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Abstract

The irrotational flow of an incompressible, inviscid fluid over a spillway
is considered. The reciprocal ¢ of the Froude number is taken to be small and
the method of matched asymptotic expansions is applied. The bed of the
spillway is horizontal far upstream and makes an angle o with the horizontal
far downstream. The inner expansion is valid upstream and over the
spillway, but is invalid far downstream. The outer expansion which is valid
downstream fails to satisfy the upstream conditions. Unknown constants in
the outer expansion are determined by the matching and composite
expansions obtained.

1. Introduction and formulation

Flows past polygonal obstacles or with polygonal boundaries and jet flows have
been widely examined since 1868 (Helmholtz and Kirchoff), the effects of gravity
being neglected. Both Birkhoff and Zarantonello [2] and Gurevich [6] provide a
very broad coverage with extensive bibliographies. It is only since 1960 that there
has been any significant progress in the solution of free surface flows of this type
when gravity is not neglected. Prior to this, either inverse or ad hoc approximate
methods had been used.

The method of matched asymptotic expansions has been used by Clarke [4] to
solve the two-dimensional flow over a waterfall, by Keady [7] to solve the flow of a
jet from a horizontal slot and by Ackerberg [1] to determine the flow down an
inclined plane, the flow being introduced at the leading edge of the plane. Recently
Keady and Norbury [8], and Budden and Norbury [3], have established this
method rigorously for a number of problems of this type. Here we shall use the
method to examine the flow of an infinite stream which flows horizontally prior to
its motion down a spillway. The complex potential is taken as the independent
variable in order to overcome the difficulty that the geometry of the free surface
is not known in advance. The effects of surface tension are ignored.
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Fig. 1. Coordinate system in X-Y plane.

We choose a coordinate system Z = X+iY such that the tangents to the bed
at A and C intersect to give the origin in the physical Z plane (Fig. 1). Gravity acts
in the negative Y direction. A complex potential W(Z) = ®+i¥ and a complex
velocity dW/dZ = U—iV must be found such that the pressure on the free surface
AC is constant, and at 4 the fluid speed is U for 0< Y<A. At C the fluid speed is
infinite, and the appropriate condition is deferred to later in this section. The
origin in the W plane is chosen to correspond to a fixed point in the Z plane.
We non-dimensionalize the coordinates, the complex potential and the complex
velocity as follows:

w
z=x+iy=g, w=¢+i¢=ﬁ'j’
h

(1.1
aw e AW
2o uh=qev= U A
As the location of the free surface AC in the physical plane is unknown, we

formulate the problem in the potential w-plane (Fig. 2). Thus we let
dw
— — — 1 — — ] 102
lndz Ing—if = Q—ib, 1.2)
where Q and (— 6) are conjugate harmonic functions of the variables (¢, ¢) and so

satisfy the corresponding Cauchy-Riemann equations. On the free surface, the
pressure p is constant. Now Bernoulli’s equation when differentiated with respect
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U
A I p = constant
Q-0 V2Q=V0=0
A 0 _
B 6= g(¢) ¢
Fig. 2. Coordinate system in w-plane.
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Fig. 3. Coordinate system in z-plane.
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where _
e=gh/U%

213

(1.3)

Here ¢ is the inverse Froude number, and we shall assume that ¢ is small. On the

free surface dp/o¢ is zero, and using the fact that

g=exp{Q} and dz/dw =g lexp{ib},
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it follows that
o0 .
$+eexp{-—3Q}sm =0, onyy=1, —co<d<oo. (1.9

The boundary condition far upstream is ¢ = 1, and hence

(¢, P)~0*+ asd—>—00, O<y<l. (L.5)
rar downsiream, the boundary condition is
(¢, p)>—a asdp—>o0, O<y<l. (1.6)

The final boundary condition is the specification of the slope on the bed of the
spillway, and we put

0(4,0) =g(¢), —co<d<co. (L.7)

We shall assume that g(¢) is a piecewise smooth function with at most a finite
number of simple jump discontinuities, and

@y [CCPER) a5,

8= —a+O(exp(—k¢)) as ¢—>co.

