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The Generalized Cuspidal Cohomology
Problem

Anneke Bart and Kevin P. Scannell

Abstract. Let Γ ⊂ SO(3, 1) be a lattice. The well known bending deformations, introduced by

Thurston and Apanasov, can be used to construct non-trivial curves of representations of Γ into

SO(4, 1) when Γ\H
3 contains an embedded totally geodesic surface. A tangent vector to such a curve

is given by a non-zero group cohomology class in H1(Γ, R
4

1
). Our main result generalizes this con-

struction of cohomology to the context of “branched” totally geodesic surfaces. We also consider a

natural generalization of the famous cuspidal cohomology problem for the Bianchi groups (to coef-

ficients in non-trivial representations), and perform calculations in a finite range. These calculations

lead directly to an interesting example of a link complement in S3 which is not infinitesimally rigid in

SO(4, 1). The first order deformations of this link complement are supported on a piecewise totally

geodesic 2-complex.

1 Introduction

1.1 Bianchi Groups

Let d be a negative square-free integer and denote by Od the ring of integers of the
imaginary quadratic number field Q(

√
d). The Bianchi groups Γd = PSL(2, Od)

are discrete subgroups of PSL(2, C), studied as far back as the 1890’s by Picard and
Bianchi (see for instance [6]). In the last 100 years a wide array of techniques have
come into play in studying these groups and the corresponding 3-orbifolds, from
number theory, geometric group theory, spectral geometry, and 3-manifold topol-

ogy. Our interest in these groups primarily comes from studying the topology of
hyperbolic 3-manifolds, since many famous and beautiful examples of cusped hy-
perbolic 3-manifolds come from finite index subgroups of the Bianchi groups.

For a variety of reasons it is a fundamental question to study the cohomology
H∗(Γ, R) of arithmetically-defined subgroups Γ of PSL(2, C) (or of the isometry
group of higher-dimensional hyperbolic spaces). Since Hn is contractible, we have

H∗(Γ, R) ∼= H∗(Γ\H
n, R)

and one can use topological and analytic techniques to compute cohomology, (e.g.,

Hodge theory if Γ\Hn is compact). The question becomes a bit more interesting
when Γ\Hn is not compact. In the 3-dimensional case, one observes that Γ\H3 is the
interior of a compact 3-manifold with boundary M, in which case the computation

of, say, H1(M, R) can be performed in terms of the kernel and image of the restriction

Received by the editors May 5, 2004.
The authors were partially supported by National Science Foundation grant DMS-0072515.
AMS subject classification: Primary: 57M50; secondary: 22E40.
c©Canadian Mathematical Society 2006.

673

https://doi.org/10.4153/CJM-2006-028-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-028-1


674 A. Bart and K. P. Scannell

H1(M, R) → H1(∂M, R). Since the dimension of the image is computable using
duality, we focus on the kernel of restriction; this subgroup can be identified with the

cohomology of Γ\H3 with compact supports, the space of harmonic cusp forms [20],
or the parabolic cohomology PH

1(Γ, R) (defined in §2). If the space of harmonic cusp
forms vanishes, we say Γ has vanishing cuspidal cohomology. The main achievement
in this area is the following result:

Theorem 1.1 The Bianchi group Γd has vanishing cuspidal cohomology if and only if

d ∈ {−1,−2,−3,−5,−6,−7,−11,−15,−19,−23,−31,−39,−47,−71}.

Certain vanishing results for small d use explicit presentations for Γd (some of which
can be found in [2, 34, 38]), while the result above was made definitive in [41] using
the so-called Mendoza complex [31]. The non-vanishing results can be found in [5,

17, 35, 43]. The Lefschetz fixed-point technique developed in Harder’s papers [19,
20] was also critical in this development.

1.2 Generalized Cuspidal Cohomology

In this paper we will consider the generalization of the cuspidal cohomology prob-
lem where the trivial coefficients are replaced by some non-trivial finite-dimensional
representation of SO(3, 1). Our choice of coefficients is guided in part by Raghu-

nathan’s vanishing theorem [7, 18, 32, 33]: For any discrete cocompact subgroup Γ

of a connected simple Lie group G and any irreducible, finite-dimensional real rep-
resentation V of G, we have H1(Γ,V ) = 0 unless G is locally isomorphic to SO(n, 1)
or SU (n, 1). In fact, if G is locally isomorphic to SO(n, 1) then H1(Γ,V ) = 0 unless

V = H jV0 where V0 is the standard representation on Minkowski space Rn+1
1 and

H jV0 denotes the space of harmonic polynomials on V0 of degree j. In this paper,
we will consider coefficients in the standard representation R4

1 , in part because this
case represents the simplest unresolved case in light of Raghunathan, but more sig-

nificantly because of an important geometric interpretation of PH
1(Γ, R4

1) in terms
of bending deformations and their generalizations. We will provide the details of this
connection in §2 and §3, remarking for now that most known constructions of non-
zero classes in PH

1(Γ, R4
1) come from the presence of an embedded totally geodesic

surface in the 3-orbifold Γ\H3. Since the Bianchi orbifolds (and the arithmetic man-
ifolds commensurable with them) contain infinitely many immersed totally geodesic
surfaces [28], we expect computations like the ones in this paper will provide a fruit-
ful testing ground for any conjectural picture of the deformation theory of SO(3, 1)

lattices.

