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Abstract. Relativistic effects play an important role in the performance of the Global Posi-
tioning System (GPS) and in world-wide time comparisons. The GPS has provided a model for
algorithms that take relativistic effects into account. In the future exploration of space, anal-
ogous considerations will be necessary for the dissemination of time and for navigation. We
discuss relativistic effects that are important for a navigation system such as at Mars. We de-
scribe relativistic principles and effects that are essential for navigation systems, and apply them
to navigation satellites carrying atomic clocks in orbit about Mars, and time transfer between
Mars and Earth. It is shown that, as in the GPS, relativistic effects are not negligible.
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1. Introduction: relativity principles in the GPS
The earth and its satellites are in free fall. The principle of equivalence implies that

over some region near earth’s center of mass, the gravitational field strength due to exter-
nal bodies is cancelled by an apparent equal but opposite field arising from acceleration.
Studies of this cancellation have shown that, when transforming from barycentric coor-
dinates to local inertial coordinates, the source of the cancellation is a time derivative of
the synchronization term in the time transformation (Ashby, N. & Bertotti, B. (1986),
Nelson, R. A. (1987)). In the local freely falling frame external bodies can be ignored
approximately. A single coordinate time variable occurs in the scalar invariant ds2 . Co-
ordinate time has the property that an event occurs at a unique coordinate time for all
observers.

The basis for computation of relativistic effects in the GPS is the following expression
for ds2 :

ds2 = gμν dxμdxν = −
(

1 +
2V

c2

)
(cdt)2 +

(
1 − 2V

c2

)
(dx2 + dy2 + dz2). (1.1)

Here there are no PPN parameters; the spatial coordinates are isotropic; only leading
terms of order c−2 are kept; the effects of external bodies are neglected, and the potential
of the earth V is modelled keeping only monopole and quadrupole terms. Even with
these simplifications, numerous relativistic concepts must be employed in understanding
the GPS. These include time dilation, gravitational frequency shifts, the Sagnac effect,
constancy of the speed of light, the principle of equivalence, relativity of simultaneity,
coordinate speed of light, and local inertial frames.
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The proper time elapsed on an atomic clock depends on the clock’s history. The incre-
ment of proper time may be computed from the scalar ds;

d(cτ) = d(ct)

√
1 +

2V

c2 −
(

1 − 2V

c2

)
dx2 + dy2 + dz2

c2dt2
≈

(
1 +

V

c2 − v2

2c2

)
d(ct). (1.2)

In the GPS this result is exploited to synchronize atomic clocks to coordinate time by
tracking the clock’s coordinate time in terms of the proper time:

Δt =
∫

path
dτ

(
1 − V

c2 +
v2

2c2

)
. (1.3)

When the potential is due only to the earth, the coordinate time is very close to Geo-
centric Coordinate Time (TCG). For a clock at rest on earth’s surface, the gravitational
potential is approximately:

V = −GM

r

(
1 − J2a

2
1

2r2

(
3 cos2 θ − 1

))
, (1.4)

and the coordinate time increment will be

dt = dτ

(
1 +

GM

c2r

(
1 − J2a

2
1

2r2 (3 cos2 θ − 1)
)

+
ω2r2 sin2 θ

2c2

)
, (1.5)

where GM = 3.986004418 × 1014 m3/s2; a1 = 6.378137 × 106 m is earth’s equatorial
radius, J2 = 1.08268×10−3 is the quadrupole moment coefficient, ω = 7.292115×10−5 s−1

and θ is the the geocentric colatitude, measured down from the north pole. Here we quote
values of the constants that define the WGS-84 system, the basis for navigation in the
GPS.

The coefficient of dτ in Eq. (1.5) has very nearly a constant value on earth’s geoid, a
surface of constant effective potential in the rotating frame in which the last term in Eq.
(1.5) contributes a centripetal potential. The constant can be evaluated on the equator,
and the result is

GM

c2a1
+

GMJ2

2c2a1
+

ω2a2
1

2c2

= (6.95349 + .00376 + .01203) × 10−10 = 6.96928 × 10−10 . (1.6)

2. GPS time
The constant estimated in Eq. (1.6) is, to within the limitations of the model potential,

the same as the defined constant LG = W0/c2 = 6.969290134× 10−10 that gives the rate
change between TCG and TAI:

d(tTAI) = d(tTCG)(1 − LG ). (2.1)

