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Abstract
Deep neural networks and other modern machine learning models are often susceptible to adversarial attacks.
Indeed, an adversary may often be able to change a model’s prediction through a small, directed perturbation of the
model’s input – an issue in safety-critical applications. Adversarially robust machine learning is usually based on
a minmax optimisation problem that minimises the machine learning loss under maximisation-based adversarial
attacks. In this work, we study adversaries that determine their attack using a Bayesian statistical approach rather
than maximisation. The resulting Bayesian adversarial robustness problem is a relaxation of the usual minmax
problem. To solve this problem, we propose Abram – a continuous-time particle system that shall approximate the
gradient flow corresponding to the underlying learning problem. We show that Abram approximates a McKean–
Vlasov process and justify the use of Abram by giving assumptions under which the McKean–Vlasov process finds
the minimiser of the Bayesian adversarial robustness problem. We discuss two ways to discretise Abram and show
its suitability in benchmark adversarial deep learning experiments.

1 Introduction

Machine learning and artificial intelligence play a major role in today’s society: self-driving cars
(e.g. [3]), automated medical diagnoses (e.g. [41]) and security systems based on face recognition
(e.g. [45]), for instance, are often based on certain machine learning models, such as deep neural net-
works (DNNs). DNNs often approximate functions that are discontinuous with respect to their input [48]
making them susceptible to so-called adversarial attacks. In an adversarial attack, an adversary aims to
change the prediction of a DNN through a directed, but small perturbation to the input. We refer to [14]
for an example showing the weakness of DNNs towards adversarial attacks. Especially when employing
DNNs in safety-critical applications, the training of machine learning models in a way that is robust to
adversarial attacks has become a vital task.

Machine learning models are usually trained by minimising an associated loss function. In adversar-
ially robust learning, this loss function is considered to be subject to adversarial attacks. The adversarial
attack is usually given by a perturbation of the input data that is chosen to maximise the loss func-
tion. Thus, adversarial robust learning is formulated as a minmax optimisation problem. In practice,
the inner maximisation problem needs to be approximated: [14] proposed the fast gradient sign method
(FGSM), which perturbs the input data to maximise the loss function with a single step. Improvements of
FGSM were proposed by, e.g. [25, 51, 57]. Another popular methodology is projected gradient descent
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(PGD) [32] and its variants, see, for example, [9, 10, 33, 36, 50, 61]. Similar to FGSM, PGD con-
siders the minmax optimisation problem but uses multi-step gradient ascent to approximate the inner
maximisation problem. Notably, [57] showed that FGSM with random initialisation is as effective as
PGD.

Other defense methods include preprocessing (e.g. [16, 47, 59, 63]) and detection (e.g. [5, 31, 35,
58]), as well as provable defenses (e.g. [15, 21, 46, 55]). Various attack methods have also been proposed,
see, for instance, [6, 9, 13, 56]. More recently, there is an increased focus on using generative models to
improve adversarial accuracy, see for example [38, 54, 60].

In the present work, we study the case of an adversary that finds their attack following a Bayesian
statistical methodology. The Bayesian adversary does not find the attack through optimisation, but by
sampling a probability distribution that can be derived using Bayes’ Theorem. Importantly, we study the
setting in which the adversary uses a Bayesian strategy, but the machine learner/defender trains the model
using optimisation, which is in contrast to [62]. Thus, our ansatz is orthogonal to previous studies of
adversarial robustness by assuming that the attacker uses a significantly different technique. On the other
hand, the associated Bayesian adversarial robustness problem can be interpreted as a stochastic relax-
ation of the classical minmax problem that replaces the inner maximisation problem with an integral.
Thus, our ansatz should also serve as an alternative way to approach the computationally challenging
minmax problem with a sampling based strategy. After establishing these connections, we

• propose Abram (short for Adversarial Bayesian Particle Sampler), a particle-based continuous-time
dynamical system that simultaneously approximates the behaviour of the Bayesian adversary and
trains the model via gradient descent.

Particle systems of this form have been used previously to solve such optimisation problems in the
context of maximum marginal likelihood estimation, see, e.g. [2] and [24]. In order to justify the use
Abram in this situation, we

• show that Abram converges to a McKean–Vlasov stochastic differential equation (SDE) as the
number of particles goes to infinity, and

• give assumptions under which the McKean–Vlasov SDE converges to the minimiser of the Bayesian
adversarial robustness problem with an exponential rate.

