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Abstract

One of the big challenges in the development of probabilistic relational (or probabilistic

logical) modeling and learning frameworks is the design of inference techniques that operate

on the level of the abstract model representation language, rather than on the level of

ground, propositional instances of the model. Numerous approaches for such “lifted inference”

techniques have been proposed. While it has been demonstrated that these techniques will

lead to significantly more efficient inference on some specific models, there are only very

recent and still quite restricted results that show the feasibility of lifted inference on certain

syntactically defined classes of models. Lower complexity bounds that imply some limitations

for the feasibility of lifted inference on more expressive model classes were established earlier

in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about probabilistic relational

models. Artificial Intelligence 117, 297–308). However, it is not immediate that these results

also apply to the type of modeling languages that currently receive the most attention, i.e.,

weighted, quantifier-free formulas. In this paper we extend these earlier results, and show

that under the assumption that NETIME�=ETIME, there is no polynomial lifted inference

algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further

strengthening earlier results, this is also shown to hold for approximate inference and for

knowledge bases not containing the equality predicate.

KEYWORDS: Probabilistic-logic models, lifted inference

1 Introduction

Probabilistic logic models (a.k.a. probabilistic or statistic relational models) provide

high-level representation languages for probabilistic models of structured data

(Breese 1992; Poole 1993; Ngo et al. 1995; Sato 1995; Jaeger 1997; Friedman

et al. 1999; Kersting and De Raedt 2001; Taskar et al. 2002; Milch et al. 2005;

Richardson and Domingos 2006; Vennekens et al. 2006). While supporting model

specifications at an abstract, first-order logic level, inference is typically performed

at the level of concrete ground instances of the models, i.e., at the propositional

level. This mismatch between model specification and inference methods has been

noted early on (Jaeger 1997), and has given rise to numerous proposals for inference

techniques that operate at the high level of the underlying model specifications (Poole

2003; de Salvo Braz et al. 2005; Milch et al. 2008; Kisyński and Poole 2009; Jha
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Fig. 1. A typical performance evaluation.

et al. 2010; Fierens et al. 2011; Gogate and Domingos 2011; Van den Broeck 2011;

Van den Broeck et al. 2011). Inference methods of this nature have collectively

become known as “lifted” inference techniques.

The concept of lifted inference is mostly introduced on an informal level: “...lifted,

that is, deals with groups of random variables at a first-order level” (de Salvo Braz

et al. 2005); “The act of exploiting the high level structure in relational models is

called lifted inference” (Apsel and Brafman 2011); “The idea behind lifted inference

is to carry out as much inference as possible without propositionalizing (Kisyński and

Poole 2009); “lifted inference, which deals with groups of indistinguishable variables,

rather than individual ground atoms (Singla et al. 2010). While, thus, the term lifted

inference emerges as a quite coherent algorithmic metaphor, it is not immediately

obvious what its exact technical meaning should be. Since quite a variety of different

algorithmic approaches are collected under the label “lifted”, and since most of

them can degenerate for certain models to ground, or propositional inference, it is

difficult to precisely define the class of lifted inference techniques in terms of specific

algorithmic techniques employed.

A more fruitful approach is to make more precise the concept of lifted inference

in terms of its objectives. Here one observes that lifted inference techniques very

consistently are evaluated on, and compared against each other, by how well

inference complexity scales as a function of the domain (or population) for which

the general model is instantiated. Thus, empirical evaluations of lifted inference

techniques are usually presented in the form of domainsize versus inference time

plots, as shown in Figure 1.

Van den Broeck (2011), therefore, has proposed a formal definition of domain

lifted inference in terms of polynomial time complexity in the domainsize parameter.

Experimental and theoretical analyses of existing lifted inference techniques then

show that they provide domain lifted inference in some cases where basic propo-

sitional inference techniques would exhibit exponential complexity (as illustrated

in Figure 1). However, until recently, these positive results were mostly limited

to examples of individual models, and little was known about the feasibility of
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lifted inference for certain well-defined classes of models. First results that show

the feasibility of lifted inference for whole classes of models are given by Van den

Broeck (2011) and Domingos and Webb (2012).

On the other hand, Jaeger (2000) has shown that under certain assumptions on

the expressivity of the modeling language, probabilistic inference is not polynomial

in the domainsize, thereby demonstrating some inherent limitations in terms of

worst-case complexity for the goals of lifted inference. However, the results of

Jaeger (2000) are based on types of probabilistic logic models that are somewhat

different from the models that presently receive the most attention: first, they

essentially assume a directed modeling framework, in which the model represents

a generative stochastic process for sampling relational structures. The model is

defined by specifying marginal and conditional probability distributions for random

variables corresponding to ground atoms. Ground instances of the model, then,

can be represented by directed graphical models, i.e., Bayesian networks. While the

majority of existing model classes fall into the category of directed models (Breese

1992; Poole 1993; Ngo et al. 1995; Sato 1995; Jaeger 1997; Friedman et al.

