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ABSTRACT

A simple technique for continuity estimation for ruin probability in the com-
pound Poisson riskmodel is proposed. The approach is based on the contractive
properties of operators involved in the integral equations for the ruin probabil-
ities. The corresponding continuity inequalities are expressed in terms of the
Kantorovich and weighted Kantorovich distances between distribution func-
tions of claims. Both general and light-tailed distributions are considered.
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1. INTRODUCTION

Throughout the paper, a compound Poisson risk process is considered:

Rt = u + ct −
Nt∑
j=1

Xj , t ≥ 0, (1.1)

where Nt is a Poisson process with rate λ, independent of {Xj }, c is the premium
rate and, u ≥ 0 is the initial reserve.

A common distribution function of the i.i.d. positive random variables, rep-
resenting claim sizes, is denoted by F . Let

ψ(u) := P
(
inf
t≥0

Rt < 0|R0 = u
)

, u ≥ 0, (1.2)

be the ruin probability in the infinite time.
Typically, in applications, the parameters λ and F that govern the risk model

are unknown. Therefore, they must be approximated by parameters λ̃, F̃ . Such
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approximation can be the result of theoretical considerations or of statistical
procedures. (See e.g. Benouaret and Aı̈ssanni (2010), Enikeeva et al. (2001),
Kalashnikov (2000) for a discussion of this issue.)

Under this scenario, one could consider a risk process as in (1.1), but one
that is governed by the parameters λ̃ and F̃ . That is, the approximations λ̃

and F̃ define an approximated risk process. We denote the ruin probability for
this process by ψ̃(u), u ≥ 0. Our main objective is the comparison between ψ

and ψ̃ .
Specifically, assuming that

μ :=
∫ ∞

0
xdF(x) < ∞, μ̃ :=

∫ ∞

0
xd F̃(x) < ∞

hold, and the net profit conditions:

ρ := λμ

c
< 1, ρ̃ := λ̃μ̃

c
< 1, (1.3)

we developed a simple technique to prove the following inequalities:

sup
u≥0

|ψ(u) − ψ̃(u)| ≤ μ̃

c − λμ
|λ − λ̃| + λ

c − λμ

∫ ∞

0
|F(x) − F̃(x)|dx, (1.4)

sup
u≥0

eαu|ψ(u) − ψ̃(u)| ≤ K
β

[∫ ∞

0
exβd F̃(x) − 1

]
|λ − λ̃| + Kλ

∫ ∞

0
exβ |F(x)

−F̃(x)|dx, (1.5)

where the values of constants α > 0, β > 0, and K = K(c, λ̃, α) < ∞ will be
specified in Theorem 2.4 of Section 2.

Inequality (1.4) is obtained in a general setting, whereas (1.5) is proved for
the light-tailed distributions F and F̃ . In the last case, the exponential vanishing
of ψ(u) and ψ̃(u) was used.

In particular, bounds (1.4) and (1.5) could be useful in the typical situations
where the ruin probability ψ cannot be calculated in the model (1.1). In such
a case, the distribution of claim sizes F is approximated by some distribution
function F̃ , for which the ruin probability ψ̃ can be found.

Beginning with the classical Cramér–Lundberg approximation, several
methods for ruin probability estimation have been proposed (see, for instance,
the book by Asmussen and Albrecher (2010) and the references therein). How-
ever, to get such approximations it is necessary to have either the values of two,
three or more moments of F , or certain characteristics of its moment generating
function (or perhaps other parameters of F). A similar situation occurs in the
well-developed theory of upper or two-sided bounds of ruin probability (see,
for instance, the bounds considered in the books by Asmussen and Albrecher
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(2010), Rolski et al. (1999) and the papers byCai andDickson (2002),Kartashov
(2001), Kalashnikov (1996) and Kalashnikov (1997)).

In our setting, in order to apply inequality (1.4), it is sufficient to know the
first moments of claim size distributions (or some bounds for these moments).
In Section 3, we briefly discuss how (1.4) can be used to evaluate the convergence
rate of non-parametric estimators of ruin probabilities.