Noise on individual clocks can be mitigated by averaging over many clocks; Eq. (2.1)
can be interpreted as a definition of the TCG time scale in terms of TAI, which is an
averaged time scale maintained by the BIPM that incorporates hundreds of atomic clocks
distributed around the world. The USNO maintains a time scale, UTC(USNO), based
on its own ensemble of atomic clocks, and is a major contributor to TAI (or terrestrial
time TT). To change the coordinate time t of Eq. (1.2) so that it represents TT, let
t → tTT/(1 − LG ). Solving to leading order in c−2 for the elapsed coordinate time with
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the new scale,

ΔtTT =
∫

path
dτ

(
1 − V

c2 − W0

c2 +
v2

2c2

)
. (2.2)

Clocks in GPS satellites are offset so that they beat at the same rate as the references
on earth’s geoid; also the altitude is so great that the orbits are nearly Keplerian, earth’s
quadrupole potential being very small. For such clocks, conservation of energy gives

1
2
v2 − GM

r
= −GM

2a
, (2.3)

where a is the semi-major axis. Combining Eqs. (2.2-2.3) and rearranging,

Δt =
∫

path
dτ

(
1 +

3GM

2ac2 − W0

c2 +
2GM

c2

(
1
a
− 1

r

))

= Δτ(1 − 4.4647 × 10−10) +
2
√

GMa

c2 e sin E + const, (2.4)

where E is the eccentric anomaly. The constant rate offset, −4.4647 × 10−10 contains a
handful of relativistic corrections:

3GM

2ac2 − W0

c2 = −4.4647 × 10−10 . (2.5)

GPS satellite clocks are given this offset before launch so that in orbit, they will beat
at the correct coordinate rate. GPS clocks are steered (without leap seconds) to the
UTC(USNO) time scale so they provide a realization of the coordinate time scale TT,
except that the last term in Eq. (2.4) must be implemented in all GPS receivers.

A mysterious “break” in satellite clock frequencies occurred when satellite orbits were
adjusted, moving them up or down between their assigned slots and parking orbits. This
was explained in about 2000 in terms of changes in the satellite semimajor axis:

δ

(
3GM

2c2a

)
≈ −3GMδa

2c2a2 . (2.6)

This term is a combination of time dilation and gravitational frequency shifts. A change
of 20 km in the semi-major axis results in a frequency change of a few parts in 1013 . This
correction is currently implemented by hand in the GPS.

3. Earth rotation and the Sagnac effect
To be useful for navigation, GPS clocks are synchronized in a freely falling, locally

inertial frame (the ECI frame) whose origin is at earth’s center of mass. If earth ro-
tation were ignored when synchronizing clocks on earth’s surface, the results would be
inconsistent because light does not travel in a straight line with uniform speed c in an
earth-fixed, rotating reference frame. If we ignore the gravitational potential, the metric
of special relativity in cylindrical coordinates is

ds2 = −(cdt)2 + dr2 + r2dφ2 + dz2 . (3.1)

If we transform to an earth-centered, earth-fixed (ECEF) reference frame by making the
replacement

φ → φ + ωt, (3.2)
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where ω is earth’s angular velocity of rotation, then the metric becomes

ds2 = −
(

1 − ω2r2

c2

)
(c2dt2) + dr2 + 2ωr2dφd(ct) + dz2 . (3.3)

The coordinate time is still t (or effectively TT). Solving for dt to leading order in ω for
a slowly moving clock,

Δt =
∫

path
dτ +

2ω

c2

∫
path

dAz , (3.4)

where Az is the area swept out by a vector from the rotation axis to the clock, pro-
jected onto a plane parallel to earth’s equator. This correction can be several hundred
nanoseconds and is an important correction that must be accounted for in long-distance
clock comparisons such as when using GPS in common view from laboratories in Europe
and the U.S., or in TWSTFT (two-way satellite time and frequency transfer). The same
effect occurs if electromagnetic signals are used to synchronize clocks.

4. Navigation with the GPS
We henceforth assume that clocks in GPS satellites are synchronized (or equivalently,

that their biases are known). Suppose that at coordinate time t a receiver at position r
detects time ticks originating at times tj from satellites at positions rj . The navigation
equations are then

c(t − tj ) = |r − rj |, j = 1, 2, 3, 4... (4.1)

Given four such equations, in principle these non-linear equations can be solved for the
unknown time t and position r of the receiver’s detection event. However, the GPS is
designed so that the satellite positions are transmitted in the ECEF! This is a source of
much confusion. The satellite positions must be transformed to some common ECI frame
before solving, then the solution transformed to the ECEF frame that exists at time t.