The problem specified by the boundary conditions (1.4), (1.5), (1.6) and (1.7) is
an inverse problem, as the physical problem requires the specification of the slope

on the bed of the spillway as a function of x, say 8 = 8,(x), whereas (1.7) specifies
the slope as g(¢), a function of ¢. These two are related by the expression,

(1.8)

o cos g4 = 9 2% (1.9)

dé’
Our procedure determines g (asymptotically for small ) as a functional of g(¢), and
(1.9) is then a functional equation for g(¢). However, there is one special case
when the inverse problem admits a trivial solution; viz. the bed has a single abrupt
transition of slope (Fig. 4), and so

0 for —0<¢<0,
5= { 29)

—a forO0<¢<co.
We note that the origin of ¢ may be selected arbitrarily, and we have put ¢ = 0 at
the corner. We do not propose to examine the general inverse problem (1.9) in
this paper, and so our results relate principally to the special case when g(¢) is
given by (2.0). However, it should be noted that when the bed consists of a finite
number of straight line segments, the functional equation (1.9) reduces to a finite
system of algebraic equations, and we shall examine this case briefly in Section 5.
Finally we comment that the presence of a jump discontinuity in y(x), or g(¢),
will cause the presence of singularities in Q and §; we shall require that these be
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[51 Supercritical flow of an ideal fluid 215

the ““weakest” possible singularities, that is they should be such that dw/dz is
O(|z—zo|#/*"+P)) as z—>z,, where z, is the location of the corner, and =+ 8 is
the exterior angle at the corner,

We seek to determine harmonic functions Q and @ that satisfy equations (1.4),
(1.5), (1.6) and (1.7). The main difficulty is that (1.4) is non-linear, and for small ¢,
the non-linear terms become significant as ¢ —oco. When &< 1, we shall obtain an
asymptotic solution by the method of matched expansions. The inner expansion is
an expansion in powers of ¢, and assumes that the effects of gravity are small.
This expansion fails as ¢— co and is complemented by an outer expansion in which
the ¢ coordinate is stretched and replaced by ¢* = e¢. The outer expansion takes
account of the dominant effects of gravity far downstream.

2. The inner expansion

We assume that
O, ;&) = Oy, )+ €01 ($, )+ E Ou(d, P) + ...
and Q.1
0(d. 4 &) = 6o($, )+ £61(, ) + &2 O, ) + ...
Substituting equations (2.1) into (1.4) and equating coefficients of each power
of & to zero, we obtain on ¢y =1

9Qo _

3= 0, 2.2)
9 | L 300cin . —
-;)-$+e sin f, =0, 2.3
and
% +e73%0(6, cos 6,—3Q; sin 6y) = 0. 24)

Using the appropriate Cauchy—Riemann equations, the problem for 6y(¢,)
becomes
V20,=0; —oco<¢p<oo; 0<yY<I.
00($,0) = g(¢); —0<d<oo.
08, . )
v 0; —co<$<oo; P=1

The solution may be obtained by using a (complex) Fourier integral transform
in ¢. The result is

o) @2.5)

R P @.6)
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Hence, putting ¢’ = ¢+ 27 'arsinh ¢, we get

1. mp [ g(4)
00(¢, l/J) = ; sin —2— f—w -t_2+sinz—(m/;/2)dt’ (2.7)
from which Qy(¢,4) may be found using the Cauchy-Riemann equations and the
boundary condition Qy(¢,1) =0.

The boundary value problem for Q,(¢, ) is such that the substitution of 6,(¢, i)
into the Cauchy-Riemann equations wiil yieid Q, only up to an arbitrary constant
for $>0. It is therefore necessary to solve first for Q,(¢,y) from which 6,(¢, )
may be determined. The boundary value problem for Q,(¢,) is

V20, =0; —ow<¢<owo; 0<y<I.

0,0 as¢d—>—o0; 0<y<l.

%%: ; —oo<¢p<oo; Y=0. ®) 2.8)
Q_Q_]':_ —3Qosin 0, = — LR . =1

7% e 3sin Gy = —f($); —o<Pp<oo; P=1. }

On the free surface, O, = 0 and ¢ = 1 whence exp (—3Q,) = 1 and, from equation
(2.7), it may be shown that
b O(e**?) as ¢—»>—o0,
= sin , 1) = 2.9
/@) o 1 —sina+O(e~%'%) as —>+co. (29)
Here k* = min (k, =/2). Hence, again using a (complex) Fourier integral transform,
the solution of Problem (P,) is

1 [ F(s)coshsye—is¢
0:($,¥) = o f T Tscoshy ds, (2.10)
where s = o+ir and
Fs)=—— (" fi)eiap, 0<r<ix. @2.11)
V27 ) o
Integrating equation (2.11) by parts, it follows that
_ _K(@)
F (S) - '75—’
where 2.12)

KO =75z [ rr#resas.

