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DOMAINS OF PARACOMPACTNESS 
AND LOCAL COMPACTNESS 

BRIAN WARRACK 

Introduction. Given a class 38 of topological spaces and a class J ^ of 
mappings of topological spaces, the ̂ -résolvant of 38 is denned to be the class 
3%& {38) of topological spaces all of whose ̂ - images lie in 38. Whenever ^ is 
closed under composition and includes identity maps, 3%&{38) is easily seen to 
be the largest class of spaces smaller than 38 which is closed under ^- images . 

The class 3%&(38) was isolated as an object of study in a recent paper by 
MacDonald and Willard [1]. In the present paper, we continue the investiga
tion begun by these authors. In particular, in Section 1 we provide a counter
example to their conjecture concerning the ^"-résolvant of the class of para-
compact spaces, where&~ is the class of quotient mappings. The second section 
is devoted to a characterization of the J^-resolvant of the class of locally 
compact spaces, w h e r e ^ represents either the class of closed mappings or the 
class of hereditarily quotient mappings. 

All spaces considered here are assumed to be Hausdorff topological spaces 
and a mapping is always a continuous surjection. Following [1], ace X is used 
to denote the set of non-isolated (or accumulation) points of a space X. 

1. A counterexample. The problem of characterizing the quotient résolvant 
of the class of paracompact spaces appears to be difficult. Some progress in this 
direction is related in the following two theorems. 

THEOREM 1.1 [1]. (a) If X is regular and ace X is Lindelôf, then every regular 
quotient of X is paracompact. 

(b) If X is paracompact and each point of a dense subset of ace X has a 
countable base, then every regular quotient of X is paracompact if and only if ace X 
is Lindelôf. 

THEOREM 1.2 [3]. If X is a first countable paracompact space, then the following 
are equivalent: 

(a) every Hausdorff quotient of X is paracompact; 
(b) every Hausdorff quotient of X is regular; 
(c) ace X is compact, or else X is locally compact and ace X is Lindelôf. 

In view of Theorem 1.1, MacDonald and Willard [1] conjectured that every 
regular quotient of X is paracompact only if ace X is Lindelôf. The example 
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below, however, shows that such is not the case even for quotient mappings 
with Hausdorff range. 

A covering se of a space X will be called compatible with the topology of X 
(or simply, compatible) if a subset K of X is closed whenever K C\ A is closed 
for every A £ se. Note that if stf is a closed, closure-preserving covering of X, 
then it is compatible if and only if X has the weak topology with respect t o i ^ 
in the sense of Morita [2]. 

Example 1.3. A paracompact space X all of whose Hausdorff quotients are 
paracompact, although ace X is not Lindelof. 

Let Q, denote the set of ordinals less than or equal to the first uncountable 
ordinal coi, equipped with the topology rendering each point isolated except coi. 
Neighbourhoods of ooi will be the usual neighbourhoods in the order topology. 
Let X be the topological sum of Ki-copies of £2; that is, X = [0, coi) X Œ where 
[0, coi) carries the discrete topology. 

That ace X is not Lindelôf is immediate. Suppose/ is any quotient mapping 
of X onto a space F. Before showing that F must be paracompact, we shall 
first establish a few properties of the quotient. Set 12a = {a} X Œ for each 
countable ordinal a. It is not difficult to show that every GVsubset of X, and 
hence of F, is open. Therefore every countable subset of F is closed. This in 
turn implies that /(S2a) is closed in F for each a < coi. 

Although / need not be a closed mapping, its restriction to each Œa is closed. 
To see this, let F be a closed subset of 12a. If (a, coi) g F, then f(F) is countable 
and hence closed in F. So suppose (ia, a>i) G F. If /(T7) is not closed, then 
every neighbourhood of some y Ç F — / (F ) meets / ( F ) in an uncountable set. 
But this contradicts the fact that/(fia) — U is countable for every neighbour
hood U oif(a, wi). Hence f(F) is closed. 

Since paracompactness is preserved under closed mappings, /(Œa) is para
compact for each a < a>i. Clearly {12a}a<o>i is a closed compatible cover of X, 
whence {/(S2«) Uoi is a closed compatible cover of F by paracompact subspaces. 
Now define Ka = U/3<a/(^), for each a < coi. Note that each i£a is closed 
(since every Tvsubset of F is closed) and paracompact (see [2, Corollary to 
Theorem 1]). Therefore {Ka}a<œi is a closure-preserving, closed compatible 
cover of F by paracompact subspaces. Applying a result due to Morita 
[2, Theorem 1], we conclude that F is paracompact. 

2. Domains of local compactness. In this section we characterize the 
J^-resolvant of the class of locally compact spaces, where Ĵ ~ represents either 
the class of continuous maps, closed maps or hereditarily quotient maps (with 
Hausdorff range). The continuous case can be dispensed with immediately, as a 
corollary to the following theorem. 

THEOREM 2.1 [1]. Every continuous Hausdorff image of X is regular if and only 
if X is compact. 
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COROLLARY 2.2. Every continuous Hausdorff image of X is locally compact if 
and only if X is compact. 

