that each representation of 71, ..., 7, occurring
an odd number of times in ((6%)1,..., (07);) occurs an odd number of times as a representation of
a block contained in My 1)/5. In particular, the integer ¢ is no greater than the block size n1) /2.
Moreover, we may assume that w satisfies w,wdé™ = wo=.

Bearing in mind our observation concerning the intertwining operator (8) and permutations of
the blocks of L, we may now assume that 6% satisfies w;0% = 6T for some 0 < t < n’. This implies
that L € L£(t) and that (the class of) w; belongs to W by restricting 6% to L!. That is to say, we
may assume that property (i) in our proof holds with L = L.

To obtain property (ii) we wish to show that w; is (a representative of) the longest element in
W). For this we require a better understanding of Rs. Apparently, the Weyl group W (A : G) is
the direct product of the permutation group W,, of the blocks of rank two occurring in L, and the
permutation group S, of the blocks of rank one occurring in L. (The subgroup W, is generated by
reflections of the even roots of Ay, (for definitions see [Kna86, § 10, XIV]).) [Kna86, Corollary 14.50]
and [Kna86, Theorem 14.59] together imply that Rs is contained in S. In view of Lemma 2, an
element w € SN Wjs can have either one of two possible effects: either it sends the trivial characters
of 6%+ to trivial characters and the sign characters of % to sign characters; or the trivial and sign
characters of 6% appear an equal (positive) number of times, and 1 sends each trivial character to
a sign character and wice versa. We can reduce the question of whether @ lies in Rs to the case
G = SL(2,R) by applying [Kna86, Theorem 14.43(b)]. Combining this theorem with our knowledge
of R groups for SL(2,R), we can deduce that w lies in Rs only if the second possibility for @ holds.
As w;0F =2 %, the second possibility does not hold for the action of w; on the blocks of rank one.
Therefore, w; belongs to Wéo. In addition, W50 is isomorphic to W7 x --- x W}, where W; is the
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permutation group of the representations in ((6%)1,..., (6%)x) equivalent to 7j, 1 < j < b. It follows
that the simple reflections of WéQ are those which transpose the ith block of L with the jth block,
where j is the least number greater than i such that (6%); & (6%);. The action of w; on AY sends
each simple root to a negative root. The longest element of WéQ is therefore equal to (the class of)
wy [Hum72, Lemma 10.3A]. This completes property the proof of property (ii)

To achieve property (iii) we require some more information about wpy;wg. Since we are assuming
that wyswp fixes 6F, we know from our description of Wj that it belongs to W{. We may therefore
suppose that v € i(a})* such that wy = —v for w = wpywy € WY. Our goal is to show that
there exists w' € W{ such that wyw'v = —w'v, that is, that w'v € i(a}y*)*; for then we may set
0 =w'd =6, vV = w'v, and the conditions of Proposition 2 are fulfilled. We may choose w’ to be
an element of W(? such that w'v lies in the closure of the positive Weyl chamber determined by
Ag N A}f. After all, W50 acts simply transitively on the Weyl chambers, and our assumption that
w € W} implies that v is in the real linear span of iAY. The element w;(w'w(w') ™ )w'v is also
in the closure of the positive Weyl chamber, as (w'w(w’)~!)w'v = —w'v lies in the closure of the
chamber opposite to the positive chamber and w; sends this latter chamber back to the positive
one. By [Hum72, Lemma 10.3B], we have w;(w'w(w') ™ )w'v = w'v, whence

wow'v = () 'y = (o) " Huw'v = —w'y,
and property (iii) is satisfied.

We now prove Proposition 2 in the case that waswed = 8, but warwed™ is not equivalent to §+.
According to our remarks concerning the nature of the R group, this implies that Rs is non-trivial
and that (the class of) wywy does not belong to WJ. We have also pointed out that Rs; # {1}
implies that the trivial and sign characters of SL*(1,R) appear in ((6%)1,...,(6%);) and that they
do so an equal number of times. We shall assume that 7, is the trivial character and 73 is the sign
character, so that a;_1; = ap. Our assumption and Lemma 2 imply that if (5*) j is a representation
of a rank-two block of L* contained in the ith block of M, then it also occurs as a representation
of a block of L* contained in the (£+1—i)th block of M*. In contrast, if (6%); is a representation of
a rank-one block of L* contained in the ith block of M, then sgn - (67%) ;j occurs as a representation
of a block of L* contained in the (£ + 1 —4)th block of M*. Let ¢ be the number of representations
among 71, ...,7, which are not representations of SL*(1,R) and which appear an odd number of
times in ((6%)1,...,(0%)k). It should be clear that there is an element w € M!, permuting the
blocks of L, such that

9)

i (wéF);, if (wdt); is a representation of SL*(2,R)
(wiwd™); = :
sgn - (wé*);, otherwise

forall 1 <j<k.

As in the previous case, we may now assume that L € £(t) and w0 = 6, so that property (i)
holds with L = L. We wish to show property (ii) by proving that w; may be taken to be (a represen-
tative of) the longest element in Zyy, (Rs). Let us examine the structure of R; is some more detail.
Recall that a non-trivial element r of Rs sends each trivial character of 6% to a sign character of
6F and wvice versa. Moreover, it leaves the remaining representations occurring in ((6%)1, ..., (6%)z)
unaffected. By definition, r also stabilizes the set Ag N AJLF. Consequently, there is an isomorphism
between Ws and

Wi x - X Wy—g X (Wy—1 x W) x Ry)
in which r acts on Wj,_1 X W, by transposition. In particular, Ry is isomorphic to Z/2Z. The longest
element of Zy, (Rs) is seen to be the product of r and the longest element of WJ. This element is

distinguished by the property that it sends each positive simple root to a negative root and that
it transposes each trivial representation in 6% with a sign representation. According to (9), w; has
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the latter property. The former property is deduced for w; just as in the case that wa wed* = §+.
Consequently, w; is the longest element in Zyy, (Rs).