1.3 Main Results

Our main results can be summarized as follows. In §3, we use the spectral sequence
associated to a Γ-complex to give a generalization of the bending construction to
“branched” totally geodesic hypersurfaces (including immersed surfaces); see The-
orem 3.1. We also obtain, in §4, some partial results on the generalized cuspidal
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cohomology problem by making calculations in a finite range, showing in particu-
lar that PH

1(Γd, R4
1) = 0 for d = −1,−2,−3,−7,−11,−15. Using Theorem 3.1,

this has the consequence that each of the (infinitely many) immersed closed totally
geodesic surfaces in the above mentioned Bianchi orbifolds Γd\H3 is “far from em-
bedded” (see §3 for the precise definitions). Finally, we give an interesting example of
a link complement in S3 such that PH

1(Γ, R4
1) 6= 0, with non-zero classes supported

on a piecewise totally geodesic 2-complex, see §5.

2 Cuspidal Cohomology and Deformation Theory

2.1 Infinitesimal Deformations

In this section we will review the connection between the cohomology group
PH

1(Γ, R4
1) and deformations of a lattice Γ in SO(3, 1) into SO(4, 1).

More generally, consider the inclusion ρ0 : Γ →֒ SO(n, 1) of a lattice in SO(n, 1)
and consider the space of representations Hom(Γ,SO(n, 1)). The structure of this

space in a neighborhood of ρ0 has been well understood for some time; it is a conse-
quence of the local rigidity results of Calabi [9] and Garland–Raghunathan [13] that
a neighborhood consists of representations conjugate to ρ0 whenever n > 3 (and in
the cocompact case for n = 3). Mostow rigidity strengthens this to a global result:

any discrete, faithful representation ρ ∈ Hom(Γ,SO(n, 1)) is conjugate to ρ0 (for
n ≥ 3). To obtain an interesting deformation theory, we can include SO(n, 1) →֒
SO(n + 1, 1) and study the representation variety Hom(Γ,SO(n + 1, 1)) in a neigh-
borhood of the inclusion ρ0.

Given ρ0 ∈ Hom(Γ,SO(4, 1)), a deformation of ρ0 is a smooth curve ρt : [0, ǫ] →
Hom(Γ,SO(4, 1)). The tangent vector to a deformation ρt at t = 0 can be described
by assigning an element of the Lie algebra so(4, 1) to each element as follows:

c(γ) = ρ̇(γ)ρ(γ)−1.

The fact that each ρt is a homomorphism differentiates to the condition that this
function c : Γ → so(4, 1) satisfies the cocycle condition

c(γ1γ2) = c(γ1) + Ad(γ1)c(γ2)

for all γ1, γ2 ∈ Γ, hence c ∈ Z1(Γ, so(4, 1)) is a group cocycle, where the action
on so(4, 1) comes from the adjoint representation. Not surprisingly, deformations
coming from conjugation in SO(4, 1) produce tangent vectors in B1(Γ, so(4, 1)) and
so it is sensible to think of the group cohomology H1(Γ, so(4, 1)) as the “space of

infinitesimal deformations” of ρ0 in SO(4, 1).
In what follows we will assume that ρ0 : Γ →֒ SO(3, 1) ⊂ SO(4, 1). When ρ0(Γ)

contains parabolic elements, we will only be interested in infinitesimal deformations
which are trivial on the parabolics. Thus we define

PZ
1(Γ, so(4, 1)) = {c ∈ Z1(Γ, so(4, 1)) | for parabolic γ ∈ Γ, c(γ) ∈ im(1 − γ)}

and define the parabolic cohomology

PH
1(Γ, so(4, 1)) = PZ

1(Γ, so(4, 1))/B1(Γ, so(4, 1)).
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A critical observation for us is that the Lie algebra so(4, 1) splits when viewed as an
SO(3, 1)-module:

so(4, 1) ∼= so(3, 1) ⊕ R
4
1

inducing a splitting in cohomology

H1(Γ, so(4, 1)) ∼= H1(Γ, so(3, 1)) ⊕ H1(Γ, R
4
1)

and similarly in parabolic cohomology. It is typical in our setup for Γ to be a lat-
tice in SO(3, 1) in which case H1(Γ, so(3, 1)) = 0 when Γ is cocompact [9, 42]
and PH

1(Γ, so(3, 1)) = 0 in the non-cocompact case by [13]. For trivial coeffi-

cients, the parabolic cohomology coincides with the kernel of the restriction map
from H1(Γ\H3) → H1(∂(Γ\H3)); the second author [37] showed that the same is
true for PH

1(Γ, R4
1). Thus, when working on the generalized cuspidal cohomology

problem as presented in the introduction, it suffices to compute this parabolic coho-

mology group. To summarize: the cuspidal cohomology of Γ with coefficients in the

standard representation parameterizes infinitesimal parabolic-preserving deformations

of Γ into SO(4, 1).

