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Euclidean approach for bosons

One can distinguish two basic approaches to quantum field theory. In the more
traditional approach, one views the underlying physical Hilbert space equipped
with the self-adjoint generator of the dynamics — Hamiltonian or Liouvillean —
as the basic object. There also exists a different philosophy, whose starting point
is paths (trajectories). The physical space and the physical Hamiltonian or Liou-
villean are treated as derived objects (if they can be defined at all).

The second approach is often viewed as more modern and useful by physicists
active in quantum field theory. Also from the mathematical point of view, the
method of paths has turned out to be in many cases more efficient than the
operator-theoretic approach. This chapter is devoted to a brief description of a
certain version of this method, called often the Euclidean approach.

Let us first explain the origin of the word Fuclidean in the name of this
approach. Originally the Euclidean approach amounted to replacing the real time
variable t by the imaginary is, an operation called the Wick rotation. Under this
transformation, the Minkowski space R becomes the Euclidean space R!*¢.
After the Wick rotation, the unitary group generated by the Hamiltonian e'*#
becomes the self-adjoint group of contractions e *#. One can then study e *#
from the point of view of the so-called path space. In particular, it is sometimes
easier to construct or study interacting models of quantum field theory on the
Euclidean space than on the Minkowski space.

In the literature the term “Euclidean approach” seems to have acquired a wider
meaning, going beyond quantum field theory on a Euclidean space. It sometimes
denotes a method for obtaining a unitary group e by first constructing the
self-adjoint semi-group e~* for s > 0. In some cases one can try to represent the
integral kernel of e=*/ by a measure on the so-called path space. This allows us to
use methods of measure theory, which are sometimes quite powerful. In particu-
lar, one can treat very singular perturbations with little effort, provided they fit
into the framework — essentially, they need to be representable as multiplication
operators.

This approach also works in ordinary quantum mechanics. For example, it can
be used to construct Schrodinger Hamiltonians H = —3A, + V(z) on L*(R?),
where V is a real potential. In the absence of the potential, e+ is simply the
well-known heat semi-group. Its distribution kernel K (¢, x,y) can be interpreted
as the probability that a Brownian path starting from y arrives at x at time t.
The perturbed heat kernel K (¢, z,y) can now be explicitly expressed in terms
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606 Euclidean approach for bosons

of Ky(t,z,y) and the integral of the potential along Brownian paths by the
so-called Feynman—Kac formula. We will briefly describe this construction in
Sect. 21.1.

In this chapter we describe the Euclidean method for bosons in an abstract
framework. We describe the construction of a class of interacting Hamiltonians
starting from free ones, using the Feynman—Kac(—Nelson) formula.

In the usual version of the Euclidean approach one assumes that the gener-
ator of the physical dynamics, called the Hamiltonian, is bounded from below.
Physically, this corresponds to the zero temperature, which is typical for most
applications of quantum field theory. There also exists a version of the Euclidean
approach for bosonic quantum fields at positive temperatures. Its aim is to con-
struct an interacting KMS state and a dynamics at inverse temperature 3. The
dynamics is now generated by a self-adjoint operator L, the Liouwvillean, which
is not bounded from below or from above. This leads to some additional techni-
cal difficulties. However, the system can be described in a way similar to zero-
temperature path spaces. There is an important difference: as a consequence of
the KMS condition, the path space is now 3-periodic. Thus, the Euclidean space
is replaced with a cylinder of circumference (5.

One of the interesting features of the Euclidean approach is the use of various
non-trivial tools from functional analysis. One of them is the concept of local
Hermitian semi-groups (see Thm. 2.69). They are indispensable in the positive
temperature case. They are also sometimes useful at zero temperature, which
happens if the perturbation is unbounded and destroys the positivity of the
generator.

To motivate the reader, let us briefly discuss Gaussian Markov path spaces,
which are usually the starting point for applications of the Euclidean approach.
Let Z be a Hilbert space equipped with a conjugation 7. As we have seen in
Subsect. 9.3.5, in such a case the bosonic Fock space T's(Z) can be unitarily
identified with L?(Q, du) for some probability space (Q, &, i). In the Euclidean
approach we study operators on L?(Q,du) using the space of paths, that is,
functions from R with values in Q.

A typical situation where Euclidean methods apply arises when we consider a
real (commuting with 7) self-adjoint operator a > 0 on Z. Recall that the semi-
group e—tdl'(a
see that for such operators the expectation value (Fle~'T(®)G) can be written

) is then positivity improving as an operator on L?(Q, du). We will

in terms of a measure on the set of paths. Field operators for real (7-invariant)
arguments can be interpreted as multiplication operators on L?(Q,du). There-
fore, operators of the form P(¢), where P is a polynomial based on Z7, the real
subspace of Z, can be interpreted as multiplication operators in the @Q-space
representation. The Euclidean approach gives a powerful tool to study operators
of the form dI'(a) + P(¢).

Throughout the chapter, we will use the terminology of abstract measure
theory discussed in Chap. 5. Recall, in particular, that if %;, i€ I, is a
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family of subsets of a set @, we denote by \/

Ui er S
Throughout the chapter, we will use ¢ as the generic variable in R denoting

ier % the o-algebra generated by

time.

21.1 A simple example: Brownian motion

In this section we illustrate the Euclidean approach by recalling the well-known
representation of the heat semi-group e~*#0 ¢ >0, for Hy = —%A on L?(R%),
using Brownian motion.

From Subsect. 4.1.8 we obtain that the distribution kernel of e~*f0 is

e (z,y) = (QWt)_d/Qe_(‘t_y)z/Qt- (21.1)

Consider the real Hilbert space X = L2 ([0, c0[, R?) ~ L2([0, co[, R) ® R¢ and the
Gaussian measure on X with covariance 1. Let ¢ denote the generic variable
in X. The associated Gaussian L? space L2(2(,e_§’¢2 d¢) can be realized as
L?(Q, &, du). Following Remark 5.66, we still denote by ¢ the generic variable
on Q. For a Borel subset I C R, the function 1; ® 1 is a projection in X. The
corresponding conditional expectation of a measurable function F on @) will be
denoted E;[F]. In particular Ey[F] = [ F(¢)du(o).

Definition 21.1 The Brownian motion in R? is the family {B; };>0 of R?-valued
measurable functions on Q defined by

€ Bi(¢) == (|l ®E&), E€R, ¢ >0.
The Wiener process in R? is
Xi(z,0) =2+ By(¢), t 20, z € R".

We will often drop ¢ from B;(¢) and X;(x, ).
The following lemma expresses the Markov property of the Wiener process:

Lemma 21.2 Forty,t; > 0 and almost all (a.a.) x € R?

DI {f(th-H‘l (1‘))} = /f(th (X, (@@))dﬂ(@,

for all bounded measurable functions f : R? — C.

Proof We first prove the lemma for f(z) = !¢, ¢ € RY. Indeed, for such a func-
tion both sides equal e~ 2/2¢iX11 (#)¢ By Fourier transformation, this proves
the lemma for f € C>°(R?). By the usual argument, the identity extends to all
bounded measurable functions f. O

Proposition 21.3 Let f € L*(RY) N L>=(R?). Then

e f(z) = / f(Xi(x))dp, >0, for a.a. xeR".

https://doi.org/10.1017/9781009290876.022 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.022

608 Euclidean approach for bosons

Proof Let f € C>®(R?) and f be its Fourier transform. Then

[ @)= en [ feeee [ anag

= (2m) [ fle)ete g et (o),

If f € L*(R?) N L>=(R?), we choose a sequence f,, € C>°(R?) such that f,, — f in
L% f, — fae. and sup, || f, |l < 0o. From (21.1) we obtain that e~*# f, () —
e~ f(z) for a.a. x. The convergence of the r.h.s. to [ f(X;(z))du follows from
the dominated convergence. O

We end this section by proving the celebrated Feynman—Kac formula in a
simple situation. We denote by C, (R?) the space of bounded continuous functions
on R?.

Theorem 21.4 Let V € C,(R?) be a real potential, f € L*(R?) N L=(R?) and

t > 0. Then, for all x € RY, e~ i v (% (I>)dsf(Xt (z)) is a bounded measurable
function on Q and

e V) £(g) = /e_ ki VX laDds ¢( X, (2))dp, for a.a. z € R%. (21.2)

Lemma 21.5 Let g1,...,9,_1 € L¥(R?), h € L>(R?). Let s1,...,5, >0 and
ti = ti*l + S, tl = S1. Then

efs1Ho glefszHo L. 977,_1678" Hy h(I)
= /ng‘ (X, (2)) h(Xy, (2)) dp. (21.3)
i=1

Proof We prove (21.3) for n = 2; the general case follows easily by induction.
We have

st g st ()
= / 9(X;, (z))e 2" h(X,, (2))du
= [ ot @00) [ B(Xe (X, 02 02)61) (o) duton)
= [ 90X ) Bl [(Xey 0 @)
= [o(Xe @h(X (@)

by Lemma 21.2. O

Lemma 21.6 For V € Cy,(R?) and all z € R? the map
[0,+0c[> t — V(Xi(z)) € L*(Q)

18 continuous.
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Proof Fort >0, >0, we have
1V (es@) - V(@)

= /V2 (Xivs(z))dp + / V(X (2))dp — 2 / V(X(2))V (Xegs(z))dp
= e HFDHOY2(3) 4 e tHoy2 (z) — 2e 0oy e~ tHoy/ (1),
where in the last line we use (21.3). From (21.1) we see that e~*%¢ is a semi-group

of contractions on C},(R?). Moreover it is easy to see that, for G € C},(R?) and
all z € R?, the map