Additional complexity arises here compared to earlier work as the dynamical system and its limiting
McKean–Vlasov SDE have to be considered under reflecting boundary conditions. After the analysis of
the continuous-time system, we briefly explain its discretisation. Then, we

• compare Abram to the state of the art in adversarially robust classification of the MNIST and the
CIFAR-10 datasets under various kinds of attacks.

This work is organised as follows. We introduce the (Bayesian) adversarial robustness problem in
Section 2 and the Abram method in Section 3. We analyse Abram in Sections 4 (large particle limit)
and 5 (longtime behaviour). We discuss different ways of employing Abram in practice in Section 6 and
compare it to the state of the art in adversarially robust learning in Section 7. We conclude in Section 8.

2 Adversarial robustness and its Bayesian relaxation

In the following, we consider a supervised machine learning problem of the following form. We are
given a training dataset {(y1, z1), . . . , (yK , zK)} of pairs of features y1, . . . , yK ∈ Y := RdY and labels
z1, . . . , zK ∈ Z. Moreover, we are given a parametric model of the form g:X × Y→ Z, with X := Rd

denoting the parameter space. The goal is now to find a parameter θ ∗, for which

g(yk|θ ∗)≈ zk (k= 1, . . . , K).

https://doi.org/10.1017/S0956792525000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000105


European Journal of Applied Mathematics 3

In practice the function g(· |θ ∗) shall then be used to predict labels of features (especially such outside
of training dataset).

The parameter θ ∗ is usually found through optimisation. Let L:Z × Z→R denote a loss function – a
function that gives a reasonable way of comparing the output of g with observed labels. Usual examples
are the square loss for continuous labels and cross entropy loss for discrete labels. Then, we need to
solve the following optimisation problem:

min
θ∈X

1

K

K∑
k=1

�(yk, zk|θ ), (2.1)

where �(y, z|θ ) := L(g(y|θ ), z).
Machine learning models g that are trained in this form are often susceptible to adversarial attacks.

That means, for a given feature vector y, we can find a ‘small’ ξ ∈ Y for which g(y+ ξ |θ ∗) �= g(y|θ ∗).
In this case, an adversary can change the model’s predicted label by a very slight alteration of the input
feature. Such a ξ can usually be found through optimisation on the input domain:

max
ξ∈B(ε)

�(y+ ξ , z|θ ),

where B(ε)= {ξ :‖ξ‖ ≤ ε} denotes the ε-ball centred at 0 and ε > 0 denotes the size of the adversarial
attack. Hence, the attacker tries to change the prediction of the model whilst altering the model input
only by a small value ≤ ε. Other kinds of attacks are possible, the attacker may, e.g. try to not only
change the predicted label to any other label, but rather to a particular target label, see, e.g. [26].

In adversarially robust training, we replace the optimisation problem (2.1) by the minmax optimisa-
tion problem below:

min
θ∈X

1

K

K∑
k=1

max
ξk∈B(ε)

�(yk + ξk, zk|θ ). (2.2)

Thus, we now train the network by minimising the loss also with respect to potential adversarial attacks.
Finding the accurate solutions to such minmax optimisation problems is difficult: usually there is no
underlying saddlepoint structure, e.g. �(y, z|θ ) is neither convex in θ nor concave in y, X and Y tend to
be very high-dimensional spaces, and the number of data points K may prevent the accurate computa-
tion of gradients. However, good heuristics have been established throughout the last decade – we have
mentioned some of them in Section 1.

In this work, we aim to study a relaxed version of the minmax problem, which we refer to as the
Bayesian adversarial robustness problem. This problem is given by

min
θ∈X

1

K

K∑
k=1

∫
B(ε)

�(yk + ξk, zk|θ )πγ ,ε
k (dξk|θ ), (2.3)

where the Bayesian adversarial distribution π
γ ,ε
k ( · |θ ) has (Lebesgue) density

ξ 
→ exp (γ�(yk + ξ , zk|θ ))1[ξ ∈ B(ε)]∫
B(ε)

exp (γ�(yk + ξ ′, zk|θ ))dξ ′
,

where γ > 0 is an inverse temperature, ε > 0 still denotes the size of the adversarial attack, and 1[ · ]
denotes the indicator: 1[true] := 1 and 1[false] := 0. The distribution π