We have just shown that property (ii) in the proof of Proposition 2 is satisfied. To obtain
property (iii), we may suppose that v € i(aM)* such that rwr = —v for some w € WP. In the
notation of § 4, this equation implies that there exist 1 in the real linear span of iAg, and vg,
a real multiple of iap, such that v = vy + vi. Since the elements of Ag are orthogonal to ap,
this decomposition is unique and elements of W(? act as the identity on vi. Once again, we aim
to prove Proposition 2 by showing that there exists w’ € W50 such that w,w'v = —w'v. We choose
w € W(? such that w'yg lies in the closure of the positive Weyl chamber determined by Ag N AJLF.
The element (w'rw(w’) 1) w'vy = —w'vy clearly lies in the closure of the opposite Weyl chamber. It is
then immediate from the definition of Rs that r(w'rw(w’)~1)w'vy lies in the closure of the opposite

chamber as well. It is readily verified that wyr is the longest element of W, and so the element
wi(w'rw(w) " Hw'vy = (wer) (r(w'rw(w’) ™H))w' vy

belongs once again to the closure of the positive chamber. [Hum72, Lemma 10.3B] then implies that

wi(wrw(w')"Hw'vy = w'vg and in turn that wyw'vy = —w'vy. Therefore
ww'v = —w'vy + (wr)rvg = —w'vg — vg = —w'y,
and property (iii) is satisfied. This concludes the proof of Proposition 2. O

6. Some more intertwining operators

Proposition 2 gives us a method of associating any og-stable representation to one of the repre-
sentations in Proposition 1 by way of a permutation matrix. We shall use this method to define
intertwining operators for any ¢ € (L )lds and Levi subgroup L D Mj. In order to apply the existing
trace Paley—Wiener theorems to our context it is important that these intertwining operators satisfy
two properties.

The first property is one of compatibility for representations which are affiliated by induction.
More precisely, let

P, =LIAL UL, 1<i<s,
be the finite set of standard parabolic subgroups of G. We say that &' € ( j)hds is affiliated to
P, mL1(6®e ) (cf. [CD90, Définition 2]).

Given L' € L(t'), L € L(t), and ¢’ € (L’)lds » affiliated to 5 € (L )1dst, we have the intertwining
operators T'(&') and T'(8) of § 4 which intertwine ind% b, (0®e 0) and 1ndGL(5 ®e) with their respective

op-conjugates. It is immediate that the space of indG (8" @ €°) is a subspace of indG (§®eY), so

de (L )1ds, if P, C Pr; and ¢’ is a subrepresentation of 1nd

the restriction of T'(§) to this subspace is also an mtertwmlng operator between de (0" @ €Y)
and its og-conjugate. This restricted operator might be different from 7'(¢"), and this is the type of
incompatibility we would like to rule out in our subsequent definitions.

The second property we wish our intertwining operators to satisfy is that they intertwine
op-stable representations in a manner that is invariant under conjugation by permutation matrices.
To attain this property we must define two types of intertwining operators. The reason for this is
illustrated by the following example.

Recall the notation of § 5 and consider G = SL(4,R) and the representation ot = (1,1,sgn,sgn)
of M0 in which 1 denotes the trivial representation of SLi( ,R). The Levi subgroup Mj belongs
to £(0) and ¢ belongs to (Mo)lds 0. It is clear that Ry is non-trivial and that wq is a representative
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of the longest element in Zy,(R;). According to Proposition 1, T'(6) is an intertwining operator
between indJGgMo (0 ®€”) and its ogp-conjugate for all v € (ay) -)*. The operator T'(5) might appear
to be all we need, but it does not intertwine some other og-stable representations attached to §.
Specifically, suppose v is given by the 4-tuple (v1, —v1, 2, —12) via the obvious embedding of Ahg.C
into C*. Suppose further that v and v, are non-zero imaginary numbers and v # #v5. Then one
can show that indgMO (6 ® €”) is a og-stable irreducible tempered representation. However,

—wov = (va, —v,v1,—11) # U,
sov & (ay; ¢)* and T'(6) does not intertwine indgMO (0 ® ) with its og-conjugate.

To find a different operator which does intertwine these representations, we can associate d to
the representation ¢’ = (1,sgn,sgn, 1) € (Mo)lds,o by a permutation as in § 5. Observe that in this
case wy is a representative for the longest element in Wg,, not Zy,, (Rs ). We can then conjugate
T(0") by an operator of the form (8) to obtain the desired equivalence between indIG;:MO(é ® e”)
and its og-conjugate. We emphasize that the above two intertwining operators, T'(§) and T'(¢"), are
distinguished by the two distinct types of Weyl groups, Wy and Zy,, (Ry).

We shall begin our definitions by considering Zyy, (Rs) and defining an intertwining operator
T7(0,v) for 6 € (f)i)lds, 1 <i<s,and v in a dense open subset of az“(c. Suppose that 6 € (ﬁi)lds
lies in the discrete series. Define {0} to be the equivalence class of all discrete series representations
= (ﬁj)lds such that § = wd’ for some w € K. If §' € (ﬁj)lds belongs to {4} then the set of minimal
K types (cf. [Kna86, ch. XV]) of indgL (0’®eY) is equal to the set of minimal K types of indgﬂ (0®eY).
On the other hand, if two such represjentations belong to two different equivalence classes tﬁen their
corresponding sets of minimal K types are disjoint [CD84, Proposition 2]. This means that to each
such equivalence class {0} we can attach a minimal K type ps5 which determines it.