0, 400>t e " G(2z) eR

is continuous. This proves the right continuity at all ¢ > 0. The proof of the left
continuity at all £ > 0 is similar. O

Proof of Thm. 21.4. By Lemma 21.6, [, V(X,(z))ds is a bounded measurable
function on Q. Hence, the integrand in the r.h.s. of (21.2) is bounded measurable

on Q.
Let f € L?(R?) N L>®(RY). By Trotter’s product formula (see Thm. 2.75) we
have

e—t(Ho+V)f — lim (e—(t/n)Hoe—(t/n,)V)nf’ in LQ(]Rd)7

n—oo

and after extracting a subsequence we can assume that

e HHHV) £(2) = lim (e_(t/")H”e_(t/")v)"f(x), for a.a. z.
n—oo
Applying (21.3) to h = e~ (t/MV f, gj = etV for 1 < j<n-—1, we get

e_t(H”JrV)f(x) _ /e_F” (:v)f(Xt(x))d,u,

Mz

for F,(z) =L . 41 V(Xij/n(2)). Set F(z) = fg V(X (z))ds. We claim that
j

e Fulz) o=@ iy [2(Q), for a.a. x, (21.4)

which will complete the proof of the theorem. Since |[e= 7| ,|e™F| < efllVll= it
suffices to prove that F, (z) — F(z) in L?(Q) for a.a. z. Since F, is a Riemann
sum for the integral defining F', this follows from Lemma 21.6. O

21.2 Euclidean approach at zero temperature

Most of this section is devoted to a description of the Euclidean approach at zero
temperature in an abstract setting. We start with the definition of an abstract
version of Markov path spaces. We will restrict ourselves to path spaces with a
finite measure, which is sufficient for most applications to quantum field theory.
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610 Euclidean approach for bosons

Given a Markov path space there is a canonical construction of a positivity
improving semi-group {P(t)}+c[0,00] POSSessing a unique ground state. Its gen-
erator is sometimes called the Hamiltonian. It acts on the so-called physical
Hilbert space. A converse construction is also possible: every contractive positiv-
ity improving semi-group with a ground state can be dilated to a Markov path
space.

The concept of a Markov path space is closely related to unitary dilations
of contractive semi-groups. Indeed, each Markov path space involves a unitary
group {U;}iecr of measure preserving transformations of the underlying space
which is a dilation of the physical semi-group {P(t)}+e(o,o0[-

The most important class of examples of Markov path spaces are Gaussian
Markov path spaces, which can be used to describe free bosonic quantum field
theories in a Euclidean setting. They can be viewed as the real-wave quantization
of a dilation of a contractive semi-group.

21.2.1 Markov path spaces
Definition 21.7 A generalized path space (Q, S, Sy, Uy, R, u) consists of

(1) a complete probability space (Q, S, u);

(2) a distinguished sub-c-algebra & of &;

(3) a one-parameter group R >t +— U, of measure preserving x-automorphisms
of L*®(Q, 6, ), strongly continuous for the o-weak topology;

(4) a measure preserving x-automorphism R of L>®(Q, 6, u) such that RU; =
U R, R =1.

Moreover, one assumes that
6 =\/U6,. (21.5)
teR

In what follows, (Q, &, &g, Uz, R, 1) is a generalized path space. By Prop. 5.33
(2)(iii) and (2)(iv), U; extends to a strongly continuous group of isometries of
LP(Q, 6, 1), and R extends to an isometry of LP(Q, S, u), for 1 < p < co.

Definition 21.8 We set &, := U;&y, & := \/,c; &;, for I CR, and denote by
E5 the conditional expectation w.r.t. Sy.

Definition 21.9 The generalized path space (Q, S, Sy, U, R, ) is a Markov
path space if it satisfies

(1) the reflection property: REy = Ey,
(2) the Markov property: Ejy o[ Ej—o,0) = Eo.

21.2.2 Reconstruction theorem
Let (Q,6,60,U;, R, 1) be a Markov path space.
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Definition  21.10 The physical Hilbert space associated  with
(Qa Ga 607 Ut7 Ra :U/) is

H = L2(Qa 607#)'

The function 1€ H will be denoted by ). The Abelian x-algebra A :=
L>(Q, Sy, 1) acting on H is called the algebra of time-zero fields.

Theorem 21.11 (1) P(t) := EyU:Ey, t >0, is a strongly continuous semi-
group of self-adjoint contractions on 'H preserving Q.

(2) P(t) is doubly Markovian.

(3) P(t) is a contraction semi-group on LP(Q, &g, pn) for 1 <p<oo. It is
strongly continuous for 1 < p < oco.

(4) Let A; € L™ (Q, 60, ), i=1,...,nand t; <--- <t,. Then

(QlAlp(tl — tQ)AQ e P(tn,1 — tn)AnQ) = / ‘ﬁl Ut[. (A,)d,u
Q=

Proof P(t) is clearly a contraction. It is self-adjoint:
P(t)* = ByU_E, = EyU_,RE, = E,RU,Ey = E,U,Ey = P(t).

Let us prove the semi-group property. Note that U, EyU_; = E;. The Markov
property implies, for ¢, s > 0,

EftE()Es = EftE]foo,O]E[O,Jroo[ES = E,tES.
This yields

P(t)P(s) = EyU,EyU,Ey = U,E_,E,E,U_,
=U,E_ E,U_, = E,U,U,Ey = P(t + s).

Finally, since t — U, is strongly continuous, so is ¢t — P(t).

U,, Ey are clearly positivity preserving. Hence so is P(t). Uy, Ey preserve 1.
Hence so does P(t). This proves (2). (3) follows from (2) by Prop. 5.24. We leave
(4) to the reader. O

Definition 21.12 The unique positive self-adjoint operator H on H such that
P(t) = e~ s called the Hamiltonian.

Clearly, HQ2 = 0.

Remark 21.13 Often instead of Markov path spaces one uses more general OS-
positive path spaces, named after Osterwalder and Schrader, where Def. 21.9 is
replaced by the condition that Ejy 4 oo[RE[) oo = 0. The OS-positivity condition
is one of the Osterwalder—Schrader axioms; see Osterwalder—Schrader (1973,
1975). They are Euclidean analogs of the Garding—Wightman azioms.

In space dimensions 2 or higher it is believed that sharp time interacting fields
do not exist, hence the Markov property cannot be used. Results similar to those
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612 Euclidean approach for bosons

in this chapter can be established in the framework of OS-positive path spaces,
with similar proofs.

21.2.3 Gaussian path spaces 1

Let X be a real Hilbert space with a self-adjoint operator € > 0. (All the construc-
tions of this subsection have their complex counterparts; we assume the reality
to simplify the exposition and in view of the application in the next subsection.)
Consider the real Hilbert space

L*(R,X)~ L*(R,R) @ X (21.6)
and the positive self-adjoint operator
C = (D +e)!

on (21.6). Introduce the real Hilbert space Q := C~2 L2(R, X). Its dual Q* can
be identified with C'r L2 (R, X). Note that the operator C is orthogonal from Q
to OF.

Definition 21.14 Fort € R let us define the map
th(QE)%XBQHKSt@gGQ. (21.7)

Lemma 21.15 We have
e*‘tl 7t2|6

(Gt 9113, 92) o = (91|T92)X'
In particular j; 1s isometric.
Proof We use the identity
: 2e
th _ —|t
/Rel mdk = 27me | ‘E, te R, (218)
which follows from Fourier transform and functional calculus. O

Definition 21.16 Fort € R we set Q; := jt(Qe)%X. Let e; denote the orthogonal
projection onto Qy.

For I C R we set Qy := (Ztel Q,,)Cl. The orthogonal projection onto Qp will
be denoted ey .

Note that e; = j;jf .
For explicit formulas, in the following proposition we prefer to use the space
rather than Q, by transporting operators wi e help of the operator C.
Q% rather than Q, by t ti t ith the help of th tor C

Definition 21.17 We write e', resp. el for Ce;C~', resp. Ce;C™'.
Definition 21.18 We define
(rf)(s) == f(=s), (wf)(s)=f(s—1), feQ, steR
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Definition 21.19 e~%¢, defined originally on X, determines in an obvious way
a contractive semi-group on (26)%)(, which will be denoted by the same symbol.
We set p(t) := joe 4§, which is a contractive semi-group on Qy.

Proposition 21.20 (1) Lett, t; < ty, f € Q*. We have
e f(s) = e~ A (1),

el °°[f(8) = ﬂ[t sl (8)F(5) + e P _og i ()£ (2)

LF(8) = o () £ (5) + e 1711y, o (5) £ (D),

f(s) = ﬂ[tl () () + eI () F () + e, (5) (k).

)

(Jt1, ta[, Dome) is dense in Qy, 4,
9 t — w; is an orthogonal Cy-group on Q.

*%Q

is an orthogonal operator satisfying ruy = u—r and r> = 1.

(2)
3)
(4)
(5) D ierut Qo is dense in Q.
(6)
(7)
(8)

€[0,00[ €] —00,0] = €0-
el e :p(|t\).

Remark 21.21 Let [0,00[> t +— p(t) be a contractive Cy-semi-group on a Hilbert
space Qy. We say that (Q,uy, ep) is a unitary dilation of {p(t)}icp0,00] if Q is @
Hilbert space, ey is an orthogonal projection from Q onto Qq, {us }1er is a unitary
Co-group on Q and p(t) = egusey, t > 0. We say that the dilation (Q,u,ey) is
minimal if )7, .p u; Qo is dense in Q.