Given a closed subset F of a space X, we say for convenience that a subset U 
of X is an almost compact neighbourhood of F if it is a neighbourhood of F and 
every closed subset of X that is contained in U — F is compact. It is easy to 
see that whenever U is an almost compact neighbourhood of F and F is a 
neighbourhood of F such that F C. V C U, then V is likewise an almost com
pact neighbourhood of F. Moreover, every compact subset of a locally compact 
Hausdorff space has an almost compact (in fact, compact) neighbourhood base. 

A mapping / from a space X onto a space Y is said to be hereditarily quotient 
if and only if for every y G Y and every neighbourhood U olf~ly, y £ I n t / ( U). 
Note that the class of hereditarily quotient mappings contains both the class of 
open mappings and the class of closed mappings. 

The following lemma may be of some independent interest, inasmuch as it 
provides both an internal and an external characterization of those normal 
topological spaces having finite remainder in their Stone-tech compactifica-
tion. 

LEMMA 2.3. Consider the following assertions about a Hausdorff space X: 
(a) every hereditarily quotient Hausdorff image of X is locally compact; 
(b) every continuous closed Hausdorff image of X is locally compact; 
(c) X is a normal, countably compact space with the property that every closed 

subset has an almost compact neighbourhood; 
(d) X is a normal space in which every system of pairwise disjoint closed non-

compact subsets is finite; 
(e) X is a normal space in which, for some positive integer n, there are at most n 

pairwise disjoint closed non-compact subsets; 
(f) X is normal and fiX — X is finite. 
Then (c) <=> (d) <=> (e) <=> (f) => (a) => (b),and (b) implies 
(c' ) X is a normal space with the property that every closed subset has an almost 

compact neighbourhood, and ace X is countably compact. 

Proof. The required implications will be proved in the following sequence: 
(c) => (d) => (f) => (e) => (c) and (e) => (a) => (b) =» (c'). 

(c) => (d): Suppose X satisfies (c). Then if (d) does not hold, there exists a 
countably infinite collection {Ft}^i of pairwise disjoint closed non-compact 
subsets of X. We shall first establish (by induction) the existence of a sequence 
of pairwise disjoint closed subsets of X, each of which is a neighbourhood of 
some closed non-compact subset of X. To this end, let Fi = Fi. Choose d to 
be an almost compact, open neighbourhood of F\ and choose Ki to be a closed 
neighbourhood of F\ contained in G\. Now suppose that for each i = 1, . . . , n, 
we have a closed non-compact subset F/ of Fu a closed neighbourhood Kt of 
Fi, and an almost compact, open neighbourhood G{ of F( satisfying 
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Fi C Kt C Gi and Kt H Kj = 0 whenever z ^ j . Define 

FM-I ' = Fn+1^ \X - U I n t ( X 0 ) • 

One then deduces t ha t Fn+i is a non-empty closed, non-compact subset of X. 
Choose Gn+i to be an almost compact , open neighbourhood of Fn+i whose 
closure misses U"=i Kiy and choose Kn+i to be a closed neighbourhood of Fn+i 
contained in Gn. We can thus inductively construct a sequence {i£i}°°=i of 
pairwise disjoint closed subsets, each Kt being a neighbourhood of a closed 
non-compact subset F/. 

T o see t h a t the existence of such a collection contradicts (c), define C to be 
the set of all points x such t ha t every neighbourhood of x meets F/ for in
finitely many ïs. Although C is a closed set disjoint from each F/, every 
neighbourhood of C mus t contain all bu t finitely many F/, since X is countably 
compact . Bu t this contradicts the hypothesis t h a t C possesses an almost 
compact neighbourhood, thus completing the proof t h a t (c) implies (d) . 

(d) => (f ) : Suppose X satisfies (d) . Since X is normal, fiX is jus t the Wal lman 
compactification of X, so t ha t the points of fiX — X are in one-to-one corre
spondence with the free closed ultrafilters on X. Now if (3X — X is infinite, 
there are infinitely many distinct, free closed ultrafilters on X. One can then 
inductively construct a sequence {5^7=1, where 6*t = {Fij : j = 1, . . . , i] is a 
collection of i pairwise disjoint closed non-compact subsets of X and Ftj C ^ \ - i , j -
T h e collection {Fiti-i}^2 is then a system whose existence contradicts (d) . 
T h u s (3X — X mus t be finite. 

(f) => (e): If X were a normal space in which there were n pairwise disjoint 
closed non-compact subsets for each positive integer n, then according to the 
remarks in the above proof there would be n distinct, free closed ultrafilters on 
X, hence n points in fiX — X, for each positive integer n. Bu t this contradicts 
the hypothesis t h a t $X — X is finite. 

(e) => (c) : Suppose X is a normal space in which there are a t most n pairwise 
disjoint closed non-compact subsets. Then every closed non-compact subset of 
X possesses a closed, almost compact neighbourhood. For otherwise, normal i ty 
allows us to choose a collection of n + 1 pairwise disjoint closed non-compact 
subsets, contrary to hypothesis. T h a t X is countably compact follows easily, 
since the existence of a sequence wi thout a cluster point would imply the 
existence of n + 1 pairwise disjoint closed non-compact subsets, a contradict ion. 