Suppose § € (ﬁi)lds lies in the discrete series and L; belongs to L£(t) for some 0 < ¢t < [n/2].
The restriction of the operator T'(d) of (7) to the minimal K type p sy is a self-intertwining operator,
as 0¢ fixes K pointwise and jiy45y is a K type of multiplicity one in ind%i (6 ® €°) [Kna86, ch. XV,
§ 1, equation (1)]. This restriction is therefore given by a non-zero scalar as. Define

T7°(6,v) = ay ' T(6), v e (af' o).

The operator 77°(6, v) intertwines indJGgL_ (6 ® e”) with its op-conjugate for any v € (a7’ )", and its
restriction to fi(s) is the identity operator.

Suppose now that § € (ﬁi)lds lies in the discrete series, where 1 < ¢ < s is arbitrary. Then §
satisfies the properties of Lemma 1 with M = G, L = L;, and v = 0. Therefore, by the arguments
of § 5, there is an integer 0 < t < |n/2] and a permutation matrix w € G such that wL;w™' € L(t),

wé € (wfl-w\_l)lds,t, and wy is the longest element in Zy, ; (Rys). One can then compute that w™lww
is the longest element of Zyy, (Rs) with respect to the positive roots determined by w™! P, Lyw—1W-
As the Weyl group acts simply transitively on the Weyl chambers, there exists a unique element w”
in Zw, (Rs) such that (ww”)~Lwpww is the longest element of Zyy, (Rs) with respect to the positive
roots determined by Pr,. We may therefore assume that w™lwsw is the longest element of Zw,(Rs)
with respect to the positive basis determined by Pr,.

We know that there exists an invertible operator S(w,d,v) intertwining ind%ﬂ(& ® €e”) with

ind%ﬂLiw_l(wd ® ") for v in a dense open subset of aj . (cf. (8)). In fact v — S(w,d,v) is a
meromorphic map on a7 ¢ . Define T7°(6,v) to be S(w, §,v) T (wé, wv)S(w, 8, v). Clearly, T{° (5, )
intertwines indgp(d ® €”) with (indgp(é ® e~w wwr))oo whenever S(w,d,v) is defined, and its

restriction to (s is the identity operator.
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LEMMA 3. Suppose 6 € (Li)s lies in the discrete series for some 1 < i < s. Then T°(5,v) is
well-defined on a dense open subset of a}ii,(c.

—

Proof. Suppose w' is another element of G such that w'L;(w')™' € L(t'), w'§ € (w'Li(w") " )as v,
wy is the longest element in Zyy, , (Rys), and (w’ ) lwyw' is the longest element in Zyy, (Rs). It is
immediate that (w') 'wyw’ = w™lw;w for w as above, and so the operator

S(w',8,v) 1T (w6, w'v)S(w', 8, v)
intertwines indIG;:L.(é ® €”) with (ind%,((S ® e~ "Wy wr))oo for 1 in a dense open subset of ar, c-

According to [SV80], indgﬂ (6 ® €”) is irreducible for v in an open subset of a7 . Schur’s lemma
therefore implies that, for v in an open subset of a7, T7°(8,v) is a scalar multiple of S(w’, d,v)~?
T(w'6, w'v)S(w',d,v). The traces of the restrictions of these two operators to pigs) are equal (to the
degree of figs)). Therefore, the scalar multiple must be 1 and T7°(6,v) equals S(w',d,v) " T (w'd)
S(w’,0,v) for v in an open subset of ay, c- By analytic continuation the equality holds for all
vear, ¢ O

Suppose now that 1 < j < sand § € (ﬁj)lds is a non-degenerate limit of discrete series. It is
affiliated to some d € (L;)1gs lying in the discrete series for some 1 < i < s [Kna86, Theorem 14.71]).
The operator T7°(d,v) is defined for v in the positive Weyl chamber of a*Lj,(C (cf. the proof of
Lemma 14.1 in [Kna86]). Since 77°(d, ) is meromorphic in v, it extends to a meromorphic function
on all of a7 . We define T7°(d',v) to be the restriction of T7° (4, v) to indng (0’ ® e”) for v in the
dense open subset of aj upon which T 70 (0", v) is defined.

~

LEMMA 4. Suppose 1 < j < s and &' € (Lj)4s Is a non-degenerate limit of discrete series.
Then TY°(¢',v) is well-defined on a dense open subset of a7, c

~

Proof. Suppose ¢’ is affiliated to another representation 6" € (L;)gs lying in the discrete series for
some 1 < i’ < s. Then, by the Langlands disjointness theorem [Kna86, Theorem 14.90], there exists
w € K N Lj such that wé” = 0. We have the intertwining operator

S =A(Pr, N L} : wPLi/uf1 N le- 10 :0)L(w)
Ll
(6" ®€%) to ind Py (L1 (5 ®e%). The operator S also induces an intertwining operator
i g

from indIG;:L (0" @ e") to ind]GgL (0 ® €”), by virtue of the equivalence

indng (indé;/ij 6" @) = indgLi/ (8" @ ).

Ll

We also denote this induced operator by S. Since ¢ occurs in ind PJL A (0® eV) with multiplicity
L
one [Kna86, Corollary 14.66] and S~1§'S = §’, the restriction of S™YT7°(8,1)S to indJGgL_(é’ ® e¥)
J
is equal to the restriction of T7°(8,v) to the same space. Obviously, S™177°(8,2/)S and T7° (8", ")
both intertwine il’ldgL'/ ((5”®eyl) Wlth (indgL.l (6”@6_’“]””,))(70 fOI' w”’ the longest element in ZW5 (Ré),
and v/ in an open subset of aj .