Clearly, what we have constructed in this subsection is a minimal dilation of
the contractive semi-group {p(t)}ie(0,00]-

21.2.4 Gaussian path spaces I1

In this subsection we describe the main example of Markov path spaces — Gaus-
sian path spaces. They are used to describe free quantum field theories. They
are obtained by second quantizing the Markov path system constructed in the
previous subsection.

Let X be a real Hilbert space and € > 0 a self-adjoint operator on X. Let C, Q,
{jt }rer, {wt}ier, m be constructed as in the previous subsection. Let us consider
the Gaussian L? space with covariance C. According to the notation introduced
in Subsect. 5.4.2, it will be denoted

L?(L*(R, X),e”C 7 2d¢), (21.9)

where we use ¢ as the generic variable in L*(R, X).

As we discussed in Chap. 5, there are many ways to realize this Gaussian L?
space as a space L?(Q,u), where (Q,u) is a probability space. (Note that the
notation @ for such a measure space is traditional in a part of the literature,
hence the name “@Q-space representation”.) A class of possible choices, which is in
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fact our favorite, is Q := B¥ L2 (R, X), where B > 0 is any self-adjoint operator
on L*(R,X) such that B~2CB~7 is trace-class. Thus the Gaussian L2 space
(21.9) becomes the concrete space L?(Q,du), where u is a Borel probability
measure on @ such that

| du() =T e B R ), (21.10)
Q

Following Remark 5.66, we now use ¢ as the generic name for an element
of Q=B L*(R,X). ¢(f) denotes the pairing of ¢ € Br L2(R, X) with f €
B T L2(R, X).

By Prop. 5.77, we can extend the definition of

Q3¢ o(f) (21.11)
to f € C~7L%(R, X). The function in (21.11) in general needs not to be contin-
uous; however it still belongs to L?(Q, ) for all 1 < p < oo.

Definition 21.22 Since the maps js defined in (21.7) are isometric, we can
define for s € R, g € (2€)2 X, the functions

¢s(9) =00 @g) e [ L"Q,p),
1<p<oo
which are called the sharp-time fields.

We can now define the associated path space. We lift r and {u; };er to L*(Q, p)
by setting first

RelU) = 00 el0l) = gl0(u—il) e BTTI2(R, X), (21.12)

extending then R and U; to L*(Q, ) by linearity and density. In particular we
have

Roy(9) = ¢-.(9), Usds(g) = ds—i(g), g€ (2)°X. (21.13)

Proposition 21.23 Let G be the completion of the Borel o-algebra on @, Sy
be the o-algebra generated by the functions ¢?°9) for g € (26)%){. Let R, Uy be
defined in (21.12). Then (Q, S, Sy, U, R, 1) is a Markov path space.

Definition 21.24 (Q, S, Sy, Uy, R, u) described in Prop. 21.23 will be called the
Gaussian path space with covariance C.

We will later need the following lemma, which follows directly from the results
on complex-wave representation in Subsect. 9.2.1.

Lemma 21.25 Let Z be a Hilbert space, T's(Z) the associated bosonic Fock space
and b a self-adjoint operator on Z. Then

II°

(e Qe I M) io(e2) ) — o slorl? =% llg21® g=(g1le™"g2)

)

whenever the r.h.s. is finite.
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Proof of Prop. 21.23. Using that r and u; preserve C, formula (21.10) and the
density of exponentials in L?(Q, i) (see Subsect. 5.2.5) we see that R is unitary on
L*(Q, p) and that t — Uy, is a strongly continuous unitary group on L?(Q, ). R
and U; are clearly x-automorphisms. By Prop. 5.33, t — U, is strongly continuous
on L>(Q, p) for the o-weak topology.

From (21.13) we see that the closed vector subspace generated by e'?(9) for
g e (26)%.)( is invariant under R, which implies that REy; = Ey. The fact that
RU; = U(—t)R is obvious.

We now check the Markov property. We unitarily identify
L?(L*(R, X),¢?C 7 %d¢) with Ty (CQ), as in Thm. 9.22. If TCR is a
closed interval, then under this identification F; becomes I'(e;), where e; is
defined in Lemma 21.15. So the Markov property follows from the pre-Markov
property proved in Prop. 21.20 (7).

It remains to check condition (21.5). We note that it is equivalent to the
property that the algebra generated by {U,f : f € L>®(Q,&¢,u), t €R} is
dense in L?(Q, &, ). It is easy to see that finite linear combinations of &;, ® g;
fort; e R, g; € (25)%)(, are dense in Q. It follows that if f € Q, the function e'¢(/)
can be approximated in L? by products of ¢/?%i (%) Since linear combinations of
exponentials are dense in L?(Q, 1), we obtain (21.5). O

Theorem 21.26 There exists a unique unitary map
Tonet - H — T (C(26)* X)
such that
Tewal =, (21.14)
Towae® () = (@0, ge (207X
We have

tH _ o—tdl(e)p

Teucle_ eucls t> 0.

Proof Linear combinations of time-zero exponentials /% (9) _for g € (26)%X , are
dense in L*(Q, &y, ), and

/ () qy = e~ 2(0®9IC0®9) — g1 (ale)
Q

by Lemma 21.15. Therefore, there exists a unique unitary map Ty :
L*(Q, 60, 1) — L2((2€)7 X, e~**dz) such that

Tcucll = 1;
Teuclem‘)(J (9) = ei@(g)j:’euch ge (26)%‘)('

Composing Toyel With the map (T"V)~! constructed in Thm. 9.22, we obtain the
unitary map T,y with the first two properties of (21.14). To prove the third
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one, it suffices by density to check that, for g;,gs € (26)%){ , one has
/ e_i‘/’U(gl)ei@t(gz)dM — (ei(a*(yl)+a(g1))Q|e—tdf(f)ei(a*(gz)+a(gz))Q>_ (21.15)
Q

The Lh.s. of (21.15) equals
1
exp(—i(ét ® g2 — 0o ® g1]0r @ ga — do ®91)Q)
= EXP(—(92|(46)_192)X — (911(46) 7" g1) p + (1 |(26)‘le‘t‘gz)x),

by Lemma 21.15. Applying Lemma 21.25 to the Hilbert space (C(Qe)%X, we see
that this equals the r.h.s. of (21.15). O

21.2.5 From a positivity preserving semi-group to a
Markov path space

Let (X, v) be a measure space and P(t) = e~"# be positivity improving contrac-
tive semi-group on L?(X,v). We assume that 0 = inf spec H and inf spec H is an
eigenvalue. Recall that by the Perron-Frobenius theorem (Thm. 5.25) H has a
unique positive ground state. It will be denoted by 2.

In this subsection we present a construction converse to that of Subsect. 21.2.2.

Theorem 21.27 (1) There exist
(i) a Markov path space (Q, 6, Sy, Uz, R, ),
(i) a unitary map T : L*(X,v) — L*(Q, Sy, i) such that

O =1,
TL=(X, )T~ = L¥(Q, &0, ).

(2) Denoting TAT™" by A for A € L>®°(X,v), one has

/ 0 U, (Aj)du = (QfAe™ 0T 4y e (ti—tn-01 4 q),

i=1
for Ay e L®(X,v),i=1,...,n,t; <--- <t,.
Lemma 21.28 e "4 L>°(X,v)Q C L>=(X,v)Q, t>0.
Proof Set vq = Q%v and consider the unitary map
To : L*(X,v) — L*(X,vq)
f=alf

Setting Hq := TQHTS{I, we see that e~ is positivity preserving, with 1 as
the unique strictly positive ground state. Therefore, Hg is doubly Markovian.
Therefore, by Prop. 5.24, it is a contraction on L™ (X, vq) = L*°(X,v). Now

e (X, 0)Q =Ty e o L°(X, v9)1
C Ty'L™(X,vg)l = L®(X,v)Q. 0
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Proof of Thm. 21.27. By the Gelfand—Naimark theorem (Sakai (1971), Thm.
1.2.1), L*°(X,v) is isomorphic as a C*-algebra to C(Qy), where Q is a compact
Hausdorff space. In the sequel we will denote by the same letter A an element
of L (X,v) and its image in C(Qy).

Since L (X, v) is a W*-algebra, we know that Q is a Stonean space, i.e. the
closure of any open set in )y is open (see Sakai (1971), Prop. 1.3.2). Let E be the
set of characteristic functions on Qg. By Sakai (1971), Prop. 1.3.1, the x-algebra
generated by Z is dense in C(Qy).

Let Q := QX be equipped with the product topology, which is also compact by
Tychonov’s theorem. Note that each g € @ is a function R 5 ¢ — ¢; € Q. By the
Stone—Weierstrass theorem, the x-algebra generated by functions f of the form
f(q) = A(q;) for some t € R and A € C(Qy) is dense in C(Q). By the argument
above, the x-algebra £(Q) generated by the functions f of the form f(q) = A(¢:)
for some t € R and A € E is also dense in C(Q).

Now let f € £(Q). Clearly, f can always be written as

P
flo)=3 a I Aij(a), Aij €5, a; €C,

for t; <--- <t,. Splitting further characteristic functions A; ;, we can uniquely
rewrite f as

q
fla)=>_b; I Bij (@), Bij €5 b €C, (21.16)
where B; ;B; . = 0 for j # k. It follows that

p(f) = Z bj (Q|Blﬁjei(t2 7t1)HB21j s ef(t"' 7t"71)HBn’jQ), (2117)

Jj=1

defines a linear form on £(Q) with p(1) =1. Now let F' € £(Q) with F' > 0.
Clearly, f can be uniquely written as in (21.16) with b; > 0, B; ; > 0. Since
e~ is positivity preserving and €2 > 0, we see that p(f) > 0 and p is a positive,
hence bounded linear form on £(Q). We denote by & the Baire o-algebra on Q.
Extending p to C(Q) by density and using the Riesz—Markov theorem, we obtain
a Baire probability measure p such that

o(f) = / fdu, f € L(Q).
Q
We now set

rqs ‘= q—s, Utqs ‘= 4s—t, te Ra

and

Rf(q) := f(rq), (Utf) (q) := f(u_rq), teR.
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Clearly, U; and R satisfy conditions (3) and (4) of Def. 21.7. Let &, be the sub-
o-algebra of & generated by the functions ¢ — A(qy), 4 € C(Qy) = L>®(X,v).
Note that & :=\/, i U:&y. We can rewrite (21.17) as

/ ﬁ Ai(q(t;))dp(q) = (Q|Ale—(t2—t1)HA2 cooe _tn—l)HAnQ)’ (21.18)
Q i=1

for A; € L>®(X,v), t1 < -+ < t,.