(e) => (a) : Suppose X satisfies (e) and possesses a t most n pairwise disjoint 
closed non-compact subsets. Let / be an hereditari ly quot ient mapping of X 
onto a space Y. Given an arb i t ra ry point y Ç F, we must show t h a t y has a 
compact neighbourhood. Now by the previous implication, the closed s e t / - 1 (3/) 
has a closed, almost compact neighbourhood V. Since f(V) is a neighbourhood 
of y, the proof will be complete once we show t h a t / ( F ) is compact . Bu t this 
follows easily, since if H is any open neighbourhood of y, then V — / - 1 ( i J ) is 
compact , w h e n c e / ( F ) — H is compact . T h e r e f o r e / ( F ) is compact . 
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(a) =» (b): This implication is obvious, since every continuous closed 
mapping is hereditarily quotient. 

(b) => (c'): Suppose every continuous closed image of X is locally compact. 
Then X is locally compact and Hausdorff, hence regular. That X must be 
normal is clear, for otherwise there exist two disjoint closed subsets which 
cannot be separated by disjoint open sets. By identifying one of these to a 
point, we obtain a non-regular Hausdorff image of X under a closed mapping, 
a contradiction. 

If ace X is not countably compact, there is an infinite closed subset A C ace X 
with no accumulation points. Le t / : X —> F be the quotient mapping obtained 
by identifying A to a point. It will be shown that Fis not locally compact at the 
point f(A) = a. We may assume A = [ai, a2, . . .}. 

Since X is regular, we may select neighbourhoods Ui, U2, . . . of aif a2, . . . 
such that Ûi H Ûj = 0 whenever i ^ j . Let U = / (U?- i tf<). Then J7 is a 
neighbourhood of a in F and so contains a compact neighbourhood V of a. 
But t h e n / - 1 V is a neighbourhood of A in X, a n d / - 1 F = Fi W F2 U . . . where 
Vi = / _ 1 F C\ Ui. Now F* is a neighbourhood of a< for each i, and we can pick a 
neighbourhood 7\- of at such that 7\- £ Vt for each i. Now let T = /(UT=i ^*) 
and let Rt = f(Vt — {ai}). Then T and i?* are open subsets of F. Moreover, 
V = T yj \J^=i Rt and no subcover of this cover can be found, contradicting 
the assumption that F is compact. Thus ace X must be countably compact. 

Finally, that every closed subset F of X has an almost compact neighbour
hood becomes evident if one considers the closed mapping obtained by identify
ing F to a point. 

Since statements (c) and (c') of Lemma 2.3 are equivalent for a dense-in-
itself Hausdorff space Xf the following corollary is immediate. 

COROLLARY 2.4. If X is a dense-in-itself Hausdorff space, then all the assertions 
(a)-(f) in Lemma 2.3 are equivalent. 

The following theorem has a trivial analog for continuous open maps: every 
continuous open Hausdorff image of X is locally compact if and only if X is 
locally compact. In other words, the J^-resolvant of the class of locally compact 
(Hausdorff) spaces is simply the class of locally compact spaces, where &~ is the 
class of continuous open maps. 

THEOREM 2.5. The following statements are equivalent for any Hausdorff space 
X: 

(a) every hereditarily quotient Hausdorff image of X is locally compact; 
(b) every continuous closed Hausdorff image of X is locally compact; 
(c) X is a normal space which is the topological sum of two spaces X0 and D, 

where fiXo — X0 is finite and D consists of points isolated in X. 

Proof, (a) => (b) is obvious. 
(b) =» (c): Suppose every continuous closed Hausdorff image of X is locally 
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compact. Then by Lemma 2.3, X is normal, ace X is countably compact, and 
ace X has an almost compact neighbourhood X0. Easily, Xo is also normal and 
countably compact. Now Xo is open-closed, and so is an almost compact 
neighbourhood of each of its closed subsets. Hence Xo satisfies property (c) of 
Lemma 2.3, implying that fiXo — Xo is finite. Thus X is the topological sum 
of Xo and (X — Xo), where fiXo — Xo is finite and (X — Xo) consists of 
points isolated in X, as required. 

(c) => (a): Suppose X satisfies (c) and let / be an hereditarily quotient 
mapping of X onto a space F. That the restriction of/ to Xo is also hereditarily 
quotient can be readily verified. It then follows from the equivalence of state
ments (a) and (f) in Lemma 2.3 that/(Xo) is locally compact. Now notice that 
every point y £ F — f(X0) is an isolated point in F, since f~ly C D a n d / is a 
quotient mapping. Thus F is the topological sum of a locally compact space 
and a discrete space, whence F is locally compact and we are done. 

That condition (c) of Theorem 2.5 is necessary for every Hausdorff quotient 
of X to be locally compact is clear. The author conjectures that it is also 
sufficient. 
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