1999; Kersting and De Raedt 2001; Milch et al. 2005; Vennekens et al. 2006),

there is currently a lot of interest in undirected models that are given by a

set of soft constraints on relational structures, specified in the form of potential

functions, and in the ground case giving rise to undirected graphical models,

i.e., Markov networks. Second, the results of Jaeger (2000) require quite strong

assumptions on the expressivity of the probabilistic-logic modeling language, which

is required to allow that conditional distributions of atoms can be specified

dependent on unrestricted first-order properties. Much current work, in contrast, is

concerned with languages that only incorporate certain weak fragments of first-order

logic.

In this paper the general approach of (Jaeger 2000) is extended to obtain lower

complexity bounds for inference in probabilistic-logic model classes that have emer-

ged as the focus of interest for lifted inference techniques, i.e., undirected models

based on quantifier- and function-free fragments of first-order logic.

In a sharp contrast with Jaeger (2000), where a “trivial” constant-time approximate

inference method was described, we show that our lower complexity bounds also hold

for approximate inference. Further sharpening earlier results, we finally establish that

the lower complexity bounds also hold for models not using the equality predicate,

which in Jaeger (2000) was conjectured to be the key source of inherent complexity.

A preliminary version of this paper has been published as Jaeger (2012). Its main

results were also already included in the survey paper (Jaeger and Van den Broeck

2012), which contains a systematic overview of known results and open problems

related to the complexity of lifted inference.

In the following section we introduce a general framework in which classes of

undirected probabilistic-logic models and classes of associated inference problems

can be defined. Section 3 reviews classic results relating first-order logic models to

the complexity class NETIME. Section 4 contains our main results and Section 5

discusses some notable differences that emerge between the results for directed and

for undirected models.
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2 Weighted feature models

Similarly as Richardson and Domingos (2006), Van den Broeck et al. (2011), and

Gogate and Domingos (2011) we assume the following framework: a model or

knowledge base is given by a set of weighted formulas:

KB :

φ1(v1) : w1

φ2(v2) : w2

. . . . . .

φn(vN) : wN

(1)

where φi are formulas in first-order predicate logic, wi ∈ � are non-negative weights,

and vi = (vi,1, . . . , vi,ki ) are the free variables of φi. The case ki = 0, i.e., φi is a sentence

without free variables, is also permitted. The φi use a given signature S of relation-,

function-, and constant symbols.

An interpretation (or possible world) (D, I) for S consists of a domain D and an

interpretation function I that maps the symbols in S to functions, relations, and

elements on D. For a tuple d ∈ Dki then the truth value of φi(vi/d) is defined, and

we write (D, I) |= φi(d), or simpler I |= φi(d), if φi(vi/d) is true in (D, I). We use

I(D, S) to denote the set of all interpretations for the signature S over the domain

D.

In this paper we are only concerned with finite domains and assume without loss

of generality that D = Dn := {1, . . . , n} for some n ∈ �.

For I ∈ I(Dn, S) let #(i, I) denote the number of elements d in Dki for which

I |= φi(d). The weight of I then is

WKB,n(I) :=

N∏
i=1

w
#(i,I)
i , (2)

where 00 = 1. The probability of I is

PKB,n(I) = WKB,n(I)/Z,

where Z is the normalizing constant (partition function)

Z =
∑

I∈I(Dn,S )

WKB,n(I). (3)

For a first-order sentence φ and n ∈ � then

PKB,n(φ) := PKB,n({I ∈ I(Dn, S) | I |= φ}) (4)

is the probability of φ in I(Dn, S).

We call knowledge base (1) together with the semantics given by (2) and (4) a

weighted feature model, since it associates weights wi with model features φi. Weighted

feature models in our sense can be seen as a slight generalization as weighted model

counting frameworks (Fierens et al. 2011; Gogate and Domingos 2011) in which

non-zero weights are only associated with literals. Knowledge bases of the form

(1) can be translated into weighted model counting frameworks via an introduction

of new relation symbols R1, . . . , Rn, hard constraints φi(vi) ↔ Ri(vi), and weighted

formulas Ri(vi) : wi (Gogate and Domingos 2011; Van den Broeck et al. 2011). Up
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to an expansion of the signature, thus, weighted feature models and weighted model

counting are equally expressive. Markov Logic Networks (Richardson and Domingos

2006) also are based on knowledge bases of the form (1), allowing arbitrary formulas

φi. However, the semantics of the model there depends on a transformation of the

formulas into conjunctive normal form, and therefore does not exactly correspond

to (2) and (4) unless φi are clauses.

All types of models here discussed, thus, are very similar in nature, and only

differ with respect to certain restrictions on what types of logically defined fea-

tures can be associated with a weight. The general definition of weighted fea-

ture models gives us the flexibility of considering a variety of classes of such

restrictions.

A probabilistic inference problem PI(KB, n, χ, η) for a weighted feature model

is given by a knowledge base KB, a domainsize n ∈ �, and two first-order

sentences χ, η. The solution to the inference problem is the conditional probability

PKB,n(χ | η).
A class of inference problems is defined by allowing arguments KB, χ, and η only

from some restricted classes KB, Q (the query class), and E (the evidence class),

respectively. We use the notation

PI(KB,Q,E) := {PI(KB, n, φ, ψ) | KB ∈ KB, n ∈ �, χ ∈ Q, η ∈ E}

for classes of inference problems.