It remains to prove that (Q,6, &y, U;, R, 1) is a Markov path space. Prop-
erty (1) of Def. 21.9 is obvious. To prove property (2) of Def. 21.9, i.e. that
Elo 4 00| B)—c0,0) = Ffoy, it suffices by linearity and density to show that for

9) =[] Ai(a), A € L®(Q,80), t1 <+~ <t, <0 (21.19)

Ejo, oo f i Gg-measurable. Recall that Ejg ;o[ f = g iff g is &y 4 oc[-measurable
and

/7hdu:/§hdu, (21.20)
Q Q

for all &y, o|-measurable functions h. Again by linearity and density, it suffices
to check (21.20) for h(q) = H Bi(gs,), Bi € L*(Q,6p) and 0 < 51 < --- < 5.
For f as in (21.19), we have using (21.18),

/Q fhdu

:/ H A; (qt ) Hl Bi(qu,')dru

i=1
= (Q[Ajelt et =t H g ot =) B o1 =)l ol —1=)H g )
= (et” H g eltn—i=tn)H ot *t2>HAIQ|e*81HBle(Sl —sa)H | o(sp—1 7SP)HBPQ).
By Lemma 21.28, there exists C' € L*°(X,v) such that
el A eltn =t A e =) A0 = CQ,

and hence
fhdp

Q
Q|Ce SIHB e(sl Sq)HBQ N e(sl'*l 751)>HBPQ)

/C‘]() 1 s)dﬂ

Therefore, by (21.20) we have (Ejy oo[f)(q) = C(qo), which proves that Ejy ;o[ f
is Gg-measurable and completes the proof of the Markov property.

To complete the proof of the theorem it remains to construct the unitary
operator T. We first note that, since Q is a.e. positive, L>=°(X, ) is dense in
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L?(X,v). Using (21.18), it follows that the map
T LQ(Xa V) - LQ(Q; 607/1’)
(TAQ)(q) == Alq), A€L¥(X,v), ¢€Q,

extends to a unitary operator. O

21.3 Perturbations of Markov path spaces

We fix a Markov path space (Q,S,S,Us, R, 1). Recall that this leads to a
construction of a physical space H equipped with a Hamiltonian H. We will
show how to perturb this Hamiltonian using the framework of Markov path
spaces. Perturbations that can be treated by Euclidean methods are those cor-
responding to operators of multiplication by real Gj-measurable functions, i.e.
by functions of time-zero fields. Sometimes the perturbation itself does not even
make sense as an operator, although a perturbed Hamiltonian can be defined.
These singular cases can be handled using the so-called Feynman—Kac—Nelson
kernels.

21.3.1 Feynman—Kac—Nelson kernels

Definition 21.29 Let ¢ € [0, +00]. A local Feynman-Kac—Nelson (FKN) kernel
is a family {Fq 1 Yo<v—a<s of &-measurable functions on Q such that

(1) Fiap) >0, Flay € LNQ, Sjap)),

(2) for a € R, the map la,a 463 b— F, ;) € L'(Q) is continuous,
(3) Fiap Fipe] = Flag), fora<b<c, c—a <4,

(4) Us (Fa b] ) F[a+57b+s]7 for s €R,

(5) R(F, ab]) Fi_y _q)-

If 6 = oo in the above definition, we will drop the word “local” and use the name
“FKN kernel”.

Remark 21.30 Let us mention a certain notational problem. Let F' be a meas-
urable function on Q. Uy(F) denotes the image of F under the action of U;. It
is also a function on Q.

The symbols F, resp. U;(F) are often understood as multiplication operators.
Using this meaning, we have the identity

Ut(F) = UtFUt*,

where now U; on the r.h.s. is understood as a unitary operator on L*(Q, ).
Clearly, if we use the latter interpretation of the FKN kernel, (4) of Def. 21.29
can be rewritten as UsFlq y) U o = Floys by
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Remark 21.31 The simplest example of a FKN kernel is given by
Fy ) o= el Us(V)ds, (21.21)

where V € L*(Q,Sy). At least formally, all FKN kernels are of this form.
In fact, by (3), the operators of multiplication by Fis, form a two parameter
semi-group. Their generators V(t) are also operators of multiplication by
Sy -measurable functions, commute with one another, and satisfy Us (V(t)) =
V(t+s) by (4). Setting V=V (0) we see that Fy, ) is formally given by (21.21).

Properties of FKN kernels obtained from formula (21.21) are described in the
following lemma.

Lemma 21.32 Let 1 <p < oo and V € L*(Q). Then the following hold:

1) [U(V)ds € LP(Q).
(2) [l J U], < flem =V |, = [lemrb=eV /7.
(3) Let V € LP(Q) for some p>1, and e°V € L'(Q) for some § > 0. Set
Flap = el Us(V)ds - Thep {Fia»)Yo<b—a<s 15 a local FKN kernel.
4) Let V € LYQ) and V > 0. Then {Fi, y }o<b—a<oo i a FKN kernel.
[a,b]S0<

Proof (1) follows from the strong continuity of U; on LP(Q).
To prove (2), we apply Jensen’s inequality,

b
o I Us(V)ds 1 / e~ (b=a)Us(V) 44
“b—al, ’

and obtain

— [t s 1 ’ —(b—a —(b—a
s A el R el
a

since e~ (*=)Us (V) = 7, (e=(®=9)V) and U, is measure preserving.
To prove (3), we will use Subsect. 5.1.9. Write

Flaprea = Flap) = (Fopreg — D Fay-

Since Fl, ) € LY/(=a)(Q), it suffices by Holder’s inequality to prove that
Fpprq — 1 in LYQ) for ¢=0/(6 —b+a). Since U; is isometric on L7, we
may assume that b = 0. Clearly, Fjy — 1 a.e., when ¢ — 0. Hence, Fjy — 1
in measure. Using (2), we see that, for all p’ > 1, ||Fjy ¢|l,» < C uniformly for
0<e<d/p. Hence, {Fjo, : 0<e<d/p'} is an equi-integrable family. By the
Lebesgue-Vitali theorem (Thm. 5.32), Fjy q — 1 in LY(Q).

Finally, statement (4) is immediate, since Fj, ; <1 for all a <b. O

21.3.2 Feynman—Kac—Nelson formula

We now describe the construction of a perturbed Hamiltonian associated with a
FKN kernel.
We recall that local Hermitian semi-groups were defined in Subsect. 2.3.6.
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Proposition 21.33 Let {Fj, 3} o<b—a<s, 0 >0, be a FKN kernel. For 0 <t <
§/2, set

Dy := EySpan U Fio,q L>=(Q, 60, 100]) | »
0<s<d/2—t
Pr(t) == EgFlo Ut’D

Then {Pr(t),D: }1ef0,6/2) s a local Hermitian semi-group.

Proof We check the conditions of Def. 2.67. Since F, ;) belongs only to LY(Q)
it is not obvious that D; C L*(Q, &) = H. To prove that this is the case, we
write, for f = EgFjy 9 € Dy, 0<5<6/2—t,

I£1I? = (Flo.s191Eo Flo,519) = (Flo.s)9|RE0 Flo,519)
= (Fl_s,0Rg|Eo Flo,519) = (Fl—s,0) B9 E) — 00,01 E(0,4 00| F]0.519)
= (B} 00,0 F1=5,0 BRI E) — 0,01 B0, 4 0o Fl0,519) = (F—s,01 9| Flo.)9)
= (Rg|Fi—,01F0,519) = (Rg|F1 5 519) < [1F1—5 g [l 9%

(21.22)

Since 0 < s < 6/2, Fi_ ;) € L'(Q) and the r.h.s. is finite. Since L>(Q, &) C Dy,
D, is dense in H. We now claim that Pp(s) Dy C Dy—s for 0 < s <t <¢§/2. In
fact, if f = EyFjg,19 € Dy, for 0 < s; <6/2 —t, we have
Pr (S)f = E()F[O‘S]USEUF[O‘Sl]g = EUF[O,S]E{S}F[S,S+Sl]Usg
= EOF[O,S]E]—OO,S]E[SHroo[F[s,s+81]Us'g = EOF[O,S]E]—OO,S]F[s,ersl]Usg
= EOE]foo,s]F[O‘s]F[s,ersl]Usg = EOE]foo,s]F[(),sJﬁsl]Usg
= EoFlo,515)Usg € Di—s, (21.23)
where we have used the properties of Fj, ;; and the Markov property. The identity
(21.23) also proves that if f = EyFjg 5,19 € Dy for 0 < s <§/2 — (t + s), then

Pp(t)Pr(s)f = Pr(t+s)f.
Let us prove the weak continuity of Pp(t). For f = EyFi 9 € Ds and 0 <
s1 <46/2 — s as above, we have

(f|PF(t)f)H = ( [0,s1] |EO [0, 91+t]Utg) = (R9|F[—s|,s|+t]Utg)v

by the same arguments as in (21.22) and (21.23). Hence,
(F1Pe(t+ ) = (F1Pe(OF) = (ROUFL sy 0110 = Fosy s 20) Vi)
+(RQ‘F[751,51+25] (Ut+eg - Utg)) .