γ ,ε
k ( · |θ ) is concentrated on the

ε-ball, ε > 0 controls the range of the attack, γ > 0 controls its focus. We illustrate this behaviour in
Figure 1. Next, we comment on the mentioned relaxation and the Bayesian derivation of this optimisation
problem.
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Figure 1. Plots of the Lebesgue density of π
γ ,ε
1 ( · |θ0) for energy �(y1 + ξ , z1|θ0)= (ξ − 0.1)2/2,

choosing parameters ε ∈ {0.025, 0.1, 0.4} and γ ∈ {0.1, 10, 1000}.
2.1 Relaxation

Under certain assumptions,1 one can show that

π
γ ,ε
k ( · |θ )→Unif(argmaxξ∈Y�(yk + ξ , zk|θ ))

weakly as γ →∞, see [20]. Indeed, the Bayesian adversarial distribution converges to the uniform
distribution over the global maximisers computed with respect to the adversarial attack. This limiting
behaviour, that we can also see in Figure 1, forms the basis of simulated annealing methods for global
optimisation. Moreover, it implies that the optimisation problems (2.2) and (2.3) are identical in the limit
γ →∞, since

lim
γ→∞

1

K

K∑
k=1

∫
B(ε)

�(yk + ξk, zk|θ )πγ ,ε
k (dξi|θ )

= 1

K

K∑
k=1

∫
B(ε)

�(yk + ξk, zk|θ )Unif(argmaxξ∈Y�(yk + ξ , zk|θ ))(dξi),

and since ξk ∼Unif(argmaxξ∈Y�(yk + ξ , zk|θ )) implies �(yk + ξk, zk|θ )=maxξ∈B(ε) �(yk + ξ , zk|θ )
almost surely for k= 1, . . . , K. A strictly positive γ on the other hand leads to a relaxed problem
circumventing the minmax optimisation. [8] have also discussed this relaxation of an adversarial robust-
ness problem in the context of a finite set of attacks, i.e. the ε-ball B(ε) is replaced by a finite set.
Probabilistically robust learning is another type of relaxation, see for example [4, 43]. Similar to our
work, instead of doing the worst-case optimisation, i.e. finding the perturbation ξ that maximises the loss,
they replace it with a probability measure on ξ . This probability measure, however, follows a different
paradigm.

2.2 Bayesian attackers

We can understand the kind of attack that is implicitly employed in (2.3) as a Bayesian attack. We now
briefly introduce the Bayesian learning problem to then explain its relation to this adversarial attack.
In Bayesian learning, we model θ as a random variable with a so-called prior (distribution) π prior.
The prior incorporates information about θ . In Bayesian learning, we now inform the prior about data

1Assume, for instance, that � is three times differentiable and has only finitely many maximisers and note that B(ε) is compact.
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{(y1, z1), . . . , (yK , zK)} by conditioning θ on that data. Indeed, we train the model by finding the condi-
tional distribution of θ given that g(yk|θ )≈ zk (k= 1, . . . , K). In the Bayesian setting, we represent ‘≈’
by a noise assumption consistent with the loss function L. This is achieved by defining the so-called
likelihood as exp (−�). The conditional distribution describing θ is called the posterior (distribution)
π post and can be obtained through Bayes’ theorem, which states that

π post(A)=
∫

A
exp

(− 1
K

∑K
k=1 �(yk, zk|θ )

)
π prior(dθ )∫

X
exp

(− 1
K

∑K
i=k �(yk, zk|θ )

)
π prior(dθ )

,

for measurable A⊆ X. A model prediction with respect to feature y can then be given by the posterior
mean of the output g, which is

∫
R

n
g(y|θ )π post(dθ ).

The Bayesian attacker treats the attack ξk in exactly such a Bayesian way. They define a prior distribution
for the attack, which is the uniform distribution over the ε-ball:

Unif(B(ε))=
∫

B(ε)

1[ξk ∈ ·]dξk.

The adversarial likelihood is designed to essentially cancel out the likelihood in the Bayesian learning
problem, by defining a function that gives small mass to the learnt prediction and large mass to anything
that does not agree with the learnt prediction:

exp (γ�(yk + ξk, zk|θ )).

Whilst this is not a usual likelihood corresponding to a particular noise model, we could see this as a
special case of Bayesian forgetting [12]. In Bayesian forgetting, we would try to remove a single dataset
from a posterior distribution by altering the distribution of the parameter θ . In this case, we try to alter
the knowledge we could have gained about the feature vector by altering that feature vector to produce
a different prediction.