The basic measurement of the detector is accomplished by alignment of a code unique
to each transmitter, that is impressed on the signal by phase reversals, with a replica of
the code generated within the receiver. The receiver carries a relatively inexpensive (and
noisy) oscillator for code generation and timing. Suppose the clock in the receiver has
an error Δtr . The time difference between transmitted time tj and time t + Δtr on the
receiver oscillator is called the “pseudorange.” Then the pseudorange PRj is

PRj = c(t+Δtr−tj ) =
√

(x − xj )2 + (y − yj )2 + (z − zj )2+c(Δtr−Δtt+Δtrel+Δtatm),
(4.2)

where Δtrel is the eccentricity correction, Δtt is the transmitter error, and Δtatm are
atmospheric delay corrections. This is illustrated in Figure 1.

The time bias on the oscillator is continually being recalibrated to within a few nanosec-
onds by internal solutions of the navigation equations, but inexpensive receivers do not
make such precision available to the user.

Signals from the GPS satellites are right circularly polarized, in which the electric and
magnetic fields oscillate in phase. At places in the wave train where a phase reversal is
imposed, all electromagnetic fields will pass through zero. At a physical point where all
fields are zero, the fields are zero in every reference system; these invariant zeros sweep
through free space with speed c.
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Figure 1. Pseudorange is the true range D with corrections due to relativity, clock biases, and
atmospheric delays. The carrier is not shown; the plotted code corresponds to phase reversals
impressed on the carrier.

5. Other satellite navigation systems
Several other navigation systems have been partially deployed or are in various stages

of planning. The Russion GLONASS system is very similar to GPS. Satellites orbit 17
times while GPS orbits 16 times. A clock frequency offset, which is not quite as large
as that for GPS, is applied to the satellite clocks. A full constellation of 24 satellites
was planned but was never completely implemented; currently the constellation is being
replenished and a full constellation is in the works.

GALILEO is a European satellite navigation system which at present has two satellites
in orbit. Specifications for this system call for all relativistic effects to be the responsibility
of the receiver. No frequency offsets will be applied in hardware to the orbiting clocks,
which will necessarily run faster than TT by a few parts in 1010 . It will be up to software
in the receiver to correct the transmitted time ticks for this large time drift.

The Chinese Republic has plans for a global satellite navigation system involving over
30 satellites; some of these will be geosynchronous and more than one such satellite has
already been launched.

Several augmentation systems such as WAAS, EGNOS, and QZSS monitor GPS signals
and upload data to geostationary satellites for retransmission to users. This mitigates
problems with GPS due to outages, multipath, ionospheric delays, and other problems
that make GPS somewhat unreliable.

6. Effects not currently accounted for
Solar and lunar tidal potentials. At the origin of a locally inertial, freely falling reference

frame such as the ECI frame, the principle of equivalence implies that the gravitational
field strength due to external bodies is cancelled by the induced field strength due to
acceleration. Such a cancellation has been overlooked time and again by no small num-
ber of individuals claiming that relativity has not been accounted for properly in the
GPS. The cancellation is a consequence of the relativity of simultaneity. To summarize
the calculation briefly, consider a time transformation from barycentric or heliocentric
coordinates to a locally inertial, freely falling frame, that has a resynchronization term
of the form

v · r
c2 (6.1)

where v is the velocity of the local frame’s origin and r is the displacement of the
observation point from the origin. The tensor transformation of the 00-component of the
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metric tensor will then produce contributions including terms

−
(

1 +
∂v · r/c2

∂t

)2

= −2a · r
c2 + ... (6.2)

where a is the acceleration of the freely falling frame. Let the contributions to g00 of
external bodies be expanded in a Taylor series about the origin of the local frame. The
first term will be the same for all clocks in the neighborhood of the local frame origin
and can be removed by absorbing the term into the local time scale. The second term
will be -2∇V · r/c2 and these two terms together will be

− 2
c2

(
a + ∇V

)
· r = 0, (6.3)

because in free fall, a = −∇V . The cancellation does not arise from second-order Doppler
effects as some have claimed. The first terms that contribute are tidal terms, second
derivatives of the external potential evaluated at the origin of the local frame. The net
fractional frequency shift of orbiting GPS clocks due to the moon has an amplitude of
only 7 × 10−16 and the sun contributes about half that amount.