The first term tends to 0 when € — 0 by Def. 21.29. The second term tends to 0
when ¢ — 0 by the o-weak continuity of ¢ — U; on L*(Q). O

In the next two propositions we give examples of FKN kernels obtained from
a real Gp-measurable function V as in Lemma 21.32. Note that the Hermitian
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operators Pp(t) are now denoted by Py (t) and have slightly bigger domains.
This choice will be convenient in the next subsection.
The case of positive perturbations is easier:

Proposition 21.34 Let V be a real &y-measurable function such that V € L'(Q)
and V(z) >0 a.e. Then

Py(t) = Epe™ h -, >0,

is a strongly continuous semi-group of bounded self-adjoint operators on
L2 (Qa 60 9 M) .

In the case of arbitrary perturbations we need to use the notion of a Hermitian
semi-group.

Proposition 21.35 Let V be a real &y-measurable function such that V €
L (Q) for some py >2, and e °V € L'(Q) for some & > 0. Set p(t)~!:=
1/2 =t/ for 0 <t <§/2, and

Py (t) = Eye™ Iy U"‘(V)dSUt |L"(')(Q,Gn,u)'

Then {PV (t), LM (Q, 60’“)}te[(),5/2] s a local Hermitian semi-group.

Proof It follows from Lemma 21.32 that fot Us(V)ds is well defined in L (Q),
and that e~ b Us(V)ds ¢ p (Q) for 0 <t <¢§/p. By Holder’s inequality, Py (¢)
maps LP)(Q) into L*(Q), so Py (t) is well defined on L) (Q, ;). The fact that
Py (t) maps LP(+5) into LP) follows also from Holder’s inequality. The proofs

of the semi-group and weak continuity properties are completely analogous to
those of Prop. 21.33. O

Remark 21.36 Let us write the physical Hilbert space as H = L*(X,v). We
treat paths (elements of Q) as functions R >t — q; € X. The expectation E; is
written as

E,G(x) = /G(q)d,ut,x(q), G e L'(Q,dn), ze€X.

Let V be a real function on X. Under some conditions on V (see for example
Thms. 21.87, 21.38) one can show that Py (t) = Egeh Us(V)ds (7, = ¢=HH+V) for
t > 0. This can be formally rewritten as

e tH V() £y = /exp(— /Ot V(qS)dS)f(Qt)dNo,z(Q)' (21.24)

Recall that in Thm. 21.4 we described the Feynman—Kac formula for the inte-
gral kernel of e (= A+V(@)  The generalization (21.24) of the Feynman—Kac
formula to quantum field theory was first given by Nelson. Therefore, in this
context, (21.24) is usually called the Feynman—Kac—Nelson formula.
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21.3.3 Perturbed Hamiltonians

We recall that H is the positive self-adjoint operator generating the group
{P(t)}1e[0,00[ constructed in Thm. 21.11.

Let V be a real Gy-measurable function. The self-adjoint operator of multi-
plication by V on L*(Q, &g, ) is also denoted by V. Under the hypotheses of
Prop. 21.34 we can define a unique positive self-adjoint operator Hy such that
Py (t) = e~V . Similarly, using Thm. 2.69, under the hypotheses of Prop. 21.35,
we can define a unique self-adjoint operator Hy such that Py () C e *#v . We
now give without proof some results about the Hamiltonian Hy .

Theorem 21.37 (Positive perturbations) Assume the hypotheses of Prop. 21.34.
Then:

(1) Hy is bounded below.
(2) If Ve LP(Q) for p > 1, then Hy is a restriction of the form sum H + V.
(3) If V e LP(Q) for p > 2, then Hy is the closure of H+ V.

Theorem 21.38 (Arbitrary perturbations) Assume the hypotheses of Prop.
21.35. Then:

(1) Hy is the closure of H+ V.

(2) Assume that e=' is hyper-contractive on L*(Q,Sy) and let T > 0 be such
that e™TH maps L*(Q) into L (Q), r > 2. Then ife "V € L' (Q) foré =+'T,
1/r+1/r" =1/2, Hy is bounded below.

Remark 21.39 The main examples of models with local interaction that can be
treated by the methods of this chapter are the (space-cutoff) P(p)s and (€*¥)y
models (both at 0 and at positive temperature). The P(p)s model was the first
model with a local interaction to be rigorously constructed. It will be further
studied in Chap. 22.

The (e*?)y model is also called the Hogh-Krohn model. Although not physi-
cal, it has the pedagogical advantage that the interaction term fg(z)ea‘p(z)d:c is
positive, even after Wick ordering. It provides an example of where Feynman—
Kac—Nelson kernels can be used even if the formal interaction does not exist. In
fact, one can show that the formal interaction

/g(a:) :e2?(@) : dg

for g a positive compactly supported function can be given a rigorous meaning iff
la| < V27, although the FKN kernels

b
/ /g(x) ) dadt

are well defined iff || < V4w; see Simon (1974).
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Another example where one has to use FKN kernels is the P(¢)(0) model,
obtained by replacing the space-cutoff g(x) with the delta function d§y; see Klein—
Landau (1975).

21.4 Euclidean approach at positive temperatures

There exists a version of the Euclidean approach for bosonic fields at positive
temperatures. The “Euclidean time”, which at the zero temperature took values
in R, now belongs to the circle of length 3. The number  has the meaning of
inverse temperature. Given a 3-Markov path space, we construct a von Neumann
algebra equipped with a W*-dynamics and a KMS state.

21.4.1 (B-Markov path spaces

Definition 21.40 The circle of length 3, that is, R/BZ, is denoted by Sg, and
is sometimes identified with | — 3/2,3/2]. t will still denote the generic variable
m Sﬂ.

Definition 21.41 Let (Q, 6, &y, U, R, 1) be a generalized path space as in Def.
21.7. The path space is called

(1) B-periodic if Ug = 1, so that Sz >t — Uy is a strongly continuous unitary
group.

(2) B-Markov if in addition it satisfies
(i) the B-reflection property REyy 5,21 = Fyo,5/2},
(ii) the B-Markov property Ejg 3/91E|—g/2,0) = E{0,3/2}-

It is easy to show that in a G-Markov path space we have

Eto,3/2y = Epo,5/21RE0,3/2)- (21.25)

21.4.2 Reconstruction theorem

We assume that we are given a 8-Markov path space (@, 6, &g, U;, R, ). As in
Subsect. 21.2.1, we now proceed to the construction of the corresponding physical
objects.

Definition 21.42 The physical Hilbert space is

H = E{5/2)L*(Q,6, 1) = L*(Q, S0, 5/2}: 1),

and the vector 1 € H will be denoted by Q). The Abelian von Neumann algebra
L>(Q, &y, i) acting on 'H will be denoted by 2A.

The construction of the generator of the dynamics on H is now more del-
icate than in Thm. 21.11, because U; does not preserve LQ(Q,G[(W/Q],M). In
fact, U; sends L*(Q, S(0,5/2], 1) into L?(Q, &t,1+5/2), 1) In the construction the
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crucial role is played by the concept of a local Hermitian semi-group introduced
in Def. 2.67.

Theorem 21.43 Set, for 0 <t < /2,

Mt = L2(Q7 G[O,ﬁ/?*ﬁ]nu)v
Dt = E{()’H/Q}Mt CH.

Then, for any 0 < s <t < [3/2, there exists a unique P(s) : Dy — D;_, such that
P(s)Ego,5/01f = Eqo.5/23Usf, [ € L*(Q, ),

and {Dt’P(t)}te[U.ﬁ/Q] is a local Hermitian semi-group on 'H preserving 2.

Proof 1If s <t, one has M; C My, hence D; C D,. From the definition of &
as \V,¢; UiSg and from the strong continuity of U; on L*(Q, &, 1), we see that

M, is dense in L*(Q, &(0.5/2], 1), which implies the density of U D,

U
0<t<f3/2 0<t<f/2

in H.

We now have to check that, for 0 <t < §/2, P(t) is well defined as a linear
operator on D;.

Let us fix 0 < r < s <t < (/2 withr+s <t Let f € M;. We have

||E{O.,‘8/2}Usf”2 = (U5f|RUSf)
- (Us—7‘f|U—7'RU9f) = (U@—rf|RU9+Tf)
= (Us—r f1E0,8/23Ustr ) < | Eg0,8/23Us—r fIIIfII- (21.26)

In the first line we use (21.25) and the fact that U, f is &g g/9)-measurable. In
the second line we use the unitarity of U_, and U_,. R = RU,.. In the third line we
apply (21.25) again, the Cauchy-Schwarz inequality and the fact that Eyg 5/0y
and U, , are contractions.