The results of this paper will be given for the case where Q consists of all ground

atoms, denoted as AT, and E is empty. Thus, as far as Q and E are concerned,

we are considering the most restrictive class of inference problems. Since we are

deriving lower complexity bounds, this leads to the strongest possible results, which

directly apply also to more general classes Q and E.

Classes KB are defined by various syntactic restrictions on the formulas φi in

the knowledge base. In this paper, we consider the following fragments of first-

order logic (FOL): relational FOL (RFOL), i.e., FOL without function and constant

symbols; 0-RFOL, which is the quantifier-free fragment of RFOL; and 0-RFOL �=,

which is 0-RFOL without the equality relation.

An algorithm solves a class PI(KB,Q,E) if it solves all instances of PI(KB, n, χ, η)

in the class. An algorithm ε-approximately solves PI(KB,Q,E), if for any

PI(KB, n, χ, η) in the class it returns a number p ∈ [PKB,n(χ | η) − ε, PKB,n(χ | η) + ε].

An algorithm that solves PI(KB,Q,E) is polynomial in the domainsize, if for fixed

KB, χ, η the computation of PI(KB, n, χ, η) is polynomial in n.

3 Spectra and complexity

The following definition introduces the central concept for our analysis.

Definition 3.1

Let φ be a sentence in first-order logic. The spectrum of φ is the set of integers

n ∈ � for which φ is satisfiable by an interpretation of size n.
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Example 3.2

Let φ = ψ1 ∧ ψ2 ∧ ψ3, where

ψ1 ≡ ∀x, y u(x, y) ⇔ u(y, x)

ψ2 ≡ ∀x ∃y y �= x ∧ u(x, y)
ψ3 ≡ ∀x, y, y′ (u(x, y) ∧ u(x, y′) ⇒ y = y′).

φ expresses that the binary relation u defines an undirected graph (ψ1) in which every

node is connected to exactly one other node (ψ2, ψ3). Thus, φ describes a pairing

relation that is satisfiable exactly over domains of even size: spec(φ) = {n | n even}.

The complexity class ETIME consists of problems solvable in time O(2cn), for

some constant c. The corresponding nondeterministic class is NETIME. Note that

these classes are distinct from the more commonly studied classes (N)EXPTIME,

which are characterized by complexity bounds O(2n
c

) (Johnson 1990). For n ∈ � let

bin(n) ∈ {0, 1}∗ denote the binary coding of n, and un(n) ∈ {1}∗ the unary coding

(i.e., n is represented as a sequence of n 1s). A set S ⊆ � is in (N)ETIME, iff

{bin(n) | n ∈ S} is in (N)ETIME, which also is equivalent to {un(n) | n ∈ S} being in

(N)PTIME.

Like Jaeger (2000), we use the following connection between spectra and NETIME

as the key tool for our complexity analysis.

Theorem 3.3

(Jones and Selman 1972) A set A ⊆ � is in NETIME, iff A is the spectrum of a

sentence φ ∈ RFOL.

Corollary 3.4

If NETIME �= ETIME, then there exists a first-order sentence φ, such that {un(n) |
n ∈ spec(φ)} is not recognized in deterministic polynomial time.

Thus, by reducing instances n ∈ spec(φ) of the spectrum recognition problem to

probabilistic inference problems PI(KB, n, χ, η), where KB ∈ KB, χ ∈ Q, η ∈ E are

fixed for the given φ, one establishes that the PI(KB,Q,E) is not polynomial in the

domainsize (under the assumption ETIME �= NETIME).

4 Complexity results

This section contains our complexity results. We begin with a result for knowledge

bases using full RFOL. This is rather straightforward and (for exact inference)

already implied by the results of Jaeger (2000). We then proceed to extend this base

result to 0-RFOL and 0-RFOL�=.

4.1 Base result: the RFOL case

Theorem 4.1

If NETIME �= ETIME, then there does not exist an algorithm that 0.25-approxi-

mately solves PI(RFOL,AT, ∅) in time polynomial in the domainsize.
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The proof of this theorem provides the general pattern also for subsequent proofs.

It is therefore here given in full.

Proof: Let φ be a sentence with a non-polynomial spectrum as given by Corollary 3.4.

Let S be the relational signature of φ. Let a() be a new relation symbol of arity

zero (i.e., a() represents a propositional variable). The first weighted formula in our

knowledge base then is

¬(φ ↔ a()) : 0 (5)

We now already have that PKB,n(a()) > 0 iff there exists I ∈ I(Dn, S) with I |= φ,

i.e., iff n ∈ spec(φ). This already reduces the decision problem for spec(φ) to solving

PI(KB, n, a(), ∅) exactly. However, from the 0-1 laws of first-order logic (Fagin 1976),

it follows that for our current KB : PKB,n(a()) →n→∞ 0. Thus, for every ε > 0 we

could define an ε-approximate constant-time inference algorithm by returning 0 for

all sufficiently large n.

In order to obtain our result for approximate inference, we will now ensure that

for all n ∈ spec(φ) the probability PKB,n(a()) is greater than 0.5, while it remains zero

for n �∈ spec(φ). We do this essentially by calibrating the normalization constant Z

in (3). For this we introduce another new relation b() and add to KB :

¬
((∧

R∈S
∀x¬R(x)

)
↔ b()

)
: 0 (6)

Thus, for every n there is exactly one interpretation I ∈ I(Dn, S) with non-zero

weight in which b() is true (the one in which all relations have empty interpretations).