There are few papers in the literature that offer continuity inequalities for
ruin probability. We found the following papers: Benouaret and Aı̈ssani (2010),
Enikeeva et al. (2001), Rusaityte (2001) and Kalashnikov (2000). The method
developed in these works is also suitable for more general risk models (e.g. for
the Sparre Andersen model).

Themethod used in the first two papersmentioned above is based on a rather
complicated technique expressing the ruin probabilities in terms of stationary
distribution of related Markov chains. To compare stationary distributions of
two “close” chains, the appropriated ergodicity conditions and results from
Kartashov (1986), Meyn and Tweedie (1993), and Yu (2005) were used. Such
an approach allows the estimation of the ruin probability continuity for rather
general risk processes. However, the inequalities obtained in the aforementioned
papers have the following peculiarities:

i. They are local, i.e. the inequalities hold only if the parameters of risk pro-
cesses compared are close enough.

ii. The inequalities are not linear with respect to the distances between the
parameters of the models.

In a recent paper by Benouaret and Aı̈ssani (2010), the strong total variation
metrics were used and in Enikeeva et al. (2001) the deviation of ψ̃ from ψ is
measured by means of

∫ ∞
0 eαu|ψ(u) − ψ̃(u)|du.

Rusaityte (2001) studied the continuity of ruin probability for Markov mod-
ulated risk models with investments. Applying regenerative techniques and un-
der suitable Lyapunov-type conditions, Rusaityte obtained the continuity in-
equalities for ruin probability. For the case of light tails, the deviations of claim
size distributions is measured by the weighted uniform metric.

Another direction for the study of continuity of ruin probabilities is based
on sensitivity analysis (see e.g. Asmussen and Albrecher (2010), Chan and Yang
(2005)). In this theory, assuming that F belongs to some parametric family,
derivatives of the ruin probability with respect to the parameters are calculated.
This allows local estimations of the ruin probability alterations to be obtained
with respect to disturbances of the parameters of F and λ.

2. MAIN RESULTS

2.1. The general case

Let F denote the set of distribution functions F of all positive random variables.
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The function K : F × F −→ [0, ∞],

K(F,G) :=
∫ ∞

0
|F(x) − G(x)|dx, (2.1)

is called the Kantorovich metric in F.
It is well known that if

∫ ∞
0 xdF(x) < ∞ and

∫ ∞
0 xdG(x) < ∞ then

K(F,G) < ∞, and for a sequence {F; Fn} ∈ F with
∫ ∞
0 xdFn(x) < ∞,∫ ∞

0 xdF(x) < ∞, we have K(Fn, F) −→ 0 if and only if

i. Fn ⇒ F (converges weakly); and
ii.

∫ ∞
0 xdFn(x) −→ ∫ ∞

0 xdF(x) (as n −→ ∞).
(See e.g. Rachev and Rüschendorf (1998))

Theorem 2.1.

sup
u≥0

|ψ(u) − ψ̃(u)| ≤ K
[
λK(F, F̃) + |λ − λ̃|μ̃]

, (2.2)

where K is the Kantorovich metric defined in (2.1), and

K = min
{

1
c − μλ

,
1

c − μ̃̃λ

}
. (2.3)

Inequality (2.2) holds for every distribution functions of claim sizes F , F̃
(provided that the averages are finite), particularly for the so-called heavy-tailed
distributions. Unfortunately, we could not find explicit formulas for calculating
ruin probabilities in some particular cases of heavy tails. Thus, to give a numer-
ical illustration of (2.2) we consider claim sizes with the Gamma distribution.

Example 2.2. For ε > 0 let F and F̃ = F̃ε have the densities Gamma(α = 2, β =
1) and Gamma(α = 2, β = 1 + ε), respectively. Using the exact expressions for
the ruin probabilitiesψ(u) and ψ̃(u), given for instance in Yuanjiang et al. (2003),
we have calculated numerically supu≥0 |ψ(u)− ψ̃ε(u)| and the term λ

c−μλ
K(F, F̃ε)

on the right-hand side of (2.2). For λ = λ̃ = 1 the results are presented in the
following tables.

TABLE 1

c = 3, ρ = 2/3.