K(s) is analytic in —k* <r<k*, and so F(s) has a simple pole at s = 0.
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It may be shown that

0(e*#), <0,

= 2.13
0u($:4) {¢> sina+K;+0(e~%'%), ¢>0, @13)

where
K = f :quf’(qS) dé. (2.14)

The Cauchy-Riemann equations and the boundary condition 6,(¢,0) =0,
—0< ¢<oo, give
O(e**9), ¢<0,
0.(¢, ) = ‘ . ) (2.15)
—sina+O(e*'%), ¢>0.
We proceed in an identical way to determine Qx(¢, ). Let
Si(¢) = 6,cos 0,—30Q;sinf,, onyi=1. (2.16)

We may show that the Fourier transform Fi(s) of fi(¢) has a double pole at s = 0.
0.(é, ) is given by equation (2.10) with F(s) replaced by F;(s). It may be shown

that
O(e**%), ¢<0,
04, ) = { 3P — Y sina+ $(sin acos a — 3K, sin ) .17
—3sin?a+ K+ O(e7**%), ¢>0,
where

K=" s, (2.18)
~0
The Cauchy-Riemann equations give

0@**?), $<0,

_ 2.19
b:(6.9) 3¢y sin® x—y(sin acos a—3K; sin o)+ O(e™**¢), ¢>0. o

3. The outer expansion and matching

Far downstream, the free fall approximation (g2 ~ —2¢y) shows that Q will be a
function of ¢ (see, for example, Ackerberg [1]). Hence we introduce a new variable
* = &, and put

Q(¢’ 'l'; 8) ~ QO(¢*’ ¢) + £Q1(¢*a ‘/’)+ & Q2 (95*, l)[’)'*' very

3.1
6,5 &)~ — ct e0,($*, )+ €2 0%, ) + ... 3.1
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The Cauchy-Riemann equations in terms of ¢* and i are
09 _ %6 99_ 96
‘9%~ o) o Cog*

If we substitute equations (3.2) into (3.1) and equate coefficients of each power of
€ to zero we obtain

(3.2)

00y 08y 90,

== = 3.3
00, 28, 00,
W;_—EZ?’ a_(/}_o, (3.4)
00, a0
a—; = éﬁ (3.5)
Upon integration we obtain
01 =—40Q4($*), 0, =—40($*) (3.6)

and

Qo = Qy(¢™), Q1= 0:(¢®), } 3.7

Qs = — 3 0g($%) +a($*),
where a(¢*) is an unknown function to be determined. In equation (3.6) the
boundary condition (1.7) has been applied, where terms of exponential order
(O(e~**?)) are neglected.
In terms of the new variables, the free surface boundary condition becomes
(0Q/0$*)+e~39sinf =0, iy =1. On substituting equation (3.1) and equating
coeflicients of each power of ¢ to zero we have

0y = e 3%sina, ]

0 +3e3%sina = e3% Q] cos o,

(3.8)
a'(¢*) + 3a e-—3Q° Sin o= %{Q’z'l' e_300[3Q(’; Sin o
+20; cos a—(Qp)*sin a-+903 sin a—6Q; 0, cos o}
It follows that
Qy(¢*) =3%1Inp, (.9)
* =COSaln +ﬁ 110
0% = 3 Inp+ 610

a(@*) = —(6p®) 2 {(8sin® x+2 cos® a — 12¢; cos a+9c3)

+(6¢; cosa—4cos?a) (1 +Inp)+cos?a[(1+Inp)2+ 11} +(c/p), (3.11)
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where
p(p*) = c+3¢*sina (3.12)

and ¢, ¢; and ¢, are constants of integration, the values of which will be found by
matching with the inner solution. We note that Q, is simply the solution given by
the free fall approximation.
For the matching of inner and outer expansions we adopt the procedure used
by Ackerberg [1]. Thus
(i) Let ¢—+o0 in the inner expansion of Q and, neglecting exponentially small
terms, express what remains in terms of ¢*;
(ii) expand the outer expansion of Q for ¢*—0;
(iii) the arbitrary constants appearing in (ii) must be chosen so that for every
term in (i) a corresponding term appears in (ii).
Carrying out (i) we obtain

Oinner—> ¢*sina+ &K, + 3622 sin® a — $(¢*)?sin®
+ &g *(sin a cos a— 3K sin o) — Fe?sin® o
+ &2 K, + ¥[function of ¢*, ).