2.2 Known Results

There are only a couple of known vanishing results in this context. Kapovich [23]
has observed that when Γ is a lattice in SO(3, 1) generated by two parabolic elements

(equivalently when Γ\H3 is the complement of a hyperbolic two-bridge link in S3;
see [1]) then PH

1(Γ, R4
1) = 0, in which case we say Γ is locally rigid in SO(4, 1). This

result is discussed (and applied) in the context of the Bianchi groups in §4.1 below.
For closed 3-manifolds, the strongest statement was given by the second author in

[37], where it was shown that one can obtain infinitely many locally rigid examples
by Dehn filling on a locally rigid one-cusped 3-manifold.

In terms of non-vanishing, the bending construction produces non-zero classes in
H1(Γ, R4

1) in the presence of a closed, embedded, two-sided totally geodesic surface

(readers unfamiliar with this construction are directed to §3 where a more general
result is proved). There are a handful of other isolated examples where it has been
shown that H1(Γ, R4

1) 6= 0, e.g., [3, 4, 29, 36, 39], but nothing is known in general.
Potyagailo has asked when an immersed, non-embedded totally geodesic surface

gives rise to an infinitesimal deformation into SO(4, 1) (as attributed in [24]). This
was a major motivating question for the present paper, given the abundance of totally
geodesic surfaces contained in the Bianchi orbifolds and their finite covers. We note
first that by the main result of [27] there always exist (probably large) finite covers

which admit bending deformations. On the other hand, our computations in §4.2
show that there exist many immersed totally geodesic surfaces in the Bianchi orb-
ifolds that do not give rise to elements of PH

1(Γ, R4
1), and in fact the full cohomol-

ogy group H1(Γ−3, R4
1) = 0 for d = −3. The infinitesimal deformations constructed

in §5 are supported on a piecewise totally geodesic 2-complex in an 12-sheeted cover
of Γ−7\H3 but appear not to be supported on a single closed totally geodesic surface.

Our broader study of PH
1(Γ, R4

1) for knot and link complements in S3 was influ-
enced also by a conjecture of Menasco and Reid [30] which states that no hyperbolic
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knot complement in S3 contains an embedded totally geodesic surface. This conjec-
ture is not addressed in this paper in light of the fact that the figure-eight knot is the

only knot appearing as a finite index subgroup of a Bianchi group (and, as we will
explain below, PH

1
= 0 in this case).

3 The Spectral Sequence Associated to a Γ-Complex

3.1 Preliminaries

Let Γ be a finitely presented group which acts on a vector space V of characteristic
zero.

Given a cellular action of Γ on a complex X, there is a spectral sequence [8, Ch.

VII] which computes H1(Γ,V ) in terms of the cohomology of the simplex stabilizers.
Things are substantially simpler when the Γ-complex X is contractible, as it will be
in our setup. In this case, the E1 term is given by:

E
pq
1 =

⊕

Hq(Γσ,V )

where the direct sum is over a set of representative p-cells σ and Γσ is the stabilizer
of σ. If τ is a face of σ, then the fact that the action is cellular means Γσ ⊆ Γτ and so

there is a restriction map H∗(Γτ ,V ) → H∗(Γσ,V ). If σ = γσ0 for a representative
cell σ0, then Γσ0

= γΓσγ−1 and we may follow the restriction map by the map
induced by conjugation; this composition is essentially d1.

3.2 Branched Totally Geodesic Surfaces

We will now describe in more detail a technique for obtaining non-vanishing results
from “nearly embedded” totally geodesic surfaces.

One way to describe the bending deformations along embedded totally geodesic
surfaces is in terms of the free product with amalgamation or HNN decompositions
which they induce. In other words, if a totally geodesic surface S decomposes a
3-manifold group Γ into Γ1 ∗π1(S) Γ2, then bending can be expressed as

ρt (γ) = γ for γ ∈ Γ1 and ρt (γ) = αtγαt
−1 for γ ∈ Γ2,

where αt is a one-parameter family of rotations in SO(4, 1) commuting with the
Fuchsian group π1(S). Johnson and Millson [22] work out this point of view in the
more general case of a finite collection of embedded surfaces decomposing Γ as a
graph of groups.

Infinitesimally, this amounts to an application of the spectral sequence of the pre-
vious section to the tree associated to the graph of groups decomposition. The se-
quence collapses to a long exact sequence of the form:

H0(Γ, R
4
1) →

⊕

H0(Γτ , R
4
1) →

⊕

H0(Γσ, R
4
1)

→ H1(Γ, R
4
1) →

⊕

H1(Γτ , R
4
1) → · · ·
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where the τ are representative vertices (hence the Γτ are fundamental groups of
three-dimensional complementary regions) and the σ are representative edges (hence

the Γσ are Fuchsian surface groups). The first two terms above are clearly zero; each
H0 in the next term is one-dimensional and when included into H1(Γ, R4

1), these
are precisely the tangent vectors to the bending deformations associated to the given
decomposition. In fact, if one is only interested in the deformation-theoretic proper-

ties coming from the decomposition, it is convenient to impose the requirement that
H1(Γτ , R4

1) = 0 for each vertex τ and define the resulting classes in H1(Γ, R4
1) to be

infinitesimal bending deformations.
In the case of a family of (possibly intersecting) immersed totally geodesic sur-

faces, Γ is decomposed as a complex of groups [24] and one can attempt to compute
deformations and infinitesimal deformations of Γ in this way. Finding integrable de-
formations appears quite difficult (this is the content of Potyagailo’s question) so we
can begin by computing H1(Γ, R4

1) using such a decomposition.