ε supu≥0 |ψ(u) − ψ̃ε(u)| λ
c−μλ

K(F, F̃ε)

0.5 0.2931 0.6667
0.2 0.1594 0.3333
0.1 0.0908 0.1818
0.01 0.0104 0.0198
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TABLE 2

c = 10, ρ = 1/5.

ε supu≥0 |ψ(u) − ψ̃ε(u)| λ
c−μλ

K(F, F̃ε)

0.5 0.0685 0.0833
0.2 0.0345 0.0417
0.1 0.0189 0.0227
0.01 0.0021 0.0025

As we can see from these tables, inequality (2.2) works better for small ρ (i.e.
in the light traffic case). In this example, for c = 100 (ρ = 1/50 and ε = 0.01)
the left-hand side of (2.2) is 0.000198, while its right-hand side is 0.000202.

From the point of view of statistical applications, it is preferable to have a
distance as “weak”as possible on the right-hand side of (2.2). The convergence
in K is equivalent to the weak convergence plus the convergence of the first
moments. The next question is then: Can the Kantorovich metric K in (2.2) be
replaced by, say, the uniform distance

U(F, F̃) := sup
x≥0

|F(x) − F̃(x)|?

(For continuous limiting distributions, the convergence in U coincides with
the weak convergence). The answer is negative, since the convergence of the first
moments is important for the stability of ruin probabilities. Indeed, we know
that, if λ = λ̃ then

|ψ(0) − ψ̃(0)| = λ

c
|μ − μ̃| .

The following example is offered to show what happens for u > 0.

Example 2.3. We denote by X and X̃ the random variables with distribution func-
tions F and F̃, respectively. Let λ = λ̃ = 1, c = 3, X = 1 and for n = 1, 2, . . .

X̃ = X̃n =
{
1, with probability p1 = 1 − 1/n,
n, with probability p2 = 1/n.

Then μ = EX = 1, μ̃n = EX̃n = 2−1/n, and |ψ(0)− ψ̃n(0)| = 1/3−1/3n −→
1/3.

On the other hand, it easy to see that U(F, F̃n) −→ 0 as n −→ ∞ and partic-
ularly F̃n =⇒ F.

To ensure that u = 0 is not an exceptional value, we take u = 3 and, using the
formulas for ψ(u) when X is a random variable taking values in a finite set (see
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e.g. Chapter 4 in Kass et al. (2001)), we obtain

ψ(3) ≈ 0.0018, and

ψ̃n(3) = 1 −
[
e − 2

3
e2/3

(
1 − 1

n

)
+ 1

18
e1/3

(
1 − 1

n2

)]
−→ 0.5009,

as n −→ ∞.

2.2. The case of light-tailed distributions of claim sizes

Assumption 1.

i. There exists a number r∗ ∈ (0, ∞] such that J (r) := ∫ ∞
0 erxdF(x) < ∞ for

r < r∗, and J (r) −→ ∞ as r ↑ r∗.
ii. For some r̃∗ ∈ (0, ∞] the same is true for the distribution function F̃ .

It is well known that under the above assumption adjustment coefficients
γ ∈ (0, r∗), γ̃ ∈ (0, r̃∗) exist, and Lundberg inequalities:

ψ(u) ≤ e−γ u, ψ̃(u) ≤ e−γ̃ u, u ≥ 0 (2.4)

hold (see e.g. Asmussen and Albrecher (2010), Rolski et al. (1999)).
These inequalities show that it is not effective in practically interesting cases

of large initial capitals u tomeasure the deviation of ψ̃ fromψ under the uniform
metric supu≥0 |ψ(u) − ψ̃(u)| (as in Theorem 2.1). It is better to fix α ∈ (0, γ∗),
where γ∗ := min(γ, γ̃ ), and consider the distance

dα(ψ, ψ̃) := sup
u≥0

eαu|ψ(u) − ψ̃(u)|. (2.5)

In the Theorem 2.4 below, we obtain the upper bound for dα(ψ, ψ̃) in (2.5),
where α can be chosen to be arbitrarily close to γ∗ (but different to it). The
price for such improvement of the deviation measure is that we have to replace
the Kantorovich metric on the right side of inequality (2.2), by the following
weighted Kantorovich metric Kβ on the space F of all distribution functions of
positive random variables. For a given β > 0,