Carrying out (ii) we have

* *)2
OQouter—~> 310 c+£— sin a—M sin® o+ O(¢*)?
c 2c?
* gy *qy — * n—1 g3y
te ¢ 3q4¢ 51na+¢ 51nacosa+cosa(l 3¢*cLsina)lne
c c? c? 3¢
+0(4*)
3Psina 1 - 2 2
+82[T @[SSm a+2cos?a—12¢, cos a+9c?

+(1+Inc)(6¢, cos a—4cos?a)+cos? «(2+21nc+(Inc)?)]
+24 0(¢*)] +0(&).
Matching is achieved if we take
c=1, =K, and c¢,= —&sin2a+Kl(3TKl—cos a) + K. (3.13)

Using the additive rule for the formation of composite expansions (see, for example,
Van Dyke [9], p. 95), we obtain

O~ Q)8 )+ Qu($*, )+ eQ1(*, ) + &% Qu($*, )+ 0(82)}
O~ 0u(, ) +0,($*, ) + € (™, ) + o(&?).

and (3.14)
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However, as observed by Keady [7] in a similar problem, these composite expan-
sions are singular far upstream, where the outer expansion breaks down when p = 0.
Keady [7] showed that a further transformation of the complex plane overcomes
this difficulty; and we shall follow his method here. Let

w=—§_ln (1_——_t2) (3.15)

This maps the strip O<y <1, —co<¢<co (Fig. 2) into a quarter-circle of the
t-plane, | t| <1 and /2 <argt< = (Fig. 3). Then in the outer region where ¢ is near
i, we have

2¢ (1 +12

ew = —-;ln —2—) + (transcendentally small terms). (3.16)

Since Qy(¢*, ) is independent of i, it follows that, on ABC,
1 2
Q0(¢*)=§1n[1—66:“°‘1n(1;’)]. 3.17)

This expression remains regular far upstream and so may be used in the composite
expansion. A similar procedure is followed for the other terms in the composite
expansion.

4. The free surface

We have now established that ¢, = K as defined by equation (2.14). Integrating
by parts it may be shown that

Ky =- [jw{ f($)+sinaH(P)} d, 4.1)

where H(¢) is the Heaviside step function, and f(¢) is sin (¢, 1) (see equation
(2.9)). If the bed is symmetrical about the point B in the physical plane (see Fig. 1),
then 6y(¢,1) will be symmetrical about —3«, tending to zero as ¢—+—oo and
—a as ¢ —>oo0. Thus we may put

00(¢’ 1) =—}o— u(¢)’ 4.2)

where u(¢) is an odd function of ¢, and u(0) = 0, while #(0) = Ja. Substituting
(4.2) into (4.1) it follows that

K = f :2 sin 3e{cos u($) — cos ba} dé, 4.3)
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and so K; is positive for a symmetrical bed. We shall show below, that when K, is
positive, the free surface is lower (for a given point downstream) than the free fall
approximation Q, would suggest.

Let s and n be coordinates along and normal to the bed respectively. Then

. [¢dz
s = exp (io) Jo p

d¢+Reh(, 1),
=0

Vv

n=Im h(¢a 1), “4.4)
where

. (ldz
=jeia | ==
h($,1)=1ie fo dwdx/:.
Now dw/dz = q e~ giving dz/dw = e~?.e~™ on iy = 0. Hence it follows that
¢
s= [leowmapsren,), @)
J O

where O(¢, 0) is obtained from the composite expansion. In determining h(¢, 1) we
use the outer expansions for Q and 6. The integral in equation (4.4) may be
evaluated to give (Collings [5])

1

n=p*

2
[1 +;f{—c1—§005alnp}+‘-;—2{§ sin? a+cos? asin? «
+%cos?a(lnp)®—cos? a(3 +sina) Inp

+3c,cosalnptici—c, p}] +0(e?)

and

¢ 1[e &
s= | e~Q80 g +—[—. sinoa+—{3sinacos®a—4sindacos o
jo ¢ rtlp : . PZ{% }

—sinacosafcos?a—4)Inp— ¢, sin a}] +O(€%),

4.6)
where p = 1+ 3¢edsina.

