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THE GROWTH OF THE POSITIVE SOLUTIONS OF Lu=0
NEAR THE BOUNDARY OF AN INNER NTA DOMAIN

KATSUNORI SHIMOMURA

§1. Introduction

Let D be a bounded domain in the Euclidean space R" (n = 2) and
L a uniformly elliptic partial differential operator of second order with
a-Hélder continuous coefficients (0 < « < 1) on D.

According to N. Suzuki [3], D is said to be associated with the cone
of angle # < z/2 if there exist positive constants h,d, and K, > 1 such
that:

(i) For any z e dD, there exists e, ¢ R” with |e,| = 1 such that I',(z, e,)
C D, where I',(z, e,) is the half cone obtained from {x e R"; v/} + -+ +
< x,tanf, 0 < x;, < h} by the translation z and the rotation e,.

) Put A, ={y=2+te,eR"; ze9D, 0 <t < h/2}. Then for any
x e D with d(x) < d,, there exist y,€ A, and a polygonal line L, from x
to y, such that d(x) < d(y,) and the length of L, is < K, d(L,, 3D).

In [4] he proved the following result:

If D is associated with a cone, there exist constants m, m’ > 1 such
that for any positive solution of Lu = 0 in D,

(1) Co(dx)™ < u(x) < Cu(d(x)™

with some constant C, = 1 depending on u, where d(x) denotes the dis-
tance between x and 9D, the boundary of D. In this paper, we shall
define inner NTA (non-tangentially accessible) domains and show that for
an inner NTA domain, we can choose two positive constants m, m’ > 1
satisfying (1) for all positive solutions of Lu = 0 in D. This is a direct
extension of N. Suzuki’s result. As applications of our main result, we
shall establish the uniqueness theorem for L-superharmonic functions on
an inner NTA domain and the Harnack inequality for inner NTA domains.
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§2. Preliminaries

Let D be a domain in R*. For three numbers 0 <o <1, 2 =1 and

7 = 0, we denote by #(a, 4, 7; D) the set of all uniformly elliptic differ-
ential operators L of the form

L= Se,@ 2+ 35160 + @)
i,j=1 axiax, t=1 0x,
with
FIEF S 3 0@, S A,
2 1au(0) = @)+ Z15dx) = b3 + o) — e S 7l% = 1,

ijllbi(x)lgn and —yp<c(x)<0

for all x,ye D and &e R", where |x — y| is the distance between x and y.
For Le #(a,,5; D), a function u of class C* on D is said to be L-
harmonic in D if Lu =0 on D. We denote by H. (D) the set of all
L-harmonic functions on D and put Hj (D) = {ue H,(D); u > 0 on D}.

A lower semi-continuous function u on D is said to be L-superhar-
monic if u satisfies the following conditions:

(i) — oo <ux+ o, uzxE+ .

(ii) For any open ball B with B C D and any ve H,(B) which is
continuous on B, we have

uzvonidB—uz=vin B.

For xe R* and r > 0, B(x, r) (resp. B(x, r)) denotes the closed (resp.
open) ball with center x and radius r. For an open or closed ball B, r(B)
denotes the radius of B.

The following Harnack inequality for L-harmonic functions plays an
essential role in this paper.

ProrosrrioNn 1 ([1], p. 109). For given 121, 0<a <1 and =0,
there exists a constant K = 1 depending only on 2, « and 3 such that for
any xeR", 0<r <1, Le La, 1, ; Blx, 1), ue H(B(x, ) and any 0 <s
< 1, we have

(2) K1 —s)1 + s)"u(x) < u(y) £ K(1 — 8)' (1 + s)u(x)
for all ye B(x, sr).
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For a bounded domain D and xe D, we denote by d(x) = d,(x) the
distance between x and aD.

DeFINITION 1. Let D be a bounded domain in R*, M a constant > 1
and N a positive integer. An M-Harnack chain of the length Nin D is
a finite sequence of closed balls (B,)., contained in D such that B; N
B,,,+@ (=1 ---,N—1) and

M- < r(B)/d(B;,oD) = M,
where d(B;, 3D) denotes the distance between B; and 4D.