3 Adversarial Bayesian particle sampler

We now derive a particle-based method that shall solve (2.3). To simplify the presentation in the follow-
ing, we assume that K = 1, i.e. there is only a single data point. The derivation for multiple data points is
equivalent – computational implications given by multiple data points will be discussed in Section 6. We
also ignore the dependence of � on particular data points and note only the dependence on parameter
and attack. Indeed, we write (2.3) now as

min
θ∈X

F(θ ) :=
∫

B(ε)

�(ξ , θ )πγ ,ε(dξ |θ ).

To solve this minimisation problem, we study the gradient flow corresponding to the energy F, that is:
dζt =−∇ζ F(ζt)dt. The gradient flow is a continuous-time variant of the gradient descent algorithm. The
gradient flow can be shown to converge to a minimiser of F in the longterm limit if F satisfies certain
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regularity assumptions. The gradient of F has a rather simple expression:

∇θF(θ )=∇θ

∫
B(ε)

�(ξ , θ ) exp (γ�(ξ , θ ))dξ∫
B(ε)

exp (γ�(ξ , θ ))dξ

=
∫

B(ε)
∇θ�(ξ , θ ) · exp (γ�(ξ , θ ))+ γ∇θ�(ξ , θ ) ·�(ξ , θ ) exp (γ�(ξ , θ ))dξ∫

B(ε)
exp (γ�(ξ , θ ))dξ

−
(∫

B(ε)
�(ξ , θ ) exp (γ�(ξ , θ ))dξ

) (∫
B(ε)

γ∇θ�(ξ , θ ) · exp (γ�(ξ , θ ))dξ
)

(∫
B(ε)

exp (γ�(ξ , θ ))dξ
)2

=
∫

B(ε)

∇θ�(ξ , θ )πγ ,ε(dξ |θ )+ γ Covπγ ,ε (·|θ)(�(·, θ ),∇θ�(·, θ )),

where we assume that � is continuously differentiable, bounded below and sufficiently regular to
be allowed here to switch gradients and integrals. As usual, we define the covariance of appropriate
functions f , g with respect to a probability distribution π , by

Covπ (f , g) :=
∫

X

f (θ )g(θ )π (dθ )−
∫

X

f (θ )π (dθ )
∫

X

g(θ )π (dθ ).

The structure of ∇θF is surprisingly simple, requiring only integrals of the target function and its gra-
dient with respect to πγ ,ε, but, e.g. not its normalising constant. In practice, it is usually not possible to
compute these integrals analytically or to even sample independently from πγ ,ε( · |θ ), which would be
necessary for a stochastic gradient descent approach. The latter approach first introduced by [42] allows
the minimisation of expected values by replacing these expected values by sample means; see also [22]
and [28] for continuous-time variants. Instead, we use a particle system approach that has been studied
for a different problem by [2] and [24]. The underlying idea is to approximate πγ ,ε( · |θ ) by an over-
damped Langevin dynamics, which is restricted to the ε-Ball B(ε) with reflecting boundary conditions:

dξt = γ∇ξ�(ξt, θ )dt+√2dWt,

where (Wt)t≥0 denotes a standard Brownian motion on Y . Alternatively, one may write the dynam-
ics as dξt =∇ξ�(ξt, θ )dt+√2/γ dWt, which is equivalent to the current form after a time re-scaling.
Under weak assumptions on �, this Langevin dynamics converges to the distribution πγ ,ε( · |θ ) as
t→∞. However, due to the heavy computational costs, in practice, we are not able to simulate the
longterm behaviour of this dynamics for all fixed θ to produce samples of πγ ,ε( · |θ ) as required
for stochastic gradient descent. Instead, we run a number N of (seemingly independent) Langevin
dynamics (ξ 1,N

t )t≥0, . . . , (ξN,N
t )t≥0. We then obtain an approximate gradient flow (θN

t )t≥0 that uses the
ensemble of particles (ξ 1,N

t )t≥0, . . . , (ξN,N
t )t≥0 to approximate the expected values in the gradient ∇θF

and then feed (θN
t )t≥0 back into the drift of the (ξ 1,N

t )t≥0, . . . , (ξN,N
t )t≥0. Hence, we simultaneously approx-

imate the gradient flow (ζt)t≥0 by (θN
t )t≥0 and the Bayesian adversarial distribution (πγ ,ε( · |θN

t ))t≥0 by
(ξ 1,N

t )t≥0, . . . , (ξN,N
t )t≥0. Overall, we obtain the dynamical system

dθN
t =−

1

N

N∑
n=1

∇θ�(ξ n,N
t , θN

t )dt− γ Ĉov(ξN
t )dt,

dξ i,N
t = γ∇ξ�(ξ i,N

t , θN
t )dt+√2dWi

t (i= 1, . . . , N).