Taking r = s, we obtain that | Eg 3/0yUs || < |Ego.52y f|| 7 || f]|7 for 2s <t. I
”nils < t, for n € N, taking r = s/n and applying recursively (21.26), we obtain
Lol

1E0.5/23Us fIl < [1E(0,8/23Us— fIIZ 1 f1I2
<N Eqo,5/2Us—pr FI7 1]
<N Ewsp FIP 1A

This shows that Fyy 3/03f = 0 implies Eyg 5,23Usf = 0 for all 0 < s < ¢. By the
strong continuity of Uy, this extends to s = ¢t. Thus we have proved

(27 4 4277)

E{Qﬁ/g}f =0, f eEM; = E{o_ﬁ/g}Utf =0, (2127)

which means that P(t) is well defined.
The semi-group property of P(t) and the fact that P(s)D; C D;_, are imme-
diate. To prove that P(t) is Hermitian, we write, for f,g € My,

(Eto,8/2y fIP(t)E(o,3/219) = (fIRUg) = (U f|Rg)
= (E./2yUif|Br0,5/219) = (P(O)Eo,5/2) f1E(0,5/219)-
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Finally, the weak continuity of P(t) follows from the strong continuity of
U,. 0

Definition 21.44 The unique self-adjoint operator L on H such that e L =

Dy
P(t) is called the Liouvillean.
Clearly, LQ = 0.
Definition 21.45 We denote by § C B(H) the von Neumann algebra defined by

Fo={ A7, Ac, teR} (21.28)
Let
Rgjy :=UgjsR=Up/sRU_p/4
be the reflection around s = /4. Clearly,
R 1Eq0,5/21 = Efo,5/23R3/4- (21.29)
Definition 21.46 By (21.29),

JE 501 f = Eqo,5/23Rs/4f, f€L*Q,6,p), (21.30)

defines an anti-unitary operator J on H. We also introduce a state and a
W*-dynamics on §:

w(A) = (QAQ), 7(A)=¢TAe T AcF.
The next theorem will be proven in the following two subsections.

Theorem 21.47 w is a faithful state, it satisfies the B-KMS condition for the
dynamics T, J is the modular conjugation corresponding to w and L is the stan-
dard Liouvillean for the dynamics 7.

21.4.3 Proof of the KMS condition

In this subsection we prove the part of Thm. 21.47 saying that w is 8-KMS. We
first need to introduce additional notation. For n € N, we set

Jg(n) = {(th...,tn) eR" : Ifj >0, Zt]‘ < ﬁ/Q}v
Jj=1

I3(n) == {(zl,...,zn) € C" : Rez; >0, ZRezj < ﬁ/Z}.
i=1

Note that Jz(n) C Is(n)". We denote by Holz(n) the space of functions (with
values in H or in C, depending on the context) which are holomorphic in Iz(n)

and continuous in I3(n)<.
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Proposition 21.48 (1) For (t1,...,t,) € Jg(n), A1,..., A, €, the vector

1
A, T (e7FA)HQ (21.31)

j=n—1

belongs to Dome ™' L.

(2) The linear span of such vectors is dense in H.
(3) Let (tl,...7tn) S Jﬂ(n), (51,...,Sm) S Jﬂ(m) andAl,...,An,Bl,...,Bm S
A. Settg:=0/2— (ty +---+11), S0 :=03/2— (sp, + -+ s1). Then one has

1 1 o
(I (P A)Q) T (7" B)2)

j=n
m—1 n—1
= ( (e B )0l T (e’thA;'-‘H)Q). (21.32)
= j=
Proof For A € A, we set A(t) = U;(A). First let us show that
1 1
T (e " A)Q=Ey /2y T Aj(t; +-- +t,). (21.33)
j=n j=n

We use induction. (21.33) is clear for n = 1. Assume that it is true for n — 1,
that is,
1 1

_ 11 l(eit-"LAj)Q = E{O,“@/Q} ) 11 1Aj(t]‘ + -+ tn,—l)-
j=n— j=n-—

Then

—t, L Ly !
e” " A, I (e7VTA)Q =By a0 U, An T1 Aj(t; + o+ ta)

j=n-—1 j=n—1

1
= FEqop/2y IT Aj(t; + -+ tn),
J=n

which proves (21.33) for n.
1
Since A, II A;(t;+---+t,_1) belongs to M, , this proves that (21.31)
j=n—1

belongs to Dome~'» . Hence, (1) is true.
The linear span of vectors as on the r.h.s. of (21.33) is dense in
L*(Q, &(0,5/2), 1), which proves (2).

We have
1 1
(I (249 11 (2 B)0) (21.34)
j=n j=m
= (1 A4;(m)IR 11 Bi(o))
j=n A i=m e L2(Q)
1 1
=(T1I Aj(m;)| T B;(—o; , 21.35
(LA 1 B(-o)) (21.35)
where
n m
Tj:ztk7 1§]Sn7 O-i:Ztk’v 1SZS7’TL (2136)
k=j k=i
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Since Ug = 1, we have
(flg) = U—_p/2f1Us/29)120)» [-9 € L*(Q).
Hence, (21.35) equals

1 1
(1L Ap/24m) I Bi(S/2=00)

= (11 B2 o)l 1l A, (=524 7))
i=1 j=1

L*(@Q

m—1 n—1
(1 Bral T (70 45,,9).
This proves (3). O
Proposition 21.49 For (z1,...,2,) € Is(n)"! and A, ..., A, € 2, the vector
A, nlll(e_z‘/ LANQ (21.37)
belongs to Dome~*" L. Furthermore, the function

L) 3 (21, 2) =TI (55 A7)0

[=-

J

belongs to Holg(n) and is bounded by ﬁ IlA4;1].
=1

Proof We prove the result by induction in n.

By Prop. 21.48 (1), A;Q € Dome ?%/2. Therefore, Prop. 2.63 implies that
the map I5(1) 3 21 — e *1L 4;Q belongs to Holz(1). Moreover, for 2; € I(1), we
have

let * 4,0 = [le™ =P 4,0 = | AT Q| < [ Adll,

again using Prop. 2.63. This proves the result for n = 1.
Assume that the result holds for n — 1. For (21,...,2,-1) € Ig(n — 1), set

1
g(zla~--7z'rz—1) = An ) 1II (eZ]LAj)Qa

j=n—1

1
M1, zn1) = 1 (AJe™ ") AR Q.

j=1
By the induction assumption, g,k belong to Holz(n — 1) and are bounded by
n—1
IT ||A4;||- Moreover, using (3) of Prop. 21.48 with m =n, B; = A; and
=1

n—1 n—1

57126/2_2&’7 tn:ﬂ/Q_tha
i=1 j=1

we obtain that

g(tr, .. ty—1) € Dome "%, g(s1,---,8n-1) € Dome *" L,
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and

(eft” Lg(th - ,tn_l)‘eis"Lg(Sl, ey Sn—l))
= (h(s1,...,s0-1)|h(t1,. .., tn-1)), (21.38)

for (si,...,8n), (t1,...,tn—1) € Jg(n —1). Denote by Hy, resp. Hj the
closed subspaces of H generated by the vectors e ‘"Lg(ty,--- ,t,_1), resp.
h(tl, v 7tn_1), for (tl, NN 7tn_1) € J[j(n — 1)

Note that h(z1,...,2,-1) belongs to Hy, for (z1,...,2,-1) € I3(n — 1)<\ In
fact, let ¥ 1 Hjy. Then

(Ulh(z1,.. . 20-1)) =0, 21,...,2,-1 € Jg(n—1). (21.39)
Hence, by analyticity and continuity, (21.39) is true for zy,...,z,-1 €
Is(n— 1)
From (21.38) we see that there exists a unique anti-unitary map T : H; — Hy,
such that

T‘eit”Lg(tl7 .. ~tn—1) = h(th e ,tn_l).
It follows that
f(zla- .- ,anl) = T_lh(27 s 7Zn71)

belongs to Holg(n —1). Note that, by the definition of T, for t1,...,¢,_1 €
Jz(n — 1) one has

fltryeostn ) =e " lg(ty, .. t,_1). (21.40)
We claim that, for z1,...,2,-1 € Ig(n — 1),
g(z1,...,2,-1) € Dom e (B/2=327 5 2L (21.41)
and
F21snisznog) = e BREI 2L ), (21.42)

In fact, the scalar products of the above two functions with a fixed vec-
tor ¥ € Dome 7%/2 belong to Hols(n —1) and coincide on Jz(n —1) by
(21.40). By analytic continuation it follows that g(z1,...,2,-1) belongs to
Dome™(#/2-X7) 2L and that (21.41) and (21.42) are true.

By Prop. 2.63, we obtain that the function

n—1
{0 <z, < ﬂ/2 - ZIIHZ]} 22y eZ”Lg(zl, .. -7Z'n—1)
j=1

is continuous and analytic in the interior of its domain. For Re z, = 0, we have

n
”eang(Zla v zac)l =gz, )| 'Hl HA]”
j=
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n—1
For Rez, = 3/2— )" Imz;,
j=1

e Fg(z1, s za-0)ll = (2150 za)
= |G, )l < I 1451
n—1
Therefore, by Prop. 2.63, for 0 < z, < 3/2 — J; Im z;,
o Fg (e, ) < L 114511
which ends the proof of the induction step. O

Proof of Thm. 21.47, Part 1. By Prop. 21.49, we can analytically continue
(21.42) to obtain

1 . 1 .
(1 (et )@l 11 (et B)e)

j=n

= (e(—ﬂ/2+is,n +eetisg) L iﬁl(B;keiwL)Q|e(—ﬁ/2+itn +otity) L 11211(14;61“)9)'

Changing variables, this can be rewritten as
(AQBQ) = (e L/2B*Qle L2 A*Q)),
1
A= TI 7, (4y),

This identity implies that the (7,3)-KMS condition (6.7) is satisfied in the
x-algebra Fy generated by {’Tt(A) s Aedd te R}. But §y is weakly dense
in §. By Prop. 6.64, the (7, 5)-KMS condition is satisfied for all A, B € §. O

21.4.4 Identification of the modular conjugation
To complete the proof of Thm. 21.47, we need the following lemma;:

Lemma 21.50 (1) JAQ = e #L/24*Q, for all A € F;
(2) Jeltt =el'L ], for allt € R;
(3) J§J C §.