We shall finish the proof by showing that S™Y77°(8,2/)S is equal to T7°(6”,v'). By [SV80],
indJGDLV/ (6" ®€”") is irreducible for +/ in an open subset of a7, c- This implies that S~'77°(5,1/)S is
a scalar multiple of 77°(6"”,1"). The traces of the restrictions of these operators to sy are equal.
In consequence the scalar multiple must be one and the operators are equal.

Now that we have defined T7°(¢’,v) we ought to ensure that it is an operator intertwining the
desired representations.
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LEMMA 5. Suppose1 < j<s,d € (ﬁj)lds is a non-degenerate limit of discrete series, and w is the

longest element of Zyy,, (Rs). Then T7°(¢',v) intertwines ind]GgL (&' ® e¥) with its og-conjugate for
J

v in a dense open subset of (af, ¢)*.

Proof. We suppose first that L; € L£(t) and w = w; is the longest element in Zy,, (Rs ) for some
0 < t < |n/2]. Suppose also that & is affiliated to a discrete series representation § € (L;)igs as
above, v € (af; c), and that (0')* is a representation of L;-t as in § 5. In this case, T7°(d,v) is
defined.

Since the only limit of discrete series representations occurring in the expansion of (§')* are

induced from a Borel subgroup B and are of the form
+ +
ind%L (2’R)((1 ®sgn) ® ) = ind%L (2’R)((sgn ®1)®e)

(cf. [KnaT79, § 2]), we know that the expansion of 6% is given by replacing some of these representa-
tions in (6')* with (1,sgn) or (sgn,1). A simple reordering of the latter representations implies the
existence of w’ € Lj, which normalizes L; and satisfies w'd € (L;)14s+ with wy as the longest element
in Zw,(Rs). In addition, since
70 (6, v) = TY° (w8, w'v) = Ty (w'8, v),
we may assume that w' = 1. Thus, the restriction of 77°(6,v) to ind%, (¢’ ® €”) intertwines this
J

representation with its og-conjugate.

Dropping the assumption that L; € £(t), the normalization of [Kna86, Lemma 14.1] still ensures
that 71 (¢, v) is defined for v in a dense open subset (the positive Weyl chamber) of (afj@)*. We may
therefore use the previous arguments to prove the lemma in this case as well. ]

Thus far we have defined an operator T7(d,v) which intertwines indgp(d ® €”) with its
op-conjugate for every 0 € (ﬁi)lds, 1 <i < s, and v in a dense open subset of (a‘L"i c)", where
w is the longest element in Zyy,(Rs). It is apparent from the definitions that these iﬁtertwining
operators are compatible with respect to affiliation.

The example at the beginning of this section illustrates the need for an operator 75°(d,v) for
o€ (ﬁi)lds, 1 <7< s, and v in a dense open subset of (afiv(c)* where w is now the longest element
in WY. We define this second type of intertwining operator by following the definition of 77°(8,v)
and replacing Zw, (Rs) everywhere with W).

It is important to realize that if n is odd then 77°(6,v) is equal to T5°(d,v). Indeed, we know
from § 5 that the only way the R group of § can be non-trivial is if the trivial character and sign
character appear in 6 an equal number of times. This is only possible if n is even.

7. og-twisted trace Paley—Wiener theorems

Our strategy in proving a og-twisted trace Paley—Wiener theorem for SL(n,R) is to follow [CD84]
and [CD90]. We first prove an analogue of their Proposition 1 [CD84], which deals with individual

representations in (L)jqs s for some L € L£(t) and 0 < t < [n/2]. Then we prove a op-twisted analogue
of their trace Paley—Wiener theorems for two different cases, depending on some R groups.

To refer to the proof of Proposition 1 [CD84] we need some notation. Let N be a positive real
number. Suppose L = L; for some 1 < ¢ < s and define PW(ar)ny to be the image under the
Fourier transform of the smooth functions on a;, with support in the closed ball of radius N about
the origin. The classical Paley~Wiener theorem tells us that functions ¢ in PW(az )N are entire on
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a;, ¢ and satisfy a growth condition,

sup {[¢(A)|e M (1 + [Im(V)]) ¥t} < oo,

Aeay ¢
for every integer k. If W is a group acting on a;, we denote the W-invariant subspace of PW(ar)n
by 'PW(GL)JI/\I;

Suppose now that L € L(t), ¢ is the Lie algebra of K and t C £ is the Lie algebra of a compact
Cartan subgroup of L'. Then

h=toda,=tdal" & (af')*
is a Cartan subalgebra of g, the Lie algebra of G. Let W(h) be the Weyl group of b, S(h) be the
polynomial algebra on b, and PW(h) be the Paley-Wiener space determined by h. As before, we
denote the W-invariant subspaces of S(h) and PW(h) by S(h)" and PW(h)W, respectively, for any
group W acting on §.
Define C°(G,K)y to be the space of smooth K-finite functions of G with support in
K exp(a(N))K, where a(N) is the closed ball of radius N about the origin in apy,.