Let x, ye D. We say that y can be connected with x by an M-
Harnack chain (B,))_; of the length N in D if x is the center of B, and
y€ By. For xe D, we denote by H, y(x) the set of the points which can
be connected with x by an M-Harnack chain of the length N in D.

DerFiNITION 2. Let M > 1 be a constant, N a positive integer and
0 <y <1 a constant. A bounded domain D in R" is called an (M, N, v)-
inner NTA domain if there exist a constant r, > 0 and a mapping 9(z) =
(2(2))7-., from 9D to sequences in D with d(2,(2)) = r, and lim,...2,(2) = 2
satisfying the following two conditions:

(I) For any zeaD,

Zj+1(z) € HM,N(ZJ(Z)) (G=12--9)
and

(3) sup sup d(z,(2)y < + oo.

2€3D 15j<
(II) For each xe D, we put R, = (,esp {2,2); d(x) < d(2,(2))}. Then
sup inff P+ Q<+ o.

2€D Hp,Q@x)NRz+¢
d@)=710

A bounded domain D in R" is simply called an inner NTA domain if
there exist M > 1, 0 <y <1 and a positive integer N such that D is an
(M, N, v)-inner NTA domain.

Remark 1. NTA domains (cf. [2], p. 93) are inner NTA domains. Here
an NTA domain is a bounded domain in R" such that there exist M >1
and r, > 0 satisfying the following conditions:

(i) For any z€dD and any r < r,, there exists a = a,(2) e D such
that d(@) > M-'rand M-'r<|la—2z|<r.

(ii) The complement of D also satisfies the condition (i).
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(iii) For any ¢ > 0 and any x,y € D such that d(x) > ¢, d(y) =¢ and
|x — y| = J, there exists an M-Harnack chain from x to y whose length
depends only on d/e.

We remark that there are inner NTA domains which are not NTA
domains. For example, D = {(r,60) € R"\{0}; r #+ €°, § <0, r <1} is such
a domain.

Remark 2. Put M = sinf/(1 — sinf), N =1 and v = 1 — sin’d. Then
the domain being associated with the cone of angle 6 is an (M, N, v)-inner
NTA domain.

According to N. Suzuki [4], a bounded domain in R" is said to be
associated with the ball of radius r > 0 if there exist positive constants
r, d, and K, > 1 such that:

(i) For any zedD, there exists e,€ D with d(e,, 2) = r such that
Ble,,r) c D.

(i) Put A, ={y=2+tle, —2)eR"; zeoD, 0 <t <2} Then for
any x e D with d(x) < d,, there exist y, € A, and a polygonal line L, from
x to y, such that d(x) < d(y,) and the length of L, is < K, d(L,, aD).

Remark 3. The above domain being associated with a ball is an
(M, 1, 1/(M + 1))-inner NTA domain for all M > 1.

§3. Main result

THEOREM 1. Let M > 1 be a constant, N a positive integer, 0 <y <1
a constant and D an (M, N, v)-inner NTA domain in R". For a fixed x,
e D, we set H(D) = {ue H{(D); u(x,) = 1}. Put
(4) m = m(M, N, v) = 2N — Dlog K- \(M + 1)"~%(2M + 1)'-»

logy
and
(5) m’ = m/(M, N, v) = (2N — 1) log K(M + 1)"*(2M + 1)
Y — logy ’

where K is the constant in Proposition 1. Then there exist positive constants
C and C’ such that for any ue HYD),

(6) Cld@))"™ < u(x) < C'(d(x))™™
on D.
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Remark 4. (1) If a domain is associated with the cone of angle
6 < n/2, then m = log {K~'(1 — sin§)(1 + sin §)'~"}/(2-log cosd) and m’ =
— log {K(1 — sinf)' (1 + sin6)}/(2-log cos ), which are also obtained by
N. Suzuki [4].

(2) If the domain D is associated with a ball, we can choose m =1
and m’ =n — 1.

(38) In the case n =2 and L = 4, Kuran-Schiff [3] obtained a more
precise estimate for rather specific domains.