Proof Let (t1,...,t,) € J3(n) and Ay,..., A, € 2. Then

1 1
J I (e " AN = By 523 Rpa T Aj(75)
j=n

j=n

T -
= E{o,5/2) ,‘En A;(B/2—15)
n n—1
— e~ (B/2=25 1)L T (A;fe—th)A:Q’ (21.43)
j=1
where 7; are defined in (21.36).
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By Prop. 21.49, we can apply the analytic continuation to the above identity
and obtain

1 . . R -1 .
J I (e9EA)Q = e ML/ 2l X i T (Are T E) A% ).
j =1

j=n j=
Changing variables, this can be rewritten as
JAQ = e L2 A*Q, (21.44)
for

1
A= ,H Tt; (AI)7

j=n

which proves (1) on Fo.
Now let A € §. Since § is the strong closure of Fy, by the Kaplansky density
theorem there exists a sequence A,, € § such that 4, — A, A* — A* strongly.
Applying (21.44) to A,, we obtain that 4,Q — AQ and e #L/24,Q — JA*Q.

Since e L/2 is closed, this implies that
e PL2AQ=JA*Q, A€ F. (21.45)

This proves (1) on 3.
Let us now prove (2). Let W = Eyg g/93F for F € L*(Q, S(c.p/2—, 1) and € >
0. For 0 < s < ¢, we have

Je™* MW = B 5/ Ry /aUs F = B, 5/5U-s Ry /o .

Since U,sRﬁ/4f€ L2(Q,6[€_sﬁ/2_5+s]), it follows that Je *‘W¥ € Dome 5~
and

el Je W = By 5/, Ry F = J 0,
or equivalently
Je*hw = el Ju, (21.46)
We note that U, J¥ € () Dome*", hence they are analytic vectors for L. There-
fore, we can analyticalli;‘f<cgontinue (21.46), using that J is anti-linear, to obtain
Je't U = et .

Since the set of such vectors ¥ is dense in H, this proves (2).
Let us now prove (3). Since § is the strong closure of F, it suffices to show
that, for A, B € §g, one has

[JAJ, B] = 0. (21.47)
To prove (21.47), it suffices, using (2), to prove that
[JAJ, et Be7 ) =0, teR, ABcAl. (21.48)

Let us now prove (21.48).

https://doi.org/10.1017/9781009290876.022 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.022

632 Euclidean approach for bosons

First note that, for any Ao, Bg/o € L™ (Q), we have
AgU_sBg Uy = U_3BgoUs Ag. (21.49)

Assume now that Ay € L>=(Q, S0} 1) and By s € L®(Q, G{ﬂ/2}vl~b). Lot O —
Eqo,5/01f for f € L*(Q, S 59, 1), 0 < € < 3/2. Since By U, f and By s U, Ay f
belong to L? (Q, 6[87ﬁ/2]7/¢), we see that

E.5/2yBs2Usf = Bﬂ/ze’SL\I/,
E,8/2yBs2Us Ao f = Bﬁ/2e_SLAo\I'

belong to Dome*’ and (21.49) can be rewritten as
Aoe"LBﬁ/ge_SL v = e"“’LBg/Qe_SLAO\II. (21.50)
Hence, to prove (21.48) it suffices to show that
s+ eSLBﬁ/Qe*SLAO\I/

can be holomorphically extended to {0 < Rez < ¢}, and that its analytic exten-
sion to s = —it equals e "X By pel'F Ay,
Let us take a vector ¥ of the form
1
U = H eit]LA]'Q
j=n
fort; >0,t +---+t, <eand A; € A Recall from Prop. 21.48 that the linear

span of such vectors is dense in H.
Let By € & such that B/, = JByJ. By (2), we have

eSLBWQe*sLAU = JeisLB()JeisLAU.
Hence,
e*F By e M AgW = Je*F ByJe Tt Ay

1
= Je*tByJe "t Ay T1 e 1 A;Q

j=n

= JemsL Byt --TIL 0L [ (436 ) A7,

n
Jj=1

using (21.43). By Prop. 21.49, this can be analytically continued to s = it to give
JeitLBOefith(ﬂ/sz}’:l t;)L ﬁ (A;fe—t,L)AgQ

j=1
. . 1
= Jel'' Byel't J A, I e_thAjQ
j=n
="l JByJe " AT = e'F By e AT,
once again using (21.43). This completes the proof of (3). O

Proof of Thm. 21.47, Part 2. We will use the Tomita—Takesaki theory described
in Subsect. 6.4.2. Let us check first that  is cyclic and separating for §. Let
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U € {FoQ}+. It follows that, for all ¢;,--- ,t, € R, A; € 2, one has
1 .
(w] 11 (4;¢01)02) =o.
j=n

By analytic continuation and Prop. 21.49, this implies that for all (¢1,...,t,) €
Jz(n) one has

(w b (4;6751)0) =0,

j=n

1
Since the vectors of the form II (A4;e~" %) span H, this implies that ¥ = 0,

and hence € is cyclic for §. ’

Since JQ = Q, Q is also cyclic for J§J. By (3) of Lemma 21.50, this implies
that  is separating for §.

By (1) of Lemma 21.50,

e PLI2BO = JB*Q, Beg. (21.51)
Therefore, the operator S of the Tomita—Takesaki theory is
S = Je L2,

By the uniqueness of the polar decomposition of S, this implies that J is the
modular conjugation and e #/2 the modular operator for the state . This
completes the proof of the theorem. O

21.4.5 Gaussian 3-Markov path spaces I

We would like to describe a (-periodic version of the construction described in
Subsect. 21.2.4. Let X be a real Hilbert space and € > 0 a self-adjoint operator on
X. (Again, we assume the reality just for definiteness.) Consider the real Hilbert
space

L*(S5,X) ~ L*(S5,R) @ X
and the covariance
C = (D? + 62)_1

with B-periodic boundary conditions. (This means —D? is the Laplacian on the
circle Sg.)

Consider also the space Q := C-rL? (Sp, X) and its dual, that is, @*, which
can be identified with C7 L2(S3, X).

Lemma 21.51 Let us define fort € Sz the map

ji (2etanh(Be/2))TX 5 g 6, @ g€ Q. (21.52)
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Then

) ) efltlftg‘e +ef<87|t17t2|)6
(Jt, 91131, 92) o (91

2¢(1 — e=P¢) gQ)X'
In particular j; is isometric.

Proof The proof is analogous to the proof of Lemma 21.15. In particular, we
use the discrete unitary Fourier transform

L? (Sﬂ) EN (fn) er (Z)a fo = 57% eiiQWnt/ﬁf(t)dt
S‘gj
and apply
127Tnt/5 ef|t\e +ef(3*\t|)e

6 Z Qmn/B)P1+ e 2e(1—e Pe) (21.53)

instead of (21.8). O

Definition 21.52 Fort € R, resp. for I C R we define Q;, e;, €', resp. Qy, ey,
e, as in Subsect. 21.2.4.

Definition 21.53 We define
rf(s) = f(=s), wf(s)=f(s—t), fe€Q, steSs
Proposition 21.54 (1) Let t,t1,t2 € S, t1 <ty and f € Q. We have
e f(s) = (" —e P ) (el el (e — ) el (1 — 7)) £ (8),
el f(s) = My, 1,1 (5)f(5) + (sinh(B + 11 — ta)e)

X <11]_ﬂ/2,t1 () (sinh ((s+ B — ta)e) f(t2) — sinh ((s — tl)e)f(tg))

e, 3/21(5) (simh (s = t2)€) f(t2) = sinh (s = 5~ tl)e)f(tg))>.
2 (]tl,tz[ Dome) is dense in Q4|
3 R S5t u; is an orthogonal [3- pemodzc Cy-group on Q.
4) r is an orthogonal operator satisfying ru; = u_yr and r> = 1.

(2) C
3)
(4)
(5) tGZSI w Q is dense in Q.
(6)
(7)

6) reg = eg.

7) €l0,5/2)€[-5/2,0] = €{0,8/2} -

21.4.6 Gaussian $-Markov path spaces 11

As in Subsect. 21.2.4, we consider the Gaussian L? space with covariance C.
According to the notation introduced in Subsect. 5.4.2, this will be denoted

L2(L(S5,X),e”C 9dg), (21.54)
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where we use ¢ as the generic variable in L*(S3, X). Let L?(Q,du) be a concrete
realization of (21.54).

Definition 21.55 For s € S; and g € (26tanh(ﬂe/2))%7)(, we define

0s(9) =00, @9) e () L'Q

1<p<oo

called the sharp-time fields.
Set

ReU) .= o)) o) .= eolu—tf)  reQ te Ss, (21.55)

and extend R and U; to L*(Q,dp) by linearity and density.
We obtain the following proposition, whose proof is completely analogous to
Prop. 21.23.

Proposition 21.56 Let G be the completion of the Borel o-algebra on Q. Let

- L
S be the o-algebra generated by the functions e?9) for g € (26 tanh(ﬁe/Q)) X
Let R,U; be defined in (21.55). Then (Q,8,80,Us, R, p) is a B-Markov path
space.

Definition 21.57 (Q,&,6,U;, R, 1) defined above will be called the Gaussian
[-Markov path space with covariance C'.
The B-KMS system obtained from the Gaussian path space can be interpreted
in terms of Araki-Woods CCR representations. We set
p=("—1"

Recall that in Subsect. 17.1.5 we defined the (left) Araki-Woods CCR repre-
sentation, denoted g — W, 1(g). Recall also that J; denoted the corresponding
modular conjugation on the Araki-Woods W*-algebra.