~

PROPOSITION 3. Suppose k =1,2,0 <t < [n/2], L € L(t), 0 € (L)iass, p is a minimal K type of
ind%(é ® "), and F is a complex function of (a}')*. Suppose further that

W ={we Ws:wa}" Caj'}.
Then there exists f € C°(G, K)n of type (u, u) such that
F(v) = tr(ind§, (6 © €)(/)TL(5,0))

if and only if F belongs to PW(a*)¥ .
Proof. Suppose F € PW(ay")W. By the Corollary of [Cow86], I extends to a function F' €
PW(h)W such that

F'(hs+v)=F(v), ve (ap'c)”
for the Harish-Chandra parameter A; € ¢ of § (cf. [Kna86, § 7, ch. IX]). By a theorem of Rais
(cf. [CD84, Lemme 8J), it follows that

W

SO PWO)Y Y =PW" (h)w.
We therefore write F'(A) = Y P;(A)F/(A), where P, € S(h)"V and F] € PW(U)JV\[[/(M. Since the
involution given by

A= —’U)t)\, A€ Cl*L

stabilizes AN AT, [CD90, Proposition A.1] tells us that there exists a function P € S (5)Ws which
agrees with P; on A\; + (a7")*. As R; C W, the function

P/(\)=|Rs|™" > P/'(rA), Aebg,
reRs

is a function in S(h)"s which agrees with P; on As + (a}’s)*. By [CD84, Theorem 2] there exists a
t-invariant element u; in the universal enveloping algebra of g which acts on the minimal K type p
of ind%(é ® ) as multiplication by

PZ(()\(; +A)=P(ANs+)N), M€ a*L7(C.

By [CD84, Lemma 9] there exists f; € C°(G, K)y of type (u,p) such that, for all A € (a7'c)*,
ind%(d ® e*)(fi) equals F/(As + A) on u and equals zero on any other K type. The restriction of
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T7°(6,v) to p is a self-intertwining operator and hence a scalar €, = £1. The function

deg(p)

can be seen to satisfy the claim of the proposition.

f=¢k-

Suppose now that the converse holds. Since f is K-finite, one may choose a basis of indJGgL_ (deY),
with respect to its K types, such that only finitely many matrix coefficients of indgﬂ (6 ®e”)(f)

are non-zero. According to [CD84, § 2.1], each non-zero matrix coefficient belongs to PW(ar)n.
As the operator 7,)°(9, v) sends the K-isotypical components of indIGJL. (0®e”) to themselves and does

not depend on v, there are finitely many non-zero matrix coefficients of indgL. (d@e”) ()T, v),

and each of these matrix coefficients is a finite linear combination of functions in PW(ar)n.
Consequently, the trace of indIGJL. (0®e”)(f)Ty°(6,v) defines a function in PW(ar)y. The invariance
of this function under W is obvious. g

Given L € L(t), let (ﬁ)lldst be the subset of representations 6 € (f/)lds,t such that w; is a
representative of the longest element in Zy,(Rs), and let (A)fdst be the subset of representations

de (L )1ds ¢+ such that w; is a representative of the longest element in W(; The following theorem is
a og-twisted version of [CD90, Théoréme 1] in the case G = SL(n,R).

THEOREM 1. Suppose N > 0, k = 1,2, and that for each 0 < t < [n/2| and 1 < i < s such that
L; € L(t) we are given a function

Ffy: (L), x (af o) = C.

7

Then the following are equivalent.
a) There exists f, € C°(G, K)n such that
Fly(8,v) = te(indf, (6 @ ") (f)T°(0,v)), v € (af! )"

b) (1) Fft has finite support.
(2) Fl(s,) belongs to PW(ay!)n, for all § € (L )ldst
(3) Suppose § € (L )ldst’ v e (aLi’C)*, and w € K such that wd € (IA/j){“dS,t and way’ = aj’.
Then Fft(5 1/) = Fk (wé, wr).
(4) Suppose 1 <i,j<s, P, CPr;,0¢ (lji)f‘“‘dsi, 8,00, € (lj OE +» and
1

. L
ind /

p, le(<5®e) oD,

Then

F;]?t(éay) - F]k,t( /171/) T+ +F]k,t(5;nal/)a S (afz,(c)*‘

Proof. We start the proof by assuming condition a holds and showing that each condition listed
under item b is satisfied. In doing this, we follow [CD84, § 2.1]. To prove item b(1) we may assume
that 1, ug are irreducible representations of K and that fj is of type (p1, p2). It can then be shown
that if indIGJL. (0®e”)(fr) # 0 then uy = po and pq is a K type of indIGJL. (d®e”). Frobenius reciprocity
implies that ‘the restriction of w1 to KN L; contains a (K NL;)-type of 5. A result of Harish-Chandra
tells us that there are only finitely many inequivalent irreducible admissible representations of L;
containing a fixed (K N L;)-type, from which b(1) follows.

Condition b(2) holds as in the proof of Proposition 3.
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Suppose the hypothesis of b(3) holds. It is then clear from the definitions of § 6 that 7,°(d,v)
is equal to S(w, 6, )" T7° (wd, wr)S(w,d,v). We therefore have

tr(indJGDLi (d@e”)(fr)T7°(6,v)) = tr(indIG;:Li (6 @ €")(fr)S(w,6,v) 1T (ws, wr)S(w, 6, v))
= tr(S(w,d,v) indgLi (6 @ €”)(fr)S(w, d,v) " T (wé, wv))
= tr(indng (wd @ ™) (fr)Ty° (wo, wr)). (10)

Suppose the hypothesis of b(4) holds and that v € (af; c)- Then indgL (0 ®e€) is equivalent to

i

ind%j e o ind%j (6], @ €").