Earth’s quadrupole potential . Earth’s quadrupole moment produces a small, predictable
periodic effect on orbiting clocks, that is not currently accounted for. The time correction
that should be applied to the orbiting clock is (Ashby (2003))

Δtoblateness =
GMJ2a

2
1

2c2a3

(
1 − 3

2
sin2 i

)
Δτ +

√
GM

a3

J2a
2
1 sin2 i

2c2 sin(2ω + 2f). (6.4)

where i is the orbital inclination, ω is the altitude of perigee, f is the satellite’s true
anomaly, and a is the mean semi-major axis. It is coincidental that the chosen inclination
i = 55◦ so that the secular term is nearly zero. The remaining term has a period of nearly
6 hours and an amplitude of 24 ps, contributing almost a centimeter to navigation error.

Coordinate speed of light . For signals traveling from earth’s surface at radius R to or
from a GPS satellite, at an elevation angle E, solving the equation of the null geodesic
ds2 = 0 for the propagation time gives

cΔt = (1 − LG )
(√

r2
SV − R2 cos2 E − R sin E

)
+

2GM

c2 log
rSV + R +

√
r2
SV − R2 cos2 E − R

rSV + R −
√

r2
SV − R2 cos2 E + R

, (6.5)

where rSV is the satellite’s radial coordinate. The correction factor LG multiplying the
geometric range very nearly cancels the usual logarithmic Shapiro delay term (Petit &
Wolf (1994)). The isotropic coordinate gauge has been selected and the product GM
for earth is determined as part of the definition of the WGS-84 reference frame used for
navigation in the GPS. Also, c is defined so GM/c2 has fixed units of length. Further
scaling of the length coordinate would be inconsistent since the first-order potential term
GM/(c2r) is unitless and at a given physical point must have the same numerical value
in all coordinate systems. Figure 1 plots both corrections to the delay.

7. Extension to extraterrestrial navigation
Consider extending the analysis of relativistic effects to the vicinity of another celestial

body such as Mars (Ares) (Nelson (2007)). An equipotential surface exists in the Mars-
centered, Mars-fixed rotating frame (ACAF frame) in which atomic clocks at rest beat

https://doi.org/10.1017/S174392130999010X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130999010X


28 N. Ashby & R. A. Nelson

Figure 2. Plot of relativistic corrections to coordinate time delay. The log term is nearly
cancelled by the LG correction to the geometric distance.

at the same rate. Ignoring all masses except Mars, the rate of Aretian coordinate time
relative to clocks at “infinity” may be expressed in terms of a constant like LG .

LA =
GMA

c2a1A
+

GMAJ2A

2c2a1A
+

ω2
Aa2

1A

2c2

≈ (1.40362 + .00128 + .00322) × 10−10 (7.1)
= 1.40812 × 10−10 (21% of LG ).

Then the frequency offset of an atomic clock in orbit around Ares can be calculated when
the semimajor axis is known. For a circular orbit,

Δf

f
=

3GMA

2aAc2 − LA. (7.2)

For an areosynchronous orbit, aA = 2.04277 × 107 km, and

Δf

f
= −1.05738 × 10−10 . (7.3)

Figure 3 shows an areosynchronous navigation system poised over a possible base near the
Arean equator. The satellites are given slightly inclined orbits; five satellites are needed
in order to provide continuous navigation coverage. The reason for this can be visualized
as follows. Think of the navigation error associated with signals from one satellite in
terms of a narrow space between two concentric shells of nearly equal radii. Two such
shells that intersect in general give a thin torus of position, but if the shells happen to
be tangent such a torus spreads into a disc and the position is not well determined. This
can happen if the centers of the shells are in line with the point of tangency, and this
is the reason that poor navigation precision could result if all the satellites were in the
equatorial plane. Imagine any two of the five satellites, not in equatorial orbits. The plane
generated by vectors from the center of Ares to the satellites will be wobbling in space
and will eventually intersect one of the remaining satellites. When that happens, with
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Figure 3. Notional areosynchronous navigation system with five satellites in slightly inclined
orbits

three satellites in line, the geometrical situation is poor for navigation; one of the three
satellites is relatively useless; in general one needs five satellites.