Kapovich and Millson define a branched totally geodesic surface S in a hyperbolic
3-manifold M = Γ\H3 to be a closed subset that is locally modeled on either a totally
geodesic plane or the “binding” of a collection of (three or more) totally geodesic
half-planes meeting in a geodesic segment. The set of points with neighborhoods

of the latter type is the branch locus B. We follow the presentation of [24], though
we allow, additionally, triple points coming from totally geodesic planes crossing the
branch locus transversely.

Given such a surface, the complex of groups decomposition of Γ comes from an

action of Γ on the abstract complex X “dual” to the universal cover S̃ in H3. The
vertices of X correspond to the (3-dimensional) connected components of H3 − S̃;
two vertices are joined by an edge when the corresponding subsets of H3 are separated
by a component of S̃ − B̃. The edges correspond to these components of S̃ − B̃ and

the faces correspond to the components of the branch locus B̃. Fortunately, since we
are only interested in first cohomology, the 3-dimensional cells coming from triple
points in S̃ can be ignored (indeed, the stabilizer of such a cell is finite and so the
relevant column E1

3, j =
⊕

H j(Γτ , R4
1) in the spectral sequence vanishes anyway).

The action of Γ on H3 induces an action on the strata and complementary re-
gions of S̃ and hence on X. We assume (1) the normal bundles of the leaves have no
holonomy which assures the action has no edge inversions and (2) the fundamen-
tal groups of the 3-dimensional complementary regions are irreducible subgroups

of PSL(2, C). Our definitions imply that every edge σ has a (possibly elementary)
Fuchsian stabilizer Γσ .

We have the following first order generalization of the bending construction:

Theorem 3.1 Suppose M = Γ\H3 is a complete hyperbolic 3-manifold containing

a branched totally geodesic hypersurface S with branch locus B. Let c2 be the number

of two-dimensional complementary regions in S − B (edges in the complex of groups)

with non-elementary Fuchsian fundamental group, and let c1 be the number of compo-

nents of B (2-cells in the complex of groups). Then the space of infinitesimal bending

deformations supported on S (a fortiori H1(Γ, R4
1)) has dimension at least c2 − 2c1.

Proof In our setup the E1
0,1 term is a sum

⊕

H1(Γτ ,V ) where the Γτ are the fun-
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damental groups of the 3-dimensional complementary regions and, as above, the
infinitesimal bending deformations form the subspace of H1(Γ, R4

1) computed by

setting E1
0,1 = 0. Having declared this, any classes which survive in E2

1,0 will sur-
vive to E∞. But we get a lower bound on the dimension of this space by a trivial
dimension count. By assumption, there are c2 regions in S − B with non-elementary
Fuchsian fundamental group; each such group Γσ has a one-dimensional fixed set in

R4
1 (the perp of the indefinite plane it leaves invariant) and so dim H1(Γσ, R4

1) = 1.
Thus dim E1

1,0 ≥ c2. But in the worst case, the fundamental group of each com-
ponent of the branch locus is a purely hyperbolic element (with a two-dimensional
fixed set in R4

1) in which case dim E1
2,0 = 2c1. Also by assumption, the vertex stabi-

lizers have no invariant vectors in R4
1 , so dim E1

0,0 = 0. Taking cohomology, we find
dim E2

1,0 ≥ c2 − 2c1 as desired.

In the non-singular case (c1 = 0), this is precisely the infinitesimal version of
Johnson and Millson’s graph of groups estimate. Shamelessly selecting the terminol-
ogy to fit our result, we say S is nearly embedded when 2c1 < c2. The contrapositive

will be relevant in §4.3, where we provide examples of Bianchi groups and subgroups
satisfying PH

1(Γ, R4
1) = 0. In particular the corollary applies to the complements of

the figure-eight knot, Whitehead link, and Borromean rings.

Corollary 3.2 Let M = Γ\H3 be a complete hyperbolic 3-manifold such that

PH
1(Γ, R4

1) = 0. Then no immersed closed totally geodesic surface in M is nearly

embedded.

Proof If a surface S were nearly embedded, then the previous theorem gives a non-
zero class z in H1(Γ, R4

1) supported on S. Since S is compact, z ∈ ker(res). But
PH

1(Γ, R4
1) = ker(res) by [37], contradicting the assumption that PH

1
= 0.

It should be noted that the paper by Kapovich and Millson goes much farther in
developing a non-abelian first cohomology variety by means of which one can analyze
the harder integrability questions; see also [25, 26].

4 Computational Techniques

4.1 Geometric Arguments

Kapovich [23] first observed that PH
1(Γ, R4

1) = 0 whenever Γ is the fundamental
group of a two-bridge knot complement.

Proposition 4.1 If ∆ is a lattice subgroup of SO(3, 1) generated by two parabolics,

then PH
1(∆, R4

1) = 0.