By definition, the restriction of 7,°(d,v) to indJGgL_(él’] ® €") is equal to T.° (0, v), for 1 < b < m.
J
Thus the trace of indJGgL_ (0@ e”)(fi)T°(6,v) is equal to the trace of
indf, (5] ® ") (FITP(01,0) & - & indf, (3, ® ) AT (Tpv).
and the conclusion of b(4) ensues.
Having proved that (a) implies (b) we prove the converse. Suppose the conditions of (b) hold

and that § € (f’i){cds,t belongs to the discrete series for some L; € L(t). According to Proposition 3
and Proposition 1 of [CD90], there exists a function f' € C°(G, K)y such that

t(indf, (7 © ) () = F5(,0), 1<) <s,
J ’
for all &' € (ﬁj)fdst affiliated to 0 and v € (af; ¢)*. Before we move on, some justification of the

use of [CD90, Proposition 1] is in order. Clozel and Delorme make use of a space PW(E, W, A™T),,
where r > 0, E is a real vector space, AT is a set of positive roots of a root system A of a subspace
of E, and W is a group of automorphisms of £ containing the Weyl group W° of A as a normal
subgroup such that W/W? is isomorphic to a product of copies of Z/2Z [CD90, Appendice C].
We apply the machinery of PW(E, W, A1), to the present context by taking r = N, E = a}fj: and

A= AYN (@ )"
We need to take
W ={w € Ws :waj’ Cap'},
despite the fact that W/W?0 is not necessarily isomorphic to a product of copies of Z/2Z. This choice
for W is legitimate if we replace W° with W NWY in the formalism of [CD90, Appendice C]. Indeed,

W/(W NWY) is isomorphic to a product of copies of Z/2Z, and the remaining results of Appendice
C also remain valid with this choice of WP,

Moving on, the function f’ is the sum of functions f, € C°(G, K)y, where p is a minimal K
type of indgLi (6 ® €") and f, is of type (u,p). The restriction of the operator T7°(6,v) to p is
a self-intertwining operator and hence given by a scalar (0, u) = £1. Setting gi to be the sum
of the functions €5 (9, jt) f,, where p runs over the minimal K types of ind%i (0 ® %), we see that
gr € CgO(G,K)N and

tr(indf, (5 ® ") (ge) TP (3, ) = Fi(0',v), 1<j<s,
J

for all &' € (I:j)lds,t affiliated to § and v € (alL”;(C)*.

The existence of the function gy, is a op-twisted analogue of [CD90, Proposition 1]. It allows us to
adapt the proofs of [CD90, Théoreme 1] and [CD84, Théoreme 1] to our context thereby completing
the proof of this theorem. The cited proofs rely on an induction argument involving the support
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of Fft and the length of minimal K types. The details of the induction argument can be found in
[CD8&4, § 2.3]. O

The next corollary is proven by combining Theorem 1 with the definitions of § 6 and equations
like those of (10).

COROLLARY 1. Given § € (ﬁi)lds, 1 <i < s, let ws be the longest element of Zyy,(Rs) and ws o
be the longest element of Wéo. Suppose N > 0, k = 1,2, and that for each 1 < i < s we are given a
function

Ff i (Lius x (a,8)" — C.
Then the following are equivalent.
a) There exists f, € C°(G, K)n such that
Ff(0,v) = tr(indf, (§®e)(f)T{°(6,v)), v € (ae)"
b) (1) FF has finite support.
(2) F[(6,-) belongs to PW(ap™* )y, for all § € (Li)as-
(3) Suppose § € (Li)gs, v € (aqff:(kc)*, and w € K such that wd € (ﬁj)lds and waff”“ = az];"‘s’k.
Then F}'(5,v) = FJ (w6, wv).
(4) Suppose 1 <i,j<s, P, CPr;,0¢ (f)i)lds, 8,00, € (ﬁj)lds, and

Y m
ind™ =8 ---d
Pr,NL; 1 m*
Then

FF6,v) = FEO],v) 4+ FEO,v), v e (a)h)"

8. A compatibility condition

We mentioned at the end of § 6 that if n is odd then the R groups of our discussion are all trivial.
In this case the parameter k = 1,2 of Corollary 1 is superfluous. That is, a single function in
C®(G, K)n determines any set of functions satisfying the properties of Corollary 1(b).

Let us suppose for the rest of this section that n is even and that we have functions F]k for
1 < j < sand k = 1,2, which satisfy the conditions of Theorem 1(b). If {Fjl} and {FJQ} are
compatible in some sense, then we should also be able to obtain a single function in C°(G, K)n
which satisfies an equality as in Corollary 1(a) for both k =1 and k = 2.

A

Let us make this notion of compatibility precise. Suppose 6 € (Lj)iqs has trivial R group.
Then the Weyl group elements ws; and wso of the corollary are equal and indIG;:L.(d ® eY) is
J

irreducible for all v € i(afj’l)*. Under these circumstances 77°(d,v) and T5°(0,v) are defined

[Kna86, Theorem 14.20(d)] and 77° (6, v)T5°(d,v) is a self-intertwining operator of indIG;:L.(é ® ev).
J
By Schur’s lemma, it is given by a scalar ¢(d,v) € C. We say that {F}} is compatible with {F7} if
F}(6,v) = c(6,v)F} (6,v), vei(ap )

for any ¢ as above. Such a compatibility condition is necessary, for if § and v are as above and
fe CgO(G,K)N then

tr(ind, (6 ® e”)(£)T3°(8,v)) = tr(indf, (8@ ") (f)(T7°(6,1))*T5°(6,v))
= ¢(4,v) tr(ind% (0@ e”) ()T (0,v)).

J
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To prove the existence of the desired function in C2°(G, K)n from the compatibility condition,
we wish to define a function on PW(az,) which restricts to F]k(é, -) on z(afjk)* for any k = 1,2

and § € (ﬁj)lds. This can be accomplished using the following.

CONJECTURE! 1. Suppose that n is even, N > 0,1 <i<s,d € (f/i)lds lies in the discrete series,
ws,1 is the longest element of Zyy, (R5), and ws o is the longest element of WéQ . Suppose further that
RS PW(aff’Q) N is invariant under

{we W5 :wap™* Cap’

wél)

and vanishes on (aff’fc)* N (a; c)* Then ¢ extends to a Ws-invariant function in PW(ar, )y which

. Ws 1\
vanishes on (a;"¢)*.