Finally, we give zero weight to all interpretations except those in which a() or b() is

true:

¬(a() ∨ b()) : 0 (7)

Let KB consist of (5), (6), and (7). Every I ∈ I(Dn, S) then has weight 0 if

it satisfies one of the three formulas, and weight 1 otherwise. Consider the case

n �∈ spec(φ). Then, by (5) WKB,n(a()) = 0. By (7) this then means that in all

interpretations of non-zero weight b() must be true. By (6) there is exactly one such

interpretation. Thus, Z in (3) is 1 and PKB,n(a()) = 0/1 = 0.

If n ∈ spec(φ), then WKB,n(a()) � 1, and Z = WKB,n(a()) (if the interpretation in

which all R are empty also is a model of φ), or Z = WKB,n(a()) + 1 (otherwise).

Thus, PKB,n(a()) � 1/2. A 0.25-approximate inference algorithm for PI(KB, n, a(), ∅),

thus, would decide spec(φ). �

4.2 The 0-RFOL case

We now proceed towards our main result, which is going from RFOL to 0-RFOL.

If we wanted to allow function and constant symbols in our knowledge base, then

one could go to a quantifier-free fragment in a quite straightforward manner using

Skolemization. Since satisfiability over a given domain is the same for a formula

φ and its quantifier-free Skolemized version φSkol, the arguments of the proof of

Theorem 4.1 would go through with little change. In order to accomplish the same
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using only the relational fragment 0-RFOL, we define the relational Skolemization of

a formula. The idea is to replace function and constant symbols in the Skolemized

version of a formula with relational representations. For example, the Skolemized

version of ψ2 from Example 3.2 is

ψSkol
2 ≡ ∀x f(x) �= x ∧ u(x, f(x))

with a new function symbol f(). Introducing a relational encoding of f() leads to

ψR-Skol
2 ≡ ∀x, y Rf(x, y) → (y �= x ∧ u(x, y))

with Rf , a new binary relation symbol encoding f(). This translation must be

accompanied by axioms that confine the possible interpretations of Rf to relations

that encode functions.

Such relational encodings of functions are well established. However, there does

not seem to be a standard account of this technique that serves our purpose. The

following proposition, therefore, provides the relevant result in a form tailored for

our needs.

Proposition 4.2

Let φ(x) ∈ 0-FOL(S ∪ SF ), where S is a set of relation symbols and SF a set of

function and constant symbols. Let S+ be a set of new relation symbols that for

every k-ary f ∈ SF contains a k + 1-ary Rf (constant symbols are treated as 0-ary

function symbols). Let Func be a set of sentences such that for every f ∈ SF it

contains

∀x y y′ (Rf(x, y) ∧ Rf(x, y′) → y = y′) (8)

∀x∃y Rf(x, y). (9)

Then there exists a formula φ+(x, z) ∈0-RFOL(S ∪ S+), such that the following are

equivalent for all n:

(i) there exists I ∈ I(Dn, S ∪ SF ) with I |= ∀xφ(x)

(ii) there exists I+ ∈ I(Dn, S ∪ S+) with I+ |= Func ∧ ∀xz φ+(x, z)

If φSkol is the Skolemization of a formula φ ∈RFOL, we then call φSkol+ the

relational Skolemization of φ, written as φR-Skol.

Our plan, now, is to prove the analogon of Theorem 4.1 for 0-RFOL by replacing

φ in (5) with φR-Skol. However, this is not enough, since we also need to constrain

the models of our knowledge base (more precisely, those models in which a() is

true) to satisfy the axioms (8) and (9). This poses a problem because (9) contains

an existential quantifier and so we cannot add this axiom directly as a constraint

to a knowledge base restricted to 0-RFOL. Indeed, we almost seem to have gone

a full circle, since we are back at knowledge bases in a relational vocabulary with

existential quantification! However, we now have reduced arbitrary occurrences of

existential quantifiers to occurrences only within in the special formulas (9).

Our strategy, now, is to approximate formulas (9) with weighted formulas of the

form

a() ∧ Rf(x, y) : w (10)
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that reward models of a() in which the existential quantifier of (9) is satisfied

for many (all) x. We will no longer be able to ensure that WKB,n(a()) = 0 when

n �∈ spec(φ). However, by a suitable choice of w and by a careful calibration of

the weight of models of the alternative proposition b(), we still can ensure that

WKB,n(b()) � WKB,n(a()) when n �∈ spec(φ), and WKB,n(b()) ≈ WKB,n(a()) when

n ∈ spec(φ). However, the right calibration of the weights of models of a() and b()

within I(Dn, S) will now require that one sets w to a value w(n) depending on n.

This means that we no longer can reduce the decision problem n ∈ spec(φ) to

the probabilistic inference problem PI(KB, n, a(), ∅) for a fixed knowledge base KB.

We only achieve a reduction to the inference problem PI(KB(w(n)), n, a(), ∅), where

the logical structure of KB is fixed, but a weight parameter w(n) depends on n.