Kβ(F,G) :=
∫ ∞

0
eβx |F(x) − G(x)| dx. (2.6)

The sufficient condition of finiteness of Kβ(F,G) is
∫ ∞
0 eβxdF(x) < ∞ and∫ ∞

0 eβxdG(x) < ∞.
On the other hand, under such restrictions, K(F, Fn) −→ 0 if and only if Fn

converges to F weakly and
∫ ∞
0 eβxdFn(x) −→ ∫ ∞

0 eβxdF(x) as n −→ ∞.
Given that we could not find supporting references for the above, we provide

a proof in the Appendix.
Now let α ∈ (0, γ∗) be an arbitrary fixed number and β be an arbitrary but

fixed upper bound of γ , such that

min(r∗, r̃∗) > β ≥ γ. (2.7)
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Theorem 2.4. Under Assumption 1,

sup
u≥0

eαu|ψ(u) − ψ̃(u)| ≤ 1
βc(1 − Mα)

×
[∫ ∞

0
exβd F̃(x) − 1

]
|λ − λ̃| + λ

c(1 − Mα)
Kβ(F, F̃),

(2.8)

where Kβ is the weighted Kantorovich metric defined in (2.6), and

Mα := λ̃

c

∫ ∞

0
eαx[1 − F̃(x)]dx < 1. (2.9)

The following inequality that was obtained for the case λ̃ = λ provides the
bound with greater accuracy than (2.8).

Proposition 2.5. Let λ̃ = λ. Then, under hypotheses of Theorem 2.4,

sup
u≥0

eαu|ψ(u) − ψ̃(u)| ≤ λ

c(1 − Mα)

×
[
sup
u≥0

eαu
∫ ∞

u
|F(x) − F̃(x)|dx+ sup

u≥0
e−(γ−α)u

∫ u

0
eγ x|F(x) − F̃(x)|dx

]
.

(2.10)

Remark 2.6.

a. We cannot take α = γ∗ = min(γ, γ̃ ), since in (2.8) and (2.9) it can be Mα=1.
b. To prove inequality (2.8), we have essentially used Lundberg’s inequalities
(2.4). It is hardly credible that (2.8) could, somehow be derived from inequality
(2.2). In a certain sense, inequalities (2.2) and (2.8) are “immeasurable”. For
instance, we can see from a simple example with exponential distributions that
when taking in (2.8) β = 0, λ = λ̃ the resulting inequality is false for α close
enough to γ .

2.3. Remarks on approximation by empirical distributions

As an example of application of inequality (2.2), we can consider the important
situation from a practical point of view. That is, when one needs to estimate the
ruin probability ψ(u) in the risk model (1.1) without assuming any preliminary
information on intensity of claims λ and/or the distribution function of claim
sizes F . Instead, it is assumed that i.i.d. observations X1, X2, . . . , Xn of the ran-
dom variable X, distributed according to F , are available. Also, that statistical
data τ1, τ2, . . . , τn on intervals between claims arrivals are acceptable.
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Among other possible approaches to non-parametric statistical estimation
of ruin probability (see e.g. Frees (1986), Bening and Korolev (2003), Mnat-
sakanov et al. (2008), Marceau and Rioux (2001)), one can consider the follow-
ing one. The estimators

λ̂n := n
τ1 + · · · + τn

, (n = 1, 2, . . . )

and the empirical distribution functions

F̂n(x) := 1
n

n∑
i=1

δXi (x), x ≥ 0,

are calculated, and they are used to approximate the unknown λ and F .
In this case, the calculation of the ruin probability ψ̃ ≡ ψ̃n requires only

adequate computer facilities, since the random variable X̃n with the distribution
F̂n takes n values X1, X2, . . . , Xn with probabilities equal to 1/n. There are well-
known explicit formulas to calculate the ruin probability in the classic model if
a claim size is a random variable with a finite number of values (see e.g. the book
by Kass et al. (2001)).