PROPOSITION 4. Suppose n is even, Conjecture 1 holds, and {F}!} is compatible with {F?}.
Then there exists a function f € C°(G, K)y such that

tr(ind@, (5 @ e")(f)T°(6,v)) = K (6,v)
for all § € (Li)ias, v € (a;78)*, 1 <i < s, and k= 1,2.

Sketch of proof. The proof proceeds inductively as in [CD84, § 2.3]. The only obstacle is to find, for
a given 0 € (L;)as, a function h € C°(G, K)n such that

tr(inJG:L], (0o ® €”)(R)TY°(d,v)) = Ff(é, V), vE (alLU‘”fC) L k=1,2. (11)

We can obtain h in the following manner. According to [CD90, Proposition 1], for each minimal K
type p of indIG;:L.(d ® €”) there exists a function f; , € C°(G, K)y such that
J

tr<indG (6®e”) <Z fr “>T °(4, V)> = ij(é, v), VvE (az}j,]&) :

The compatibility of {F'} with {F?} then implies that
ou(v) = tr(indf, (5 ") (o) — trlindf, (@ )(f1,)), v € (a2

vanishes on (a L’SOCI) N (affo(ég)*. We may therefore apply Conjecture 1 to extend ¢, to a Ws-invariant

function in PW(ar,;)n which vanishes on (alLUfo(él)*. By [CD84, Proposition 1] and [Cow86], there
exists a function h, € C°(G, K)y of type (u, ) such that

tr(indf, (6 ®e")(hy)) = Su(v), v € (ag)".
Equation (11) is satisfied for h =3 hy + fi - O

9. Applications

Suppose y € G. Obviously, O'yJ()O'; is an involution of G so we should have a oyo0, L_twisted trace
Paley—Wiener theorem. It is easily verified that for ¢ € (A )1ds and v € aL C the representation
indgﬂ (d®e”) is oyopoy, Lstable if and only if it is og-stable. If this is the case then

Toyo00y ! (6,v) = indgLi (d@e)(y™) T, v) - indgLi (6 ®e")(y)

1'We have proven a version of this conjecture in which the support of the extension is weakened to N + ¢, € > 0.
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y -conjugate. Furthermore, since taking the trace is

intertwines indgp(d ® e) with its oyo00

invariant under C(;njugation, we have
tr(indf, (6 €)(H)T7(8,v)) = tr(ind, (3 e)(F T (5,0),

where fy(.’E) _ f(yilscy), = G,

and f € C*(G, K). This equation shows that a oyo0, Ltwisted trace Paley—Wiener theorem can be

derived from a op-twisted trace Paley—Wiener theorem of §§ 7 and 8 simply by replacing C°(G, K )N

with C°(G,yKy ).

Let us now consider g as an involution of GL(n,R). As the differential of oy sends A to —A\
and g\ = X for all g € GL(n,R) and X € af,, Langlands’ classification tells us that the oo-stable
representations of GL(n,R) are the og-stable representations of SL*(n,R) twisted by the trivial
character of af,. We therefore obtain a op-twisted trace Paley-Wiener theorem for GL(n,R) if
we have one for SL*(n,R). With regard to the latter case, it is well-known that the R group of
any discrete series representation of a Levi subgroup of SL*(n,R) is trivial. Consequently, if we
adjust the arguments of §§ 4-7 by merely ignoring any reference to R groups, we obtain the unique
oo-twisted trace Paley-Wiener theorem for SL* (n,R).

To summarize, we now have oyo00, Ltwisted trace Paley—Wiener theorems on SL(n,R),
SL*(n,R), and GL(n,R). Our remaining applications are twisted versions of the application given
in [CD90, § 5.1] in the cases that the real reductive group G(R) given there is equal to one of
SL(n,R), SL*(n,R) or GL(n,R). These applications are important for the Arthur-Selberg trace
formula [Art88, Proposition 1.1]. We shall give a thorough treatment of these applications only for
the og-twisted case of SL(n,R). The cases in which the underlying group is SL*(n,R) or GL(n,R)
are simpler than the op-twisted case of SL(n,R) and do not depend on Conjecture 1. Conjecture 1
is also unnecessary in the oo-twisted case of SL(n,R) if n is odd.

Suppose that P = MU, is a standard parabolic subgroup of G. Its normalizer Pin G x (o0) is
readily computed to be P if the block sizes ni,...,ny of M do not satisfy

Ng = Ny41—j5, 1 < j < £. (12)

If the block sizes do satisfy (12) then P is the disjoint union of P and woP x og. Similarly the
normalizer M of M in G x (oq) is M, if (12) does not hold, and the disjoint union of M with
woM x oy otherwise. In [Art89, § 1], Arthur defines a Levi subset of G x o to be the intersection
of G x o with MNP.In consequence, the Levi subsets of G x oy have the form woM % og, where
M D My is a Levi subgroup of G whose block sizes satisfy (12).

Suppose M satisfies (12). Then there is an obvious group isomorphism,
M = M U (woM x 00) = M % (5,,00). (13)
We shall identify M with the semidirect product on the right. Arthur defines UM xowy00 8
Hom(X (M),R), where X (M) is the group of rational characters of M. We compute AM %10 70
to be isomorphic to be the subspace
{X €ap: Ad(wp)(X) = =X} =a}}.

Given a representation 7 of M and \ € (a%?)* define 7y by

m(z) = 7(x)eMo8@) 7 e M,

where a is the projection of x onto Ajy.