For continuous communication coverage between the Arean surface and the satellites,
twelve satellites distributed in three orbital planes will suffice; however such a configu-
ration is not sufficient for navigation, where continuous view of at least four satellites
from points on the surface are needed. A navigational system with 24 satellites similar
to the GPS configuration would be visible most of the time at a radius of about 4.2 plan-
etary radii: if aA = 14, 259 km, the orbital period would be 51,695 s, and the fractional
frequency offset relative to clocks on the surface would be

3GMA

2c2aA
− LA = 1.90941 × 10−10 . (7.4)

Barycentric Coordinate Time (TCB). Time transfer between an extraterrestrial time
system and a terrestrial one calls for a common time system which overlaps both systems.
We consider here TCB according to the IAU definitions (IAU/IUGG 1991). The elapsed
Barycentric Coordinate Time on a moving clock anywhere within the solar system is

ΔtTCB =
∫

path
dτ

(
1 − V (r)

c2 +
1
2

v2

c2

)
, (7.5)

where r is the position of the clock and v its velocity. All solar system bodies are included
in the potential V (r). To obtain terrestrial time in terms of TCB, The vector r and the
corresponding velocity are split up into into vectors from the barycenter to earth, and
relative to earth:

r = rearth + R, v = vearth + Ṙ. (7.6)

where R is the displacement of the clock relative to earth’s center of mass. The potential
is split into a contribution from the earth and an external potential that is expanded in
a Taylor series for small displacements:

V = Vearth + Vext ≈ Vearth(R) + Vext(rearth) + ∇Vext · R + ... (7.7)

Then after substitution and rearrangement, and replacing the integration variable τ by
t in first-order correction terms,

ΔtTCB = Δτ +
∫ t1

t0

dt

(
− Vext(rearth)

c2 +
1
2

v2
earth

c2

)

+
∫ t1

t0

dt

(
− Vearth(R)

c2 +
1
2
Ṙ2

c2

)
+

R · vearth

c2

∣∣∣∣
t1

t0

. (7.8)
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The last term in Eq. (7.8) represents the relativity of simultaneity of earth’s ECI frame
moving relative to the barycenter. Only tidal terms from the external potential survive,
because of the principle of equivalence. The first integral in Eq. (7.8) gives hundreds of
correction terms; the principal ones are similar to the corrections discussed in Eq. (2.4)
for a GPS clock:∫ t1

t0

dt

(
−Vext(rearth)

c2 +
1
2

v2
earth

c2

)
≈ 3GM�

2c2aearth
+

2
√

GM�aearth

c2 eearth sinEearth+... (7.9)

The second integral in Eq. (7.8) depends on the position and velocity of the clock relative
to the earth, and is just the TCG of the event:∫ t1

t0

dt

(
− Vearth(R)

c2 +
1
2
Ṙ2

c2

)
= tTCG = (1 + LG )tTT . (7.10)

The relation between Arean time and TCB is analogous. The time of an event near Ares
can then be transformed to TCB and thence to TT.

8. Conclusions
Numerous relativistic effects must be accounted for in global navigation systems. A

distributed network of clocks, synchronized in the ECI frame, provides a realization of
coordinate time used for many purposes other than simple navigation. Trends toward im-
proving the precision of navigation algorithms will entail the incorporation of additional
relativistic effects.

Clocks on GPS satellites would run fast by 38 microseconds per day relative to terres-
trial clocks if they were not offset prior to launch. Also, the navigation solution in the
GPS could be in error if the residual effects of time dilation and gravitational redshift
due to orbit eccentricity were not corrected in the receiver (14 meters error if e = 0.02).

Similarly, the times registered by clocks on Mars will require relativistic corrections. If
signals from a clock on the planetary surface were used for navigation by an approaching
spacecraft, then serious errors would result if the physics of relativity were not considered.
Also, any precisely timed astronomical event measured from the vicinity of the planet
must be calibrated correctly in terms of the times on Earth, and the gravitational delay
in the propagation of an electromagnetic signal must be considered.

The fundamental notion is that time is the reading of a clock. All time comparisons are
made between clocks, whose readings represent “proper time.” In any coordinate system,
the relation between coordinate time and proper time is given by the invariant spacetime
interval. The choice of coordinate time is arbitrary and is based on convenience.

The paradigm for relativistic time transfer has been successfully applied in the GPS.
It is important that analogous relativistic effects be recognized in the synchronization of
clocks for future applications in the exploration of the solar system. They are not merely
of theoretical scientific interest. Relativity has entered into the realm of engineering
practice.
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