It is clear then from equation (4.6) that if ¢, is positive, then the free surface is
lower (for a given ¢). Further, even when ¢, is negative, the term of O(¢) in (4.6)
eventually becomes negative, and the free surface is lower. Also it may be shown
that if ¢, is positive, then s is increased (for a given ¢) (Collings [5]).

As a specific example we take g(¢) = —aH(¢) the origins in the w and z planes
being made to correspond by an appropriate choice of constants (that is, the point
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B is placed at 0 in Fig. 1). Substituting g(¢$) into equation (2.7) we obtain

m

bo(p, ) = -2 [%'*' artan (%)] ’ @.7n

_ a . [coshmd/2—cosmp/2
Qo) =—35—In [cosh 7¢J2+cos 'm,b/Z] :

Comparing these equations with (4.2) and substituting the expression for u(¢)
(namely (/) artan (sinh #¢/2)) into (4.3), it may be shown that

4 o2 av o
K = Zsinz fo sec v(cos;; —cos 5) dv. (4.8)

In particular, when « is small,
K, = 0.13623+ O(cd). 4.9

Using (4.7), Q, and 8, may be determined, and then K, determined from (2.16)
and (2.18). For example, when o = 0.0873 corresponding to a 5° change of slope,
K;=9.02x10"% and K, = 1.2x 1072 The free surface may now be determined
using the composite expansion (3.14) for Q. Since this composite expansion
breaks down upstream, we use the composite expansion which depends on the
complex variable ¢ (see equations (3.15) and (3.17)). The results of this calculation
are shown in Fig. 4.

e=0g-01,_02 " e=0
| Lo
e=01__02
%
x
) | 100 200 300 400 %t

a=>5"

Fig. 4. The shape of the free surface for o = 5°and € = 0, 0.1, 0.2,

5. A special case

In this section we consider the special case when the slope of the bed of the spill-
way is piece-wise constant with two simple jump discontinuities. Thus we let

0 for x<0,
Oy(x)=( —ya for O<x<x, (5.1)

—a for x>x,,
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where y is a constant. Thus g(¢) is given by

0 for ¢ <O,
g@)={ —ya for0<d<g,
—a for ¢>¢,.

223

(5.2)

Here we have chosen the origin of ¢ to coincide with the origin in the physical plane,
while ¢, depends on x,, and will be determined once the asymptotic solution has

been found. Using (5.2) in (2.7) we find that

By = - = [7—7 +artan (M)]

=12 sinmif/2
+ 7_: [artan (W) —artan (%qrf%/?//?z)]

and

_ _ o [coshn(d—¢)/2—cosmp/2
G =—7,In [cosh (¢ —y)/2+cos m,b/Z]

yef, cosh 7(¢p—¢,)/2—cos miff2
27{ n [cosh (P— )2 +cos 771/1/2] -

cosh /2 +cos mf/2

[cosh wp/2—cos 17:/:/2] ’

(5.3)

Proceeding as in Sections 2 and 3 we may determine Q;, 0, and the constants
¢, and ¢,. For ¢; = 1, the constant K; (that is, ¢,) was computed numerically for a
range of values of ¥ and «. The results are displayed in Fig. 5. When y = 1, the
case considered here reduces to the special case considered in Section 4 (y = 0 also
reduces to this special case, provided the origin for ¢ is translated to ¢,). When
y>1 (the intermediate slope is steeper than the final slope), K] is positive and
increases with y; we recall that it was shown in Section 4 that when X is positive,
the free surface is lower than the free fall approximation would suggest. When

y <1, K; becomes negative.

Next, on integrating (1.9) with respect to ¢ from ¢ =0 to ¢, we find that

x, = cos (vo) [ exp (-~ (4, O} .

6.4

Since ¢, is O(1) with respect to ¢, Q is given by the inner expansion in (5.4) and so

Q = @+ O(¢). Substituting (5.3) into (5.4) we find that

x; = cos(yx) f:l{tanh ?} vela {tanh M}Wu—y)dnﬁ + O(e).
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This is an algebraic relation between x; and ¢, from which we may determine ¢,
for a given x;. Clearly this procedure may be generalized to the case when the
slope of the bed of the spillway is piece-wise constant, with a finite number of
simple jump discontinuities.

10K,

Fig. 5. 10® K, as a function of « (degrees), fory = —10, 0.0, 0.5, 1.0, 1.5 and 2.0.
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