Theorem 21.58 There exists a unique unitary map
Toner : H — T ((26)2CX @ (2€) 7 TX)

intertwining the CCR representation of the time-zero fields with the Araki—Woods
CCR representation at density p, that is,

Tcucl]- = Q,
) 11
Toyer€?0 olg)p—1 =W,i(g9) = e’“b<(11+2'”)29@"29)7 gE (26tanh(ﬂe/2))

eucl T

N\»—A

It satisfies

Tewa L = dT'(e & —€) Ty, (21.56)
TcuclJ = JsTcucl~ (2157)
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Proof The proof is similar to Thm. 21.26. To construct Tey, it suffices by
linearity and density to check that

1
@ = eI — (20 A e e ) )
Q
_ (Q|eid)ﬂ,1(g)Q)’

which is immediate. To check (21.56) we verify using Lemma 21.25 that
/ e 1000 dy = (W, 1(g1) Qe T EW, 1(92)Q), 0<t < B/2.
Q

(21.57) can be checked similarly. O

21.5 Perturbations of §-Markov path spaces

Let us fix a §-Markov path space (@, S, Sy, Uy, R, 1t). In this section we describe
a large class of perturbations of the measure p that still satisfy the axioms of
a (-Markov path space. We also describe the corresponding new physical space
and Liouvillean.

We will restrict ourselves to perturbations given by a real Gjy-measurable func-
tion V such that

V, eV e LNQ). (21.58)

As in Sect. 21.3, it is also possible to consider more singular perturbations asso-
ciated with the equivalent of a Feynman—Kac—Nelson kernel; see Klein—Landau
(1981b).

21.5.1 Perturbed path spaces
By Lemma 21.32, we know that the function

Fo— e—fsa U (V)ds

belongs to L'(Q).
Definition 21.59 We introduce the perturbed measure

Fdu
fQ Fdu

dpy =

Clearly, py is a probability measure.
Note that we can write F' = F|_g/5 01 Fjo,5/2) for

Flops =€ 182U, (v)ds

Fi_pyag = e 120 U8 = R(Eg 5).

)

Flo.5/215 resp. Fi_5/2,01 18 ©(,5/2]-, resp. &|_3/2 g)-measurable.
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Proposition 21.60 The perturbed path space (Q, S, Sy, Uy, R, uy ) is -Markov.

Proof We first check the properties of Def. 21.41. Since F' > 0 u—a.e., the sets
of measure 0 for p and uy coincide, so & is complete for py and L (Q,u) =
L (Q, py ). The function F is clearly R and U; invariant, hence R and U; pre-
serve [y .

Approximating F by F,, = Flj ,,;(F') and using that U; is strongly continuous
in measure for p, we see that U, is also strongly continuous in measure for puy .
By Lemma 5.33, this implies that U; is strongly continuous on L?(Q, uy ).

Property (21.5) of Def. 21.7 is obvious. It remains to check the Markov prop-
erty. To simplify notation we set Ey = E{Oﬁﬁ/2}7 E, = E[Oﬁﬁ/Q]a E_= E[—B/ZA,O]
and decorate with the superscript V' the corresponding objects for uy . We also
set F'y = Fo g2, F- = F|_p/2,0], so that F' = F F_.

Property (6) of Prop. 5.27 can be rewritten as the following operator identity,
where we identify a function and the associated multiplication operator:

EY = (E/(F))'E/F, I1CSj.
Using R(F) = F and RE, = E,, we see that RE) = E} .
Then using (2) of Prop. 5.27, we obtain that
EY = (BEw(FyF_)) 'Ex+F, F_ = (B+(F3)) ' ExFy = (Eo(Fy)) EsFs,
where in the last step we used the S-Markov property for p. This yields
EVEY = (Ey(F.)) 'E,F_(Ey(F,)) 'E_F,
( ))*1(E0<F+>)*1E+F_E_F+
= (Bo(F-)) ( 0(Fy)) 'E.E_F_F,
= (Eo(Ff)) ( o(Fy)) 'ELE_F
(F- ) 'EyF. (21.59)
Next we compute, as an identity between functions,
Eo(F)Ey(F,) = By (F)E_(F.) = (B, E_)(F_F,) = Ey(F).  (21.60)

Combining (21.59) and (21.60), we obtain that EY EY = E}, which implies the
Markov property for py . O

21.5.2 Perturbed Liouvilleans

Applying Subsect. 21.4.2, we can associate with the path space
(Q,6,6,U;, R, uy) a perturbed S-KMS system. In particular, the perturbed
physical space is

HP' = L*(Q, Sq0,5/23, v ).
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It is convenient to relate this perturbed KMS system with the free KMS system
obtained with the measure p and living on the free physical space H. We will
decorate with the subscript V' and the superscript int the objects obtained by
Subsect. 21.4.2 for the path space involving the perturbed measure py . The
corresponding objects transported to H will be decorated with just the subscript
V.

Let us first unitarily identify H with it

Lemma 21.61 Let Ty : H¥" — H be defined by

1
Ty = ———FE9,5/23 (Flo,5/2)¥)-
(fQ Fdp)z

Then Ty is unitary.

Proof Without loss of generality we can assume that f 0 Fdu=1. Let ¥, ¢
L*(Q, 610,32y, v ) = H*. Using the reflection property and (21.60), we have

(Ty @|Tv ¥)x :/QE{o,ﬁ/z}(F[o,ﬂ/Q]q’)E{o,ﬁ/Q}(F[o,ﬁ/ﬂ‘I’)dM

_/QF[Oﬁ/2]q"1’E{0.,3/2}(F[—ﬂ/z,o])du
= /Q Flo.5/2) @Y Elo /21 Bl 2.0)(Fl-3/2.0)dn
Z/QF[O,/)’/ﬂ‘I"I’F[a/Q,mdu

The following result is shown in Klein-Landau (1981b).

Proposition 21.62 Let V be a real &y-measurable function satisfying (21.58).
Set

F‘[O‘f,] — eflﬁj Us (V)ds

and, for 0 <t < /2,

M, = Span< U F[O,.s]LOO(QvG[O,ﬂ/?—t]aﬂ))7

0<s<p/2—t
Dt = E{Oﬁ/g}Mfl.

Then, for any 0 < s <t < /2, there exists a unique Py (s): Dy — Di_s such
that

Py (s)E{0,5/23f = Eo.5/23Flo.qUs f,  f € L*(Q, ).

{Dy, Pv () }icj0,/2) is a local Hermitian semi-group on H.
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Definition 21.63 The self-adjoint operator associated with { D, Py (t)}icp0,5/2]
is denoted by Ly .

The following theorem is an analog of Thms. 21.37, 21.38.
Theorem 21.64 Assume in addition to (21.58) that either

Ve L*(Q,dp), V>0, (21.61)
or
Ve L*T(Q,dp). (21.62)
Let L be the free Liouvillean constructed in Def. 21.44. Then
Ly = (L+ V)L

We denote by 7{, the dynamics on § generated by %V . We set
QV = ||e_ﬁLV /QQ”_le—ﬂLV /QQ

and denote by wy the state on F generated by the vector Qy . Clearly, (§, 7y, wy )
is a B-KMS system. We denote by Ly the associated standard Liouvillean (see
Def. 6.55). Note that both I~/V and Ly generate the same dynamics on §, even
though they are different operators.

We have the following result:

Theorem 21.65 Let V be a real Sy-measurable function satisfying (21.58) and
either (21.61) or

g 1
Ve LP(Q"LL)7 e7%V S Lq(Q7/~‘L)7 p71 + q71 == 5, 2 <p, qg<oQ. (2163)
Then
Ly = (Ly — JV.J)<.

The relationship between the two kinds of perturbed S-KMS system —
(§,7v,wy ), which lives on the free space, and (F', 7{ft, wit®), which lives on

on the perturbed space — is described in the following theorem:
Theorem 21.66 Let V be a real Sy-measurable function satisfying the assump-
tions of Thm. 21.64. Then

(1) APt =Ty ATy, Fpt =Ty ' FTv;

(2) TVQ”“ Qv ;

(3) Tv TIV““( Ty =1 (Tv AT '), Aegint, teR;
(4) Ty it T, = J.

21.6 Notes

As explained in the introduction, the name “Euclidean approach” comes from
the fact that the Minkowski space R"'¢ is turned into the Euclidean space R'*¢
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by the Wick rotation. Hence, the Euclidean approach is usually associated with
relativistic quantum field theory. As we saw, it can also be applied in other
situations, as in the usual non-relativistic quantum mechanics. In constructive
quantum field theory, the use of the Wick rotation was advocated by Symanzik
(1965). The construction of interacting Hamiltonians through the corresponding
heat semi-group appeared earlier in works of Nelson (1965) and Segal (1970). The
monographs by Glimm-Jaffe (1987) and Simon (1974) contain a more detailed
treatment of Euclidean methods at zero temperature, essentially in two space-
time dimensions. Osterwalder—Schrader (1973, 1975) formulated a set of axioms
for a Euclidean quantum theory, parallel to the Wightman axioms on Minkowski
space, allowing the reconstruction of a physical theory in a way similar to the
one explained here.

The treatment of this chapter follows a series of interesting papers by Klein
(1978) and Klein-Landau (1975, 1981b). In particular, the proof of Thm. 21.37
can be found in Klein—Landau (1975), Thm. 3.4, and the proof of Thm. 21.38 in
Klein-Landau (1981a), Sect. 2.

Our treatment of path spaces at positive temperature follows Klein—Landau
(1981b) and Gérard—Jaekel (2005). In particular, Thms. 21.43 and 21.47 are due
to Klein-Landau (1981b). Thms. 21.65 and 21.66 are proven in Gérard—Jaekel
(2005).
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