Let Hiemp (G % 0g) be the set of (equivalence classes of) irreducible tempered representations 7
of G x (0g) such that the restriction of m to G is irreducible. Given a complex-valued function ¢ on
iemp (G % 00), we denote its extension to the free Z-module generated by Iliemp (G % 0¢) as ¢.
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Suppose I' is a finite set of (equivalence classes of) irreducible representations of K and N is
a positive real number. In keeping with [Art89, § 11], we define Zn (G % o¢)r to be the space of
complex-valued functions ¢ on Iiemp (G % 0g) which satisfy the following three properties.

1) Suppose sgn is the non-trivial character of (op). Then
d(m @sgn) = —¢(m), 7 € iemp(G X 0p).
2) Suppose that the restriction of m € Iliemp(G % 0g) to K does not contain any representation
of I'. Then ¢(m) = 0.

3) Suppose that woM x o is a Levi subset G x op and that 7 is an irreducible tempered
representation of M which remains irreducible when restricted to M. Then the integral

¢(T’X) B /(a“’o)* &(inng‘(U@(TA))e—)\(X) dr, X e aﬁ\v/?
waar

converges to a smooth function of X which has support in the closed ball of radius N centered
about the origin in aj}.

Define C2°(G, K)nr to be the subspace of functions of C2°(G, K)y which transform according
to representations occurring in I" under the bilateral action of K.

THEOREM 2. Suppose Conjecture 1 is true if n is even. Suppose f € C°(G, K)n,r and

o(f)(m) = tr(/Gf(:c)w(x,ao) d:c), 7 € Iiemp (G % 09).
Then the map given by f +— ¢(f) is surjective onto Zn(G % op)r.

Proof. Using the notation of § 7, suppose that 1 <i < s, 0 <t < |n/2], Ly € L(t), § € (L)L ;> we
is the longest element in Zy,(Rs), and v € i(a}")*. Then indgb (0®e) is op-stable and decomposes

as a finite sum,

indg, (@e’)=nl & - &,
of irreducible tempered representations of G. The corresponding intertwining operator, 77° (6, v), can
be used to define representations mq,. .., T, € iemp(G % 0¢) by setting T; equal to the restriction

of T7°(d,v) to the space of 7r§-] and

mj(x,00) = ﬂ'?(:c)Tj, z €.

We define
Fz'l,t((sa l/) - ¢(7T1) +ot ¢(7rm)'

This procedure can be repeated with W} in place of Zw,(Rs), and T»(6,v) in place of T1(4,v) to
define

th(éa l/) - ¢(7T1) +ot ¢(7Tm), S (i’i)%ds,h Ve Z(a%:)*
(we apologize for the use of i as an index as well as the customary imaginary number).

Recall the Levi subgroup My, ; defined in § 4. By construction, the block sizes of M, ; satisfy
(12) and alj\”/}’b .= a}fj:. In addition, the representations

Mg, . ML . _
lndPLl;%tMLi,t(cs ®e’) = (lndPL];%tMi, t S ®e’, d€ Ly VE i(ar’)*, k=12,

are irreducible, as their R groups are trivial. Using the ideas of § 4, it is simple to show that these
operators are oy,00-stable. Therefore, for every v € i(a}’)* we may define a representation 7, of
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1
MLi

the Levi subset M = M 1,,t such that its restriction to My, ; is equal to ind Py A
i L

(6 ®e”) and

it
H(ind3" (7)) = Ffy(6,v), k=1,2.

Property 3 of ¢ implies that Fl%t(é,-) and Fft(d, -) extend to functions of complex variables in
,PW(CllLuf) N-

Retaining the same notation for these extensions, we now have functions

Ffy: (Lifagy ¥ () o) = C, k=1,2

(2

for all 1 < < ssuch that L; € £(t), which satisfy condition b(2) of Theorem 1. We wish to show that
these functions satisfy the other conditions of Theorem 1(b). In the proof of Theorem 1 we appeal to
the result of Harish—Chandra which tells us that there are only finitely many inequivalent irreducible
admissible representations of L; containing a fixed (K N L;)-type. This result and property 2 of ¢
imply that our functions satisfy the finite support condition of Theorem 1b(1). The remaining two
conditions, Theorem 1b(3) and (4), are easily seen to be satisfied from the definitions of T))° (4, v),
as these families of operators have been defined to be compatible under conjugation by permutation
matrices (cf. Theorem 1b(3)), and compatible under affiliation (cf. Theorem 1b(4)).

As we know from § 5, for any £k = 1,2 and 1 < j < s, every § € (ﬁj)lds is conjugate to a
representation in (IA/Z-){‘“‘dSJ, for some L; € L(t). We can therefore define functions

Ff i (Lj)as % (apre) —C, 1<j<s, k=12,

satisfying the conditions of Corollary 1(b), from the functions of {Fft} in an obvious manner.
By Proposition 4, the theorem is proven if we show that {Fjl} is compatible with {FJZ}. Suppose,

therefore, that the R group of § € (ﬁj)lds is trivial. This implies that for any v € i(aqu’l)*, the
induced representation

0 = indIG;:L.(é ® e")
J
is an irreducible tempered representation. Combined with each of the intertwining operators,
T7°(8,v) and Ty°(68,v), the representation 7° determines respective representations m and o in
iemp(G % 0p). By definition, Ff(é, v) = ¢(my) for k = 1,2. It T7°(6,v) = T5°(0,v) then, by
definition (cf. § 7), ¢s = 1 and
Ff((sv V) = ¢(7TQ) - ¢(7Tl) - CéF’jl((sa l/)‘

Otherwise, my = m; ® sgn, ¢ = —1, and, by property 1 of ¢, we have

F7(0,v) = ¢(m2) = d(m1 @sgn) = —¢(m1) = c5F" (6, v).
Hence, {Fjl} is compatible with {FJQ} and the theorem is complete. O
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