Proof of Theorem 1. Put F = {xe D; d(x) = ry}, then F is compact in
D. From Proposition 1, it follows that there exist two positive constants
A, and A, depending only on D and x, such that for any we H)(D) and
any xe F,

A S ulx) £ A,
For any zedD, we have z(z) ¢ F, so
(7) A Zu(z(2) £ A,.

Let zedD. Then for any k, there exists an M-Harnack chain (B,)Y,
from z,(2) to z,,,(2). We choose b,¢ B,N B;,; (1 £j <N — 1) and 7, the
polygonal line UY:'b;b,,,, where b, = 2,(2), by = 2;,,(2) and b,;b,,, is the
closed segment between b, and b;,,. Put? = {2} U (Us.,7). Then7isa
rectifiable curve from z to z(z). Put C, = K-'(M + 1)""*(2M + 1)'* and
C, = K(M + 1)"%2M + 1). Proposition 1 shows that for any xe7,,

CY¥'ulzy(2)) < ul®) < C1'ulz,(2))
CEVru(z(2)) < wx) < CP¥ " ulz(2)) -

By (7), we have

AICSZJ\’-l)k < u(x) < Aﬁé(()ZN—l)k .

By (3), there exists a positive constant g such that for all £ > 1,
d(z4(2)) < p*.

Then for any x €7, we have

d(x) = Cy'd(zi(2)) = CY'p*,

where C, = (2M + 1)>. Putting C, = A(8'C}"")"™ and CN'3 = A,B'Cy )™,
we have
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(8) Cld@)™ < w(x) < Cyd=)™

for all xer N D.

Let x¢ D\F. By the condition (II) in Definition 2, there exist a
constant P > 1, a positive integer @ and z,(2)e¢ R, such that x can be
connected to z,(2) by a P-Harnack chain of the length <. From Pro-
position 1, it also follows that

(9) CPu(z(2) < w(x) < Ciu(z(2)),
where C, = K-'(P 4+ 1)"*2P + 1)'"* and C, = K(P + 1)*"*2P + 1).
Combining (8) and (9), we have
(10) C.CPA@)™ < u(x) < C,CI(d(x)™
for all xe D\F. Put C = C,C* and C’ = C,C?%. Then we have
CA@)™ = u(x) < C'(d(x)™™

for all xe D, which completes the proof of our theorem.

§4. Applications

We apply our main result to the following uniqueness theorem for
L-superharmonic functions.

THEOREM 2. Let D be an (M, N, v)-inner NTA domain, L € #(a, 2, 7; D)
and let m be the constant obtained in (4). If a non-negative L-superharmonic
function u in D satisfies

lim inf w(x)/(d(x))™ = 0
for some ze oD, then u is identically equal to 0.

Proof. Let G be the Green function on D with respect to L. Assume
that there exists x,€ D such that u(x) > 0. We can choose r > 0 such
that B(x,, r) € D and u(x) > 0 on B(x,, r). There exists a positive measure
¢ #+ 0 supported by B(x, r/2) such that Gu(x) is finite continuous on D

and Gu(®) < u(®) on B, ), where Gu() = [ G(x, 3)du(y). By the maxi-

mum principle, we have Gu(x) < u(x) on D. Put D/ = D\B(x,, r); D’ is an
(M, N, v)-inner NTA domain and the restriction of Gy to I is L-harmonic
in D’. Since Gg > 0 on DY, Theorem 1 shows that for any xe D', Gu(x)
> C(d’'(x))» with some C >0, where d’(x) = d(x,0D’). Hence u(x)=
C(d’(x))™ for all xe D’, which contradicts our assumption. Thus Theorem
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2 is proved.

The following theorem is a generalization of the Harnack inequality
on a ball.

THEOREM 3. Let D and L be the same as in Theorem 1 and let m
and m’ be the constants obtained in (4) and (5). Then there exist positive

constants C and C’ such that for any ue H} (D) and any relatively compact
open subset 2 of D,

Cldo)" = w(y)ulx) = C'(dy)™
for all x,ye Q, where d, = d(2, 3D).

The above theorem immediately follows from Theorem 1.
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