Generally, for a knowledge base KB containing N weighted formulas, we denote

with KB(w1, . . . , wN) the knowledge base that contains the same formulas as KB,

but with the weights set to values w1, . . . , wN .

To translate the lower complexity bounds of the original spectrum recognition

problem into lower complexity bounds for the resulting inference problem, one

now has to be precise about the representation of the inference problem. To this

end, we assume that weights w are rational numbers and represented by pairs

(u, v) of integers, so that w = u/v. We then define the representation size l(w) as

log(| u | +1) + log(| v | +1). The total representation size of the weight parameters

w = (w1, . . . , wN) in a knowledge base is l(w) :=
∑N

i=1 l(wi). An inference algorithm

for probabilistic inference problems in PI(KB,Q,E) is polynomial in the domainsize

and the representation size of the weight parameters, if for any KB ∈ KB, χ ∈ Q,

η ∈ E the class of inference problems PI(KB(w), n, χ, η) can be solved in time that is

bounded by a polynomial
∑d

i,j=0 αi,j l(w)inj (αi,j ∈ �, d ∈ � ). We can now state the

following theorem:

Theorem 4.3

If NETIME �= ETIME, then there does not exist an algorithm that 0.2-approximate-

ly solves PI(0-RFOL,AT, ∅) in time polynomial in the domainsize and the repre-

sentation size of the weight parameters.

The full proof of the theorem is given in the appendix. It consists of a polynomial-

time reduction of the n ∈ spec(φ) decision problem to a probabilistic inference

problem PI(KB(w(n)), n, a(), ∅), where l(w(n)) is polynomial in n. An inference

algorithm that can solve PI(KB(w(n)), n, a(), ∅) in time polynomial in the domainsize

and l(w(n)), thus, would yield a polynomial decision procedure for spec(φ).

4.3 Polynomiality in l(w)

One may wonder how strong or surprising Theorem 4.3 really is in light of its extra

runtime polynomial in l(w) condition. It has previously been emphasized that lifted

inference procedures should only be expected to be polynomial in the domain size,

but not in other parameters that characterize the complexity of KB (Jaeger 2000;

Van den Broeck 2011). These remarks, however, have mostly been motivated by

considerations of the logical complexity of KB, e.g., in terms of the number and
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complexity of its weighted formulas, or the size of the signature. The complexity in

terms of numerical parameters, on the other hand, has not received much attention.

To better understand the nature of the condition of being polynomial in the

domainsize and l(w), we have to look a little closer at how the parameters affect

the complexity of the computation. We consider algorithms that can be described

as follows: to compute PI(KB(w), n, χ, η) the algorithm performs a number of steps,

i = 1, . . . , L, where step i consists either of executing a constant time operation that

does not depend on the numerical model parameters (e.g., a logical operation on

formulas), or of a basic operation on numerical parameters.

We consider the executions the algorithm performs on inputs with fixed logical

structure KB and fixed χ, η, but varying weight parameters w and domainsizes n.

Let Vw,n(i) denote the set of all numerical variables stored by the algorithm before

performing step i, when it is run on inputs (w, n). Thus, Vw,n(i) comprises the original

weight parameters of the model, as well as computed intermediate results, etc. We

now make two basic assumptions on the algorithm:

Ass.1 The weight parameters w only influence the numerical values of the variables

stored in Vw,n(i), but not the sequence of execution steps performed by the

algorithm. In particular, the number of execution steps performed by the algorithm

only depends on n: L = L(n).

Ass.2 The basic operations performed on numerical variables are polynomial time

in the size of their arguments and they produce an output whose size is linear in

the size of the inputs. This is the case for the basic arithmetic operations, addition

and multiplication, for example.

The total representation size of Vw,n(i) then is bounded by cn(i)l(w), where cn(i) is a

coefficient not depending on w. Also, let q() be a polynomial that provides a common

complexity bound for the basic numerical operations that can be performed at one

step. The total execution time of the algorithm on input (w, n) then is bounded by

L(n)∑
i=1

q(cn(i)l(w)). (11)

If, now, for fixed weight vectors w the algorithm is polynomial in n (equivalently,

the algorithm is polynomial in n under a computation model where basic numeric

operations are constant time), then L(n) and maxi=1,...,L(n) cn(i) must be polynomially

bounded in n. The combined complexity (11) then, in fact, is polynomial both in n

and l(w).

In summary, this shows that an algorithm, that for fixed w is polynomial in n and

satisfies assumptions Ass.1 and Ass.2, actually is polynomial in n and l(w). Thus,

for this type of algorithm, the additional restriction of Theorem 4.3 compared to

Theorem 4.1 is insignificant.

The remaining question, then, is how restrictive or realistic assumptions Ass.1 and

Ass.2 actually are. For exact inference algorithms it appears that Ass.1 and Ass.2

are satisfied by all existing approaches, with a small qualification: algorithms might

give special treatment to special weight parameters, such as w = 0 or w = ∞, which

then can lead to a violation of Ass.1 in the strict sense. However, our analysis could
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also be performed based on a weakened form of Ass.1 that allows certain special

weights to influence the computation differently from proper numerical weights

0 < w < ∞. A slightly more elaborate argument would then arrive at essentially the

same conclusions.