Proof Let α0 and β0 be the parabolic generators in SO(3, 1), and let

c ∈ PZ
1(∆, R

4
1) ⊆ PZ

1(∆, so(4, 1)),
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using the splitting discussed in §2.1. Now c(α0) = (1 − α0)v0 and c(β0) =

(1 − β0)w0 for some v0, w0 ∈ so(4, 1), and we can define two curves of parabol-

ics αt = exp(tv0)α0 exp(tv0)−1 and βt = exp(tw0)β0 exp(tw0)−1 in SO(4, 1). The
key geometric observation is that any pair of unipotents in SO(4, 1) leaves invariant
a round S2 in S3; to see this, imagine the first fixes the point at infinity of S3 and acts
as translation along the x-axis (note that it is essential here that the element is unipo-

tent and not merely parabolic). The orbit of the point at infinity under the second
unipotent determines a straight line ℓ. The plane spanned by ℓ and the x-axis (union
the point at infinity) is the desired 2-sphere. Thus the group generated by αt and βt

is conjugate back into SO(3, 1). This implies that [c] ∈ PH
1(∆, so(3, 1)) and hence

that [c] = 0.

Corollary 4.2 PH
1(Γd, R4

1) = 0 for d = −1,−3,−7.

Proof Among the Bianchi groups, it is well known that the groups Γd with d =

−1,−3,−7 contain torsion-free finite-index subgroups corresponding to two-bridge
link complements in S3 (it is also known that these are the only Γd with this property

[1, 14]). By the proposition, these link complements have trivial parabolic cohomol-
ogy and by a transfer argument we see that these three Bianchi groups must as well.

Similarly we have:

Corollary 4.3 PH
1(Γd, R4

1) = 0 for d = −2,−15.

Proof We use the existence of commensurable arithmetic groups generated by a

parabolic and an elliptic (of orders 4 and 6 respectively, see [14]). We begin in the
same way and then must argue that an arbitrary pair consisting of a finite-order el-
liptic and a unipotent in SO(4, 1) leaves invariant a round S2 in S3. Again conjugate
so that the unipotent fixes infinity and translates along the x-axis. Let C be the center

of the Euclidean circle in S3 fixed by the elliptic, and let ℓ be the line through C per-
pendicular to the plane containing the fixed circle. The plane spanned by ℓ and the
line through C in the direction of the x-axis is left invariant and therefore defines the
desired S2. Finally, since these groups are merely commensurable, we have checked

via explicit computation of the transfer maps (using the generators given in [14])
that the intersections with Γ−2 and Γ−15 also have vanishing PH

1.

4.2 Fox Calculus

We will now recall a convenient computational formalism due to R. H. Fox [11, 12].
Our presentation follows Goldman [15], who used this approach in the case that Γ is

a closed surface group.

Let Fm denote the free group on m generators. A derivation of the group ring ZFm

is an element D ∈ Z1(Fm, ZFm) which can be thought of as a Z-linear map from ZFm
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to itself, satisfying

(1) D(αβ) = ǫ(β)D(α) + αD(β).

There are certain distinguished derivations ∂i =
∂

∂xi

corresponding to the generators

of Fm; these are defined by ∂ix j = δi j . The {∂i} satisfy many of the formal properties

of freshman calculus, including the “mean value theorem”:

(2) a − ǫ(a) =

∑

(∂ia)(xi − 1)

for any a ∈ ZFm.
The space of cocycles for a free group is quite simple, as the next proposition

shows.

Proposition 4.4 There is an isomorphism between V m and Z1(Fm,V ) given by

(3) (v1, . . . , vm) 7→ (g 7→
m

∑

i=1

(∂ig)vi).

Proof It is trivial to check that the expression given in (3) defines a cocycle. On the
other hand, an arbitrary cocycle c ∈ Z1(Fm,V ) satisfies

(4) c(g) = c(g − 1)

= c
(

∑

(∂ig)(xi − 1)
)

=

∑

(

c(∂ig)ǫ(xi − 1) + (∂ig)c(xi − 1)
)

=

∑

(∂ig)c(xi).

for any g ∈ Fm. This defines an inverse to the map in (3) by sending c to (c(x1), . . . ,
c(xm)) ∈ V m.

Now if Γ has a finite presentation {x1, . . . , xm | r1, . . . , rp}, then Z1(Γ,V ) is in

one-to-one correspondence with

(5) {c ∈ Z1(F
m,V ) | c(r j) = 0 for j = 1, . . . , p},

which in turn is isomorphic to

(6)
{

(v1, . . . , vm) ∈ V m
∣

∣

m
∑

i=1

(∂ir j)vi = 0 for j = 1, . . . , p
}

by Proposition 4.4. This is the form which will be most useful for computations. We
call the matrix F = (∂ir j) the Fox matrix corresponding to the presentation.
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Suppose, returning to our primary setup, that Γ is a lattice in SO(3, 1) gen-
erated by parabolics x1, . . . , xm (e.g., the fundamental group of a hyperbolic link

complement as in §5 below). As above Z1(Γ, R4
1) = ker F, while in the case of

parabolic cohomology we have that PZ
1(Γ, R4

1) consists of m-tuples of the form
((1 − x1)v1, . . . , (1 − xm)vm) ∈ V m in ker F. In practice, we compute ker FP where P

is the block diagonal matrix with 4 by 4 blocks (1−x j) and then throw out cobound-

aries (of the form (v, . . . , v)) and elements of ker P.
Since we are only concerned with linear algebra in these Fox matrix calculations,

we are free to choose a convenient basis for R4
1 tailored to the group at hand. Recalling

that the representation of SO(3, 1)0 on R4
1 is equivalent to the action of PSL(2, C)

on the space of 2 by 2 Hermitian matrices A · Q = AQĀt , we select the following
Hermitian matrices as basis elements when working with Γd:

(

0 ω
ω̄ 0

)

,

(

0 1
1 0

)

,

(

−1 0
0 1

)

,

(

1 0
0 1

)

,

where ω =
1+

√
d

2
. Having done so, all entries of the Fox matrix will be integers or

half-integers, facilitating calculation with the modern electronic computer.

We have performed these calculations for several of the examples with explicit
presentations in [38, 10]. We restrict ourselves to a brief discussion of the results for
d = −1,−3 and how they relate to our bending results from §3.

We know [38] that Γ−1 has the following presentation:

〈

T,U , L, A
∣

∣ A2, L2, (AL)2, (TL)2, (U L)2, TU T−1U−1, (TA)3, (UAL)3
〉

where

T =

(

1 1
0 1

)

, U =

(

1 i

0 1

)

, L =

(

−i 0
0 i

)

, A =

(

0 −1
1 0

)

.

Γ−3 has the following group presentation:

〈

T,U , L, A
∣

∣ A2, L3, (AL)2, L−1TLU T, L−1U LT−1, TU T−1U−1, (TA)3, (UAL)3
〉

where

T =

(

1 1
0 1

)

, U =

(

1 ω
0 1

)

, L =

(

ω2 0
0 ω

)

, A =

(

0 −1
1 0

)

.

In each case, a direct computation as outlined above recovers the fact that
PH

1(Γd, R4
1) = 0. More is true, however; it turns out that H1(Γ−3, R4

1) = 0, provid-
ing a strong negative answer to the question raised by Potyagailo in this case. We have
looked for, but have not yet found, a concrete geometric argument along the lines of

the previous subsection directly accounting for this rigidity.
We contrast this result with the observation that for d 6= −1,−3, the modular

surface is embedded and two-sided (see [10]), hence supports a bending deforma-
tion; this shows that dim(H1(Γd, R4

1)) ≥ 1. Of course, since the modular surface is
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cusped, these deformations are not trivial on parabolics and therefore do not define
classes in PH

1. If d = −1 on the other hand, then the matrix
(

i 0
0 −i

)

maps the plane

P in the upper half space model lying over the real line onto itself, but reverses the
normal bundle, making the modular surface one-sided. Similarly, if d = −3, then
the matrix T =

(

ω2 0
0 −ω

)

, maps P to a plane TP that intersects P. Hence the modular
surface is immersed in this case, and does not support even a first order deformation.

The only new value of d for which the Fox calculus approach gave a vanishing
result was d = −11 (again using the presentation from Swan). We summarize the
computations of this and previous section in the following theorem.

Theorem 4.5 PH
1(Γd, R4

1) = 0 for d = −1,−2,−3,−7,−11,−15. Thus, for these

values of d, none of the infinitely many immersed closed totally geodesic surfaces in the

orbifold Γd\H3 is nearly embedded.

4.3 Mendoza Complex

For a hyperbolic 3-manifold M = Γ\H3 with t toral boundary components, we will
see below

dim(PH
1(Γ, R

4
1)) = dim H2(M, R

4
1) − t.

Note that this is different from the trivial coefficient case where

dim(PH
1(Γ, R)) = dim H2(M, R) − t + 1.

For completeness, we will recall how to obtain this result for trivial coefficients, and
describe why we obtain a slightly different result for non-trivial coefficients.

Our starting point is the following well-known fact about the cohomology of 3-
manifolds (see [37] for a proof):

Proposition 4.6 Let M be a compact, oriented 3-manifold with fundamental group

Γ, and let V be a vector space of characteristic zero acted upon by Γ. Assume ∂M consists

of tori. Then

dim H1(Γ,V ) = dim ker res + dim H0(π1(∂M),V ),

where res denotes the restriction on first cohomology.

Now consider the long exact sequence in cohomology for the pair (M, ∂M):

H0(M,V ) → H0(∂M,V ) → H1((M, ∂M),V ) → H1(M,V ) → H1(∂M,V ) →

H2((M, ∂M),V ) → H2(M,V ) → H2(∂M,V ) → H3((M, ∂M),V ) → 0

For brevity, write x = dim ker res in what follows. When V = R, we have
dim H0(π1(∂M), R) = t and so dim H1

= x + t . The sequence becomes:

R → R
t → R

x+t−1 → R
x+t → R

2t → R
x+t → R

x+t−1 → R
t → R → 0.
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In the case of R4
1 coefficients, it is still the case that dim H0(π1(∂M), R4

1) = t

(each parabolic Z ⊕ Z corresponding to a boundary component has a single fixed

(null) vector in R4
1). The sequence becomes:

0 → (R
4
1)t → (R

4
1)x+t → (R

4
1)x+t → (R

4
1)2t → (R

4
1)x+t →

(R
4
1)x+t → (R

4
1)t → 0 → 0.