It is known that if
∫ ∞
0 xdF(x) < ∞, then

∫ ∞
0 |F(x)− F̂n(x)|dx −→ 0 almost

surely as n −→ ∞ (see for instanceRachev (1991)). Also λ̂n −→ λ almost surely.
Therefore by (2.2), ψ̃n(u) is a consistent estimate of ψ(u), and with probability
one supu≥0 |ψ(u) − ψ̃n(u)| −→ 0 as n −→ ∞.

Additionally, if we assume that for some δ > 0,μ2+δ :=
∫ ∞
0 x2+δdF(x) < ∞,

then from the results of Bobkov and Ledoux (2014) it can be derived that

E
∫ ∞

0
|F(x) − F̂n(x)|dx ≤

[
1 + 2

δ
μ
1/2
2+δ

]
1√
n
, n = 1, 2, . . . . (2.11)

Using the asymptotic normality, we can see that

E|λ − λ̃n| ≤ c(λ)
1√
n
, n = 1, 2, . . . (2.12)

Assuming the existence of some known upper bounds for λ, μ and μ̃, we
can substitute these bounds in (2.2). Combining suchmodification of inequality
(2.2) with (2.11) and (2.12), we can obtain an upper bound for average deviations
ψ̃n(u) from ψ(u).

3. PROOFS

We will use notation: F(x) := 1 − F(x); F̃(x) := 1 − F̃(x), x ≥ 0.
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The following integral equations for ruin probabilities are commonly known
(see e.g. Rolski et al. (1999)),

ψ(u) = λ

c

(∫ ∞

u
F(t)dt +

∫ u

0
ψ(u − t)F(t)dt

)
, (3.1)

ψ̃(u) = λ̃

c

(∫ ∞

u
F̃(t)dt +

∫ u

0
ψ(u − t)F̃(t)dt

)
, u ≥ 0. (3.2)

Let X be the space of all functions x : [0, ∞) −→ [0, 1] endowed with the
uniformmetric ν(x, y) := supu≥0 |x(u)− y(u)|. Then (X, ν) is a complete metric
space.

It is easy to check that for the operators

Tx(u) = λ

c

(∫ ∞

u
F(t)dt +

∫ u

0
x(u − t)F(t)dt

)
, u ≥ 0, (3.3)

T̃x(u) = λ̃

c

(∫ ∞

u
F̃(t)dt +

∫ u

0
x(u − t)F̃(t)dt

)
, u ≥ 0, (3.4)

we have TX ⊂ X and T̃X ⊂ X.
Moreover, these operators are contractive on X with modules ρ = λμ/c and

ρ̃ = λ̃μ̃/c, respectively. Indeed, by (3.3), for every x, y ∈ X,

ν(Tx,Ty) = λ

c
sup
u≥0

∣∣∣∣∫ u

0
x(u − t)F(t)dt −

∫ u

0
y(u − t)F(t)dt

∣∣∣∣
≤ λ

c
sup
u≥0

∫ u

0
F(t) sup

s∈[0,u]
|x(s) − y(s)|dt

≤ λ

c
ν(x, y)

∫ ∞

0
F(t)dt = λμ

c
ν(x, y).

The inequality

ν(T̃x, T̃y) ≤ λ̃μ̃

c
ν(x, y) (3.5)

is similarly verified.
According to (3.1), (3.2), ψ and ψ̃ are the unique fixed points of T and T̃:

ψ = Tψ and ψ̃ = T̃ψ̃ .
Now,

ν(ψ, ψ̃) = ν(Tψ, T̃ψ̃) ≤ ν(Tψ,Tψ̃) + ν(Tψ̃, T̃ψ̃)

≤ ρν(ψ, ψ̃) + ν(Tψ̃, T̃ψ̃),

or

ν(ψ, ψ̃) ≤ 1
1 − ρ

ν(Tψ̃, T̃ψ̃) = c
c − λμ

ν(Tψ̃, T̃ψ̃). (3.6)
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In view of (3.3) and (3.4), for each x ∈ X we have

ν(Tx, T̃x) ≤ sup
u≥0

∣∣∣∣λc
(∫ ∞

u
F(t)dt +

∫ u

0
x(u − t)F(t)dt

)
− λ

c

(∫ ∞

u
F̃(t)dt +

∫ u

0
x(u − t)F̃(t)dt

)∣∣∣∣
+ sup

u≥0

∣∣∣∣λ − λ̃

c

(∫ ∞

u
F̃(t)dt +

∫ u

0
x(u − t)F̃(t)dt

)∣∣∣∣
≤ λ

c

∫ ∞

0
|F(t) − F̃(t)|dt + |λ − λ̃|

c

∫ ∞

0
(1 − F̃(t))dt

= λ

c
K(F, F̃) + |λ − λ̃|

c
μ̃.