The situation is less clear for approximate inference algorithms. Here the numerical

values stored in Vw,n(i) may influence the algorithm in multiple ways: for example,

they can be used to test a termination condition, or to decide which computations to

perform next in order to improve approximation bounds derived so far. In all such

cases, the model weights w can have an impact on the sequence and the total number

of execution steps, and Ass.1 is not satisfied. Thus, even though the theorem also

applies to approximate inference, its implications for the construction of approximate

inference algorithms may be less severe, since there might be reasonable ways to

build approximate inference algorithms that are polynomial in n, without also being

polynomial in l(w).

4.4 The 0-RFOL �= case

In a final strengthening of our results, we now move on to the fragment 0-RFOL�=.

The availability of the equality predicate for the formulas of KB, so far, has been an

important prerequisite for our arguments, because Theorem 3.3 crucially depends

on equality: spectra for formulas φ ∈ RFOL �= are always of the form � \ {1, . . . , k}
for some k, and thus, decidable in constant time. For this reason it was suggested

in Jaeger (2000) that one should focus on logical fragments without equality when

looking for model classes for which lifted inference scales polynomially in the

domainsize. As our final result shows, however, elimination of equality may not

have such a large impact on complexity, after all.

Theorem 4.4

If NETIME �= ETIME, then there does not exist an algorithm that 0.2-approximate-

ly solves PI(0-RFOL �=,AT, ∅) in time polynomial both in the domainsize and the

representation size of the weight parameters.

This theorem is a generalization of Theorem 4.3, and strictly speaking, makes 4.3

redundant. It is only for expository purposes and greater transparency in the proof

arguments that we here develop these results in two steps.

The proof of Theorem 4.4 is a refinement of the proof of Theorem 4.3. In addition

to approximating Skolem functions f with relations Rf , we now also approximate

the equality predicate = with a binary relation E(·, ·). Similarly, as we could not

impose in 0-RFOL hard constraints that ensure that Rf encodes a function, we also

cannot constrain models to always interpret E as the equality relation. However,

just as with (8) and (10) we rewarded interpretations with functional Rf , we can

penalize interpretations in which E is not true equality by means of the two weighted

formulas:

a() ∧ ¬E(x, x) : 0 (12)

a() ∧ E(x, y) : 1/w, (13)

where w is a large weight.
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5 Approximate inference, convergence, and evidence

There are some notable differences with respect to approximate inference between the

results we here obtained for weighted model counting and the results of Jaeger (2000).

In Jaeger (2000) it was shown that due to convergence of query probabilities Pn(a())

as n → ∞, in theory a trivial constant time approximation algorithm exists: perform

exact inference for all input domains up to a size n∗ and output the limit probability

for all domains of size > n∗. This “algorithm”, however, has no practical use, since

for a desired accuracy value ε one first would have to determine a sufficiently high

threshold value n∗ ∈ � to make the output indeed be an ε-approximation.

Nevertheless, the difference between the existence of an impractical approximation

algorithm on the one hand, and the non-existence of any approximation algorithm on

the other hand, is just one consequence of a more fundamental difference: while in the

models considered in Jaeger (2000) query probabilities Pn(a()) converge to a limit, this

is not necessarily the case for knowledge bases of weighted formulas – at least when

full RFOL is allowed: in the proof of Theorem 4.1 we have constructed knowledge

bases KB, such that PKB,n(a()) oscillates between zero and values >1/2 as n oscillates

between spec(φ) and its complement. The construction of knowledge bases with

this behavior does not require formulas φ with a non-polynomial spectrum as in

Corollary 3.4, and is not contingent on NETIME �= ETIME. Already a knowledge

base as constructed in the proof of Theorem 4.1 with φ replaced by ψ of Example 3.2

will show this behavior.

The reason behind these different convergence properties lies in a somewhat

different role that conditioning on evidence plays in directed and undirected models:

in the former, a conditional probability PM,n(a() | b()) defined by a model M can, in

general, not be defined as an unconditional probability PM ′ ,n(a()) in a modified model

M ′. As a result, the convergence guarantees and – theoretical – approximability for

certain classes of unconditional queries PM,n(a()) do not carry over to conditional

queries PM,n(a() | b()).
For weighted feature knowledge bases KB, on the other hand, there is no

fundamental difference between unconditional and conditional queries PKB′ ,n(a())

and PKB,n(a() | b()), respectively. To reduce the conditional to unconditional queries,

one can just add to KB the hard constraint ¬b() : 0 to obtain KB′ with

PPKB′ ,n = PKB,n | b(). This means that as long as E is not more expressive than KB,

the problem classes PI(KB,Q,E) and PI(KB,Q, ∅) have the same characteristics in

terms of complexity as a function of the domainsize. Note, though, that this is only

true when we consider complexity of PI(KB, n, χ, η) strictly as a function of n for

fixed KB, χ, η. If the evidence is allowed to change with the domainsize, i.e., η = η(n),

then even in cases where restrictions on KB make PI(KB,Q,E) polynomial in n,

one can define sequences of inference problems PI(KB, n, χ, η(n)) with KB ∈ KB,

η(n) ∈ E that are no longer polynomial in n (Van den Broeck and Davis 2012).