Since dim H2(M,V ) = dim H1(M, ∂M) by duality, the assertions at the begin-
ning of the section follow immediately.

It is illuminating to consider the map H0(∂M,V ) → H1((M, ∂M),V ). Suppose
that ∂M = T2, i.e., the boundary consists of a single torus. A 2-cycle supported

on ∂M comes from H0(M) with trivial coefficients, and obviously this class does
not survive in H1((M, ∂M)) = H2(M). On the other hand, a class in H0(∂M, R4

1)
comes from the null vector in R4

1 fixed by the parabolic Z ⊕ Z subgroup; since this
vector is not invariant under all of π1(M) (in fact, no vector is), this class survives

in H1((M, ∂M), R4
1). This accounts for the difference in dimension of the cuspidal

cohomology with trivial and non-trivial coefficients.
Vogtmann [41] used the Mendoza complex to compute the dimension of the cus-

pidal cohomology with rational coefficients. The Mendoza complex is also a very

useful tool for computing cuspidal cohomology with twisted coefficients. We will
give a short description of the relevant definitions and results. For a more complete
description we refer the reader to the original paper by Vogtmann [41].

The Siegel distance between a point (z, r) in H3 and a cusp λ ∈ Q(
√

d), where

λ =
α
β , α, β ∈ Od is given by

d((z, r), λ) =
‖βz − α‖2 + ‖βr‖2

rN〈α, β〉 ,

where ‖ ‖ is the standard complex norm, and N〈α, β〉 is the norm of the ideal of
Od generated by α and β. Recall that the norm of an ideal can be computed in
several different but equivalent ways. If 〈α, β〉〈α, β〉 = 〈n〉 where n ∈ Z, then we
say N〈α, β〉 = n. Alternatively, we can think of N〈α, β〉 as the index of the lattice

generated by α and β in the lattice generated by 1 and ω.
Given a cusp λ, we define the minimal incidence set H(λ) as follows:

H(λ) = {(z, r) | d((z, r), λ) ≤ d((z, r), µ) for all cusps µ 6= λ}.

In other words, the minimal incidence set of a cusp λ is the closure of the set of points

in H3 which are closer to λ than to any other cusp. The Mendoza complex Xd is given
by

Xd =

⋃

λ 6=µ

H(λ) ∩ H(µ) =

⋃

λ

∂ H(λ).

Mendoza [31] proved the following theorem:

Theorem 4.7 (Mendoza)
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(i) Xd is an SL(2, Od)-invariant, two-dimensional CW-complex, with cellular

SL(2, Od) action.

(i) Xd is a deformation retract of H3 by an SL(2, Od)-invariant deformation retrac-

tion.

(i) Xd/SL(2, Od) is a finite CW-complex.

In the next section, we actually perform the same construction for a torsion-free
finite index subgroup of a Bianchi group, giving a Mendoza-like complex upon which
the group acts freely. Since this is a manifold and not an orbifold, we may apply the

duality results from earlier in this section to obtain dim PH
1 directly from H2 of the

complex.

Example 1 The figure-eight knot complement has a fundamental domain consist-
ing of two ideal tetrahedra. Straightforward computations show that, combinatori-
ally, the Mendoza complex X coincides with a standard spine in each of the tetrahe-

dra.

Having computed the explicit elements of PSL(2, C) which identify the edges of

X, it is fairly straightforward to compute the boundary matrix from C2(X, R4
1) →

C1(X, R4
1). This yields dim H2(X, R4

1) = 1 and hence (as expected by the two para-
bolics argument above) dim PH

1(Γ, R4
1) = 0. Recall then that Corollary 3.2 applies

and there are no nearly embedded immersed totally geodesic surfaces in the figure-

eight knot complement. This result mitigates in part some of the frustration felt by
the authors after failed attempts at constructing explicit finite covers of Dehn fillings
in which these surfaces lift to embeddings.

5 A Link Complement in S
3

A pleasant by-product of our calculations of PH
1 for the Bianchi groups was the

discovery of a certain 2-component link in S3 with non-zero parabolic cohomol-
ogy supported on a piecewise totally geodesic 2-complex analogous to the Mendoza

complex. We should mention that in earlier unpublished work, the second author
showed that PH

1 is two-dimensional for every Turk’s head link (see the discussion
in the final section of [36]).

Figure 1: The link 82

14
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The finite index subgroups of Γ−7 have been studied in great detail by Grunewald
and Hirsch among others. It has been known for some time that there is a tessellation

of H3 by ideal triangular prisms which is invariant under Γ−7. We will be considering
a certain index 12 torsion-free subgroup Γ of Γ−7 (denoted Γ−7(12, 21) in [16])
which has a pair of these prisms as a fundamental region, and such that Γ\H3 is
homeomorphic to the complement in S3 of the link 82

14 depicted in Figure 1. It had

been shown previously by Hatcher that this link is commensurable with Γ−7 (see [21,
Figure 15] and [40, §6.8]).