Combining the last inequality with (3.6), we obtain

ν(ψ, ψ̃) ≤ 1
c − λμ

[
λK(F, F̃) + |λ − λ̃|μ̃]

.

To prove the similar inequality with 1
c−̃λμ̃

instead of 1
c−λμ

inequality (3.5) is
used. Thus, we have proved inequality (2.2).

Regarding the proof of Theorem 2.4, first we note that α < min(γ, γ̃ ) <

min(r∗, r̃∗), where r∗, r̃∗ are numbers from Assumption 1. Hence, the constant

Mα := λ̃

c

∫ ∞

0
eαt F̃(t)dt, (3.7)

is finite, as well as the function I(r) := λ̃
c

∫ ∞
0 ert F̃(t)dt, r ∈ [0, r̃∗). We have

that I(0) = λ̃μ̃

c
< 1 and I(r) is strictly increasing with I(γ̃ ) = 1, where γ̃ is

the adjustment coefficient in the approximating risk model (see e.g. Rolski et al.
(1999)). Therefore, inequality (2.9) holds.

In the space X, we define the following metric να (taking values in [0, ∞]):

να(x, y) := sup
u≥0

eαu|x(u) − y(u)|, x, y ∈ X.

Now we show that the operator T̃ in (3.4) satisfies the inequality:

να(T̃x, T̃y) ≤ Mανα(x, y); x, y ∈ X, (3.8)

where Mα < 1 is the constant from (3.7).
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By (3.4), we obtain that

να(T̃x, T̃y) = sup
u≥0

eαu λ̃

c

∣∣∣∣∫ u

0
x(u − t)F̃(t)dt −

∫ u

0
y(u − t)F̃(t)dt

∣∣∣∣
≤ λ̃

c
sup
u≥0

∫ u

0
F̃(t)|x(u − t) − y(u − t)|eα(u−t)eαtdt

≤ να(x, y)
λ̃

c

∫ ∞

0
eαt F̃(t)dt.

Now by the triangle inequality,

να(ψ, ψ̃) = να(Tψ, T̃ψ̃)

≤ να(T̃ψ̃, T̃ψ) + να(T̃ψ,Tψ)

≤ Mανα(ψ, ψ̃) + να(T̃ψ,Tψ). (3.9)

Since α < min(γ, γ̃ ), from (2.4), we see that να(ψ, ψ̃) < ∞ and, there-
fore, we can subtract Mανα(ψ, ψ̃) from both parts of (3.9). This leads to the
inequality:

να(ψ, ψ̃) ≤ 1
1 − Mα

να(T̃ψ,Tψ). (3.10)

Using definitions (3.3) and (3.4), we bound the last term in (3.10) as follows.

να(Tψ, T̃ψ) ≤ sup
u≥0

eαu

∣∣∣∣λc
(∫ ∞

u
F(t)dt +

∫ u

0
ψ(u − t)F(t)dt

)
− λ

c

(∫ ∞

u
F̃(t)dt +

∫ u

0
ψ(u − t)F̃(t)dt

)∣∣∣∣
+ sup

u≥0
eαu

∣∣∣∣[λ

c
− λ̃

c

](∫ ∞

u
F̃(t)dt +

∫ u

0
ψ(u − t)F̃(t)dt

)∣∣∣∣
(3.11)

= : I1 + I2.

For the first term I1 on the right-hand side of (3.11), we have

I1 ≤ λ

c

[
sup
u≥0

(
eαu

∫ ∞

u

∣∣∣F(t) − F̃(t)
∣∣∣ dt + eαu

∫ u

0
ψ(u − t)

∣∣∣F(t) − F̃(t)
∣∣∣ dt)]

.