6 Conclusion

We have shown that for currently quite popular probabilistic-logic models consisting

of collections of weighted, quantifier-, and function-free formulas there is likely to be

no general polynomial lifted inference method (contingent on NETIME �= ETIME).
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Somewhat surprisingly, this even holds for approximate inference. Between this

negative result and the positive result of (Van den Broeck 2011), there still could be

a lot of room for identifying tractable fragments by restricting 0-RFOL further via

limits on the number of variables or the richness of signature S .
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Appendix A: Proofs

Proof of Proposition 4.2: We begin by defining the term-depth of a term t in

signature SF as the maximal nesting depth of function symbols in t. Precisely, we

define inductively: if t ≡ x, then t has term depth 0. If t ≡ f() (a constant), or

t = f(x1, . . . , xk) (a function term with only variables as arguments), then t has term

depth 1. If t = f(t1, . . . , tk), then the term depth of t is one plus the maximal term

depth of the ti.

The term depth of a formula φ(x) is the maximal term depth of the terms it

contains.

We now show that every formula φ(x) of term depth l can be transformed into a

formula φl−1(x, z) of term depth l−1 in 0-FOL(S ∪SF ∪S+), such that the statement

for φ+ of the proposition holds for φl−1 (but with S ∪ SF ∪ S+ instead of S ∪ S+ in

(ii). The proposition then follows by defining φ+ as the result of iteratively applying
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l such transformations to φ. Since the term depth of the resulting φ+ is zero, then

actually φ+(x, z) ∈ 0-RFOL(S ∪ S+).

Let {fi(xi) | i = 1, . . . , r} be the set of all distinct terms (including sub-terms) of

depth 1 appearing in φ(x). Let z1, . . . , zr be new variables. Then φl−1(x, z) would be

defined as
r∧
i=1

Rfi (xi, zi) → φ(x)[z1/f1(x1), . . . , zr/fr(xr)].

To now show (i)⇒(ii), let I ∈ I(n, S ∪ SF ) with I |= ∀xφ(x). Define I+ ∈
I(n, S ∪ SF ∪ S+) as the expansion of I in which each Rf ∈ S+ is interpreted as the

relational representation of f, i.e., I+ |= Rf(d , e) iff I |= f(d) = e. Clearly, I+ |= Func.

Furthermore, the following are equivalent:

I |= ∀xφ(x)

I |= ∀xz
∧r
i=1 fi(xi) = zi

→ φ(x)[z1/f1(x1), . . . , zr/fr(xr)]

I+ |= ∀xz
∧r
i=1 R

fi (xi, zi)

→ φ(x)[z1/f1(x1), . . . , zr/fr(xr)]

For (ii)⇒(i) let I+ as in (ii) be given. Since I+ |= Func, we can turn I+ into

an interpretation for S ∪ SF by defining f(d) as the unique e for which Rf(d , e)

holds in I+. Then, by the same equivalences as above, I+ |= ∀xz φ+(x, z) implies

I |= ∀xφ(x). �

Proof of Theorem 4.3: Let φ ∈ RFOL as given by Corollary 3.4 and ∀x φR-Skol(x)

its relational Skolemization. Let S be the original signature of φ and S+ the relation

symbols introduced in the relational Skolemization. Furthermore, for each k-ary

R+ ∈ S+ we introduce a new (k − 1)-ary relation, R++. These new symbols will be

used to calibrate the weight of models for the reference proposition b(). Note that the

arity of symbols in S+ is at least 1, and R++, thus, is well-defined, but may contain

relations of arity 0. We denote with S++ the collection of all the introduced R++

symbols. We now reduce the spectrum recognition problem for φ to probabilistic

inference from a knowledge base in the signature S ∪ S+ ∪ S++ ∪ {a(), b()}.
The first formula in our knowledge base is

a() ∧ ¬φR-Skol(x) : 0. (A1)

We now approximately axiomatize the functional nature of the symbols R+ ∈ S+.

The sentence (8) can be directly encoded as a weighted formula:

R+(x, y) ∧ R+(x, y′) ∧ y �= y′ : 0 (A2)

Next, we would like to enforce (9) by means of a weighted formula. However,

(9) encodes the essence of the existential quantifiers we are about to eliminate, and

thus, it is not surprising that this is not possible to enforce strictly. However, we

can reward models in which the existential quantification of (9) is satisfied via the

weighted formulas

a() ∧ R+(x, y) : w (R+ ∈ S+), (A3)

where w > 1 is a weight whose exact value is to be defined later.
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We now proceed with constraining models of the reference proposition b(). First,

all symbols in S ∪ S+ shall have an empty interpretation in models of b():

b() ∧ R(x) : 0 (R ∈ S), (A4)

b() ∧ R+(x, y) : 0 (R+ ∈ S+). (A5)

In order to allow b()-models to gain some weight, we use the extra symbols in

S++:

b() ∧ R++(x) : w (R++ ∈ S++), (A6)

where w is the same weight as in (A3). To further limit the possible interpretations

of b()-models, we also stipulate

b() ∧ ¬R++(x) : 0 (R++ ∈ S++). (A7)

The extra symbols R++ must have empty interpretations in a()-models:

a() ∧ R++(x) : 0 (R++ ∈ S++). (A8)

Finally, we add

¬(a() ∨ b()) : 0. (A9)

We now determine (approximately) WKB,n(a()) and WKB,n(b()) for the cases n ∈
spec(φ) and n �∈ spec(φ).