We have the following presentation of Γ from [16]:

Γ =
{

x, y, z | xyx−1 y−1zy−1x−1zxz−1xzx−1z−1,

xyx−1 y−1zy−1zx−1z−1 y−1zxz−1 yz−1 y}.

We may choose x, y and z so that x =
(

1 1
0 1

)

, y =
(

1 0
−2+2ω 1

)

, and z =
( −1 ω
−ω ω−3

)

. We

may once again choose the basis of §4.2 for R4
1 :

(

0 ω
ω̄ 0

)

,
(

0 1
1 0

)

,
(−1 0

0 1

)

,
(

1 0
0 1

)

. Doing
so, the elements mentioned above are given by

x =













1 0 0 0

0 1 1 1
−1
2

−1 1
2

−1
2

1
2

1 1
2

3
2













, y =













1 0 2 2

0 1 0 0

−4 −1 −3 4

−4 −1 4 5













,

z =













5 1 −2 −4

−4 0 1 3
−7
2

0 5
2

7
2

−15
2

−1 7
2

13
2













.

Direct computation shows that

∂r1

∂x
= 1 − xyx−1(1 + y−1zy−1x−1(1 − z(1 + xz−1(1 − xzx−1)))),

∂r1

∂y
= x(1 − yx−1 y−1(1 + zy−1)),

∂r1

∂z
= xyx−1 y−1(1 + zy−1x−1(1 − zxz−1(1 − x(1 − zx−1z−1)))),

∂r2

∂x
= 1 − xyx−1(1 + y−1zy−1zx−1(1 − z−1 y−1z)),

∂r2

∂y
= x(1 − yx−1 y−1(1 + zy−1(1 + zx−1z−1 y−1(1 − zxz−1(1 + yz−1))))),

∂r2

∂z
= xyx−1 y−1(1 + zy−1(1 − zx−1z−1(1 − y−1(1 − zxz−1(1 + yz−1))))).
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Unfortunately, z is not parabolic in this presentation, so it is convenient to rec-
tify this with the following stratagem: If we introduce a new generator z ′ = zxz−1,

the first relation (rearranged a bit) implies that z = yxy−1x−1z ′x−1(z ′)−1xy so
{x, y, z ′} is a generating set. Clearly z ′, as a conjugate of x, is parabolic (it is, in
fact,

(−ω+1 1
2−ω ω+1

)

).

The setup of §4.2 and a computer-assisted calculation of the Fox matrix shows
then that PZ

1(Γ, R4
1) is 5-dimensional. Since the generators have no common fixed

vector in R4
1 , B1 is four-dimensional and we see dim PH

1(Γ, R4
1) = 1. In fact a gen-

erating cocycle can be taken to be 0 on the generators x and y and vector [0, 1,−2, 0]
on z ′.

We now discuss the same computation in light of the results of §4.3; it was shown
there that to obtain the parabolic cohomology it suffices to compute H2(X, R4

1) for
the Mendoza complex X. The goal here is to acquire some information about the
supporting piecewise totally geodesic surface. We mentioned above that the funda-

mental domain for this link complement is given by two ideal double prisms as shown

in Figure 2. Given that ω =
1+

√
−7

2
, we have A = 0, B =

ω
2

, C = ω, D =
ω+1

2
, E = 1,

B

D

C

A

F

G

H

E

I

B’

D’

C’

E’

A’

F’

G’

I’

H’

Figure 2: The Mendoza complex for S
3\82

14.

F = ∞, G =
1−ω

2
, H = 1−ω, I =

2−ω
2

, A ′
= 0, B ′

=
2ω−1

7
, C ′

=
3ω−2

8
, D ′

=
3ω−1

8
,

E ′
=

ω
2

, F ′
=

ω−1
2

, G ′
= ∞, and I ′ = ω.
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B

D

C

A

E

F

G

I

H

B’

D’

C’

A’

E’

F’

G’

I’

H’

Figure 3: Subcomplex of the Mendoza complex supporting a non-zero infinitesimal deforma-

tion.

The necessary identifications are:

(

1 ω
−ω 3−ω

)

: {AFHG} → {C ′F ′E ′D ′},
(

1 −1
0 1

)

: {CDEF} → {H ′ F ′A ′G ′},
(

ω−1 ω+2
ω+2 5−4ω

)

: {G ′ H ′ I ′} → {D ′B ′C ′},
(

1−2ω ω+2
−2−ω 3−ω

)

: {GHI} → {BDC},
(

1 0
0 1

)

: {ABCF} → {A ′E ′I ′G ′},
(−ω−1 ω

ω−2 1

)

: {ABDE} → {I ′ H ′ F ′E ′},
( −1 1

2ω−2 1−2ω

)

: {AEIG} → {B ′A ′E ′D ′}, and
(

1 ω−1
−ω 3

)

: {FHIE} → {F ′A ′B ′C ′}.

As expected, PH
1(Γ, R4

1) is again one-dimensional, but examining the kernel of

the boundary operator shows that the classes are supported on the subcomplex of X

shown (combinatorially) in Figure 3. Note that this is a piecewise totally geodesic
surface with one intersection curve and one complementary region. It appears to be
distinct from the cycles one gets from any of the immersed totally geodesic surfaces

in the link complement.
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