(3.12)
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In view of (2.4) ψ(u − t) ≤ e−γ u+γ t. Therefore,

I1 ≤ λ

c

[
sup
u≥0

(∫ ∞

u
eαt

∣∣∣F(t) − F̃(t)
∣∣∣ dt + eαue−γ u

∫ u

0
eγ t

∣∣∣F(t) − F̃(t)
∣∣∣ dt)]

.

(3.13)

Since α < γ ≤ β, (3.13) yields

I1 ≤ λ

c

∫ ∞

0
eβt

∣∣∣F(t) − F̃(t)
∣∣∣ dt. (3.14)

Similarly, for the term I2 in (3.11), we have

I2 ≤ |λ − λ̃|
c

[
sup
u≥0

(
eαu

∫ ∞

u
F̃(t)dt + eαue−γ u

∫ u

0
eγ t F̃(t)dt

)]

≤ |λ − λ̃|
c

∫ ∞

0
eβt

[
1 − F̃(t)

]
dt. (3.15)

The last integral is equal to 1
β
[
∫ ∞
0 eβtd F̃(t) − 1].

Combining inequalities (3.10), (3.11), (3.14) and (3.15), we obtain inequality
(2.8) in Theorem 2.4.

Finally, inequality (2.10) in Proposition 2.5 is a consequence of (3.10), (3.12)
and (3.13).
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APPENDIX A

Proposition A.1. Let β > 0 and Kβ be the metric in F defined in (2.6). Then

a. If
∫ ∞
0 eβxdF(x) < ∞ and

∫ ∞
0 eβxdG(x) < ∞, then Kβ(F,G) < ∞.

b. Let
∫ ∞
0 eβxdF(x) < ∞ and

∫ ∞
0 eβxdFn(x) < ∞, n ≥ 1.

Then Kβ(Fn, F) −→ 0 if and only if

(i)Fn ⇒ F;

(ii)
∫ ∞

0
eβxdFn(x) −→

∫ ∞

0
eβxdF(x), as n −→ ∞.

Proof.

a. This part follows immediately from the definition of Kβ .
b. Let Fn ⇒ F and

∫ ∞
0 eβxdFn(x) −→ ∫ ∞

0 eβxdF(x).

For each c > 0,

Kβ(Fn, F) =
∫ ∞

0
eβt|Fn(t) − F(t)|dt

≤
∫ c

0
eβt|Fn(t) − F(t)|dt +

∫ ∞

c
eβt[1 − Fn(t)]dt +

∫ ∞

c
eβt[1 − F(t)]dt (A.1)

=: I1,n + I2,n + I.

Fixing an arbitrary ε > 0, we choose c > 0 such that I < ε. The weak convergence
Fn ⇒ F implies that Fn(x) −→ F(x) almost everywhere on [0, ∞). Hence by the Dominated
Convergence Theorem, there is N such that in (A.1) I1,n < ε for n ≥ N.

We get that∫ ∞

0
eβtd Fn(t) −

∫ ∞

0
eβtd F(t) = β

∫ c

0
eβt[F(t) − Fn(t)]dt

+
[
β

∫ ∞

c
eβt[1 − Fn(t)]dt − β

∫ ∞

c
eβt[1 − F(t)]dt

]
. (A.2)

The left-hand side of (A.2) approaches zero as n −→ ∞. For n ≥ N, the absolute value
of the first summand on the right-hand side of (A.2) is less than βε.

Thus, for all n ≥ N1 ≥ N the absolute value of the expression in square brackets in (A.2)
is less than ε + εβ. Joining all this together, and taking into account (A.1), we find that

K(Fn, F) −→ 0 as n −→ ∞. (A.3)

We now assume that (A.3) holds. Since Kβ(Fn, F) ≥ K(Fn, F) (K is the Kantorovich
metric), Fn ⇒ F (the convergence in the Kantorovich metric implies weak convergence, see
Rachev and Rüschendorf (1998)).

Finally, ∣∣∣∣∫ ∞

0
eβtd Fn(t) −

∫ ∞

0
eβtd F(t)

∣∣∣∣ ≤ β

∫ ∞

0
eβt|Fn(t) − F(t)|dt −→ 0,

as n −→ ∞.
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