First, consider b(): for any n, there exists exactly one interpretation Ib() ∈ I(Dn, S∪
S+∪S++∪{a(), b()}) with nonzero weight in which b() is true. This is the interpretation

in which all relations in S∪S+ are empty ((A4), (A5)), all relations in S++ are maximal

(A7), and, in consequence of the latter, because of (A8), a() is false.

Assume that S+ = {R+
1 , . . . , R

+
m }, where R+

i has arity ki + 1. Then R++
i ∈ S++

contributes via (A6), a factor of wn
ki , to WKB,n(Ib()), and the total weight is

WKB,n(Ib()) = WKB,n(b()) = wn
k1 +···+nkm = wK(n), (A10)

using for abbreviation K(n) := nk1 + · · · + nkm .

We next turn to WKB,n(a()) in the case n ∈ spec(φ). Then there exists at least

one interpretation I ∈ I(Dn, S ∪ S+), in which ∀xφR-Skol(x) is true and the relations

from S+ have a functional interpretation. We can expand this interpretation to an

interpretation in I(n, S ∪ S+ ∪ S++ ∪ {a(), b()}) by giving all relations in S++ an

empty interpretation and setting a() to true and b() to false. Then I does not violate

any hard constraint in KBand collects from (A3) a total weight of wK(n). Thus

WKB,n(a()) � wK(n),

and therefore, when n ∈ spec(φ),

PKB,n(a()) � WKB,n(a())/(WKB,n(a()) +WKB,n(b())) � 1/2. (A11)

Finally, we have to consider WKB,n(a()) in the case n �∈ spec(φ). For any I with

non-zero weight in which a() is true, because of (A1), also ∀xφR-Skol(x) must be true.

This, now, only is possible when some R+ ∈ S+ is not a functional relation, which,

because of (A2) can only mean that for some x there exists no y with R+(x, y). The
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total weight of I accrued from (A3) then is at most wK(n)−1. Because of (A8), I

cannot obtain any additional weight from (A6), so that

WKB,n(I) � wK(n)−1. (A12)

The total number of interpretations in I(Dn, S ∪ S+ ∪ S++ ∪ {a(), b()}) is 2L(n) for a

polynomial L(n). Thus

WKB,n(a()) � 2L(n)wK(n)−1. (A13)

We now obtain for the case n �∈ spec(φ)

PKB,n(a()) � WKB,n(a())/WKB,n(b()) � 2L(n)wK(n)−1/wK(n) = 2L(n)/w. (A14)

Setting w = 10 · 2L(n), we thus have PKB,n(a()) � 1/10 if n �∈ spec(φ). The

representation size of w is polynomial in n. Thus, an algorithm that computes

PKB,n(a()) up to an accuracy of 0.2 = (0.5 − 0.1)/2 in time polynomial in n and

the representation size of w would give a polynomial time decision procedure for

spec(φ). �

Proof of Theorem 4.4: The proof is an extension of the proof of Theorem 4.3 and

we here just give the necessary modifications.

Let E be a new binary relation symbol. We replace equalities x = y in (A1) and

(A2) with E(x, y). To (approximately) axiomatize E as the identity relation in models

of a(), we add to the knowledge base consisting of (A1)–(A9) the weighted formulas

a() ∧ ¬E(x, x) 0, (A15)

a() ∧ E(x, y) 1/w, (A16)

where w > 1 is the same weight as in (A3) and (A6), and whose exact value is to

be determined later. To calibrate the weight of b()-models, we introduce in analogy

to the R++ relations a unary relation E++, and in analogy to (A6)–(A8) add to the

knowledge base

b() ∧ E++(x) 1/w, (A17)

b() ∧ ¬E++(x) 0, (A18)

a() ∧ E++(x) 0. (A19)

We now obtain for all n,

WKB,n(b()) = wK(n)(1/w)n = wK(n)−n. (A20)

If n ∈ spec(φ), then there exists an interpretation in which a() is true, R+ have a

functional interpretation, and the interpretation of E is the identity relation. We can

thus lower-bound the weight of a() by the weight of that interpretation:

WKB,n(a()) � wK(n)(1/w)n = wK(n)−n. (A21)

As in (A11), one then obtains PKB,n(a()) � 1/2.

We now turn to the case n �∈ spec(φ). Consider any I in which a() is true and that

has nonzero weight. This now is only possible when in I there is an R+ ∈ S+ which

is not a functional relation, or when E is not the identity relation in I (or both).
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In all cases, the weight of I coming from (A3) and (A16) is at most wK(n)−n−1. The

total number of interpretations in I(Dn, S ∪ S+ ∪ S++ ∪ {a(), b(), E}) is 2M(n) for a

polynomial M(n). Thus

WKB,n(a()) � 2M(n)wK(n)−n−1, (A22)

from which, as in (A14), then PKB,n(a()) � 2M(n)/w. Now setting w = 10 · 2M(n) again

yields the bound PKB,n(a()) � 1/10.

�
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