where (Wi
t )t≥0 are mutually independent Brownian motions on Y for i= 1, . . . , N. Again, the Langevin

dynamics (ξ 1,N
t )t≥0, . . . , (ξN,N

t )t≥0 are defined on the ball B(ε) with reflecting boundary conditions – we
formalise this fact below. The empirical covariance is given by

Ĉov(ξN
t )= 1

N

N∑
i=1

�(ξ i,N
t , θN

t )∇θ�(ξ i,N
t , θN

t )− 1

N2

K∑
i=1

�(ξ i,N
t , θN

t )
K∑

j=1

∇θ�(ξ j,N
t , θN

t ).
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Figure 2. Examples of the Abram method given �(ξ , θ )= 1
2
(ξ + θ )2, ε= 1, and different combinations

of (γ , N)= (10, 3) (top left), (0.1, 3) (top right), (10, 50) (bottom left), (0.1, 50) (bottom right). In each
of the four quadrants, we show the simulated path (θN

t )t≥0 (top), the particle paths (ξ 1,N
t , . . . , ξN,N

t )t≥0

(centre), and the path of probability distributions (πγ ,ε( · |θN
t ))t≥0 (bottom) that shall be approximated

by the particles. The larger γ leads to a concentration of πγ ,ε at the boundary, whilst it is closer to
uniform if γ is small. More particles lead to a more stable path (θN

t )t≥0. A combination of large N and
γ leads to convergence to the minimiser θ∗ = 0 of F.

We refer to the dynamical system (θN
t , ξ 1,N

t , . . . , ξN,N
t )t≥0 as Abram. We illustrate the dynamics of Abram

in Figure 2, where we consider a simple example.
We have motivated this particle system as an approximation to the underlying gradient flow (ζt)t≥0.

As N→∞, the dynamics (θN
t )t≥0 does not necessarily convergence to the gradient flow (ζt)t≥0, but to

a certain McKean–Vlasov stochastic differential equation (SDE), see [34]. We study this convergence
behaviour in the following, as well as the convergence of the McKean–Vlasov SDE to the minimiser of F
and, thus, justify Abram as a method for Bayesian adversarial learning. First, we introduce the complete
mathematical set-up and give required assumptions. To make it easier for the reader to keep track of the
different stochastic processes that appear throughout this work, we summarise them in Table 1.

3.1 Mean-field limit

In the following, we are interested in the mean field limit of Abram, i.e. we analyse the limit of
(θN

t )t≥0 as N→∞. Thus, we can certainly assume for now that γ := 1 and ε ∈ (0, 1) being fixed.
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Table 1. Definitions of stochastic processes throughout this work

(θN
t , ξ 1,N

t , . . . , ξ 1,N
t )t≥0 (θt, ξt)t≥0 (ξ 1

t , . . . , ξN
t )t≥0 (̂ξt)t≥0

(3.1) (3.2) (4.1) (5.3)
Particle system / Abram Limiting equation Independent sampling Coupling process

We write B := B(ε). Then, Abram (θN
t , ξ 1,N

t , . . . , ξN,N
t )t≥0 satisfies

θN
t = θ0 −

∫ t

0

μN
s (∇θ�(·, θN

s ))ds−
∫ t

0

CovμN
s
(�(·, θN

s ),∇θ�(·, θN
s ))ds, (3.1)

ξ i,N
t = ξ i

0 +
∫ t

0

∇x�(ξ i,N
s , θN

s )ds+√2Wi
t +

∫ t

0

n(ξ i,N
s )dli,N

s (i= 1, . . . , N).

Here, (W1
t )t≥0, . . . , (WN

t )t≥0 are independent Brownian motions on Y and the initial particle values
ξ 1

0 , . . . , ξN
0 are independent and identically distributed. There and throughout the rest of this work, we

denote the expectation of some appropriate function f with respect to a probability measure π by π (f ) :=∫
X

f (θ )π (dθ ). We use μN
t to denote the empirical distribution of the particles (ξ 1,N

t , . . . , ξN,N
t ) at time

t≥ 0. That is μN
t := 1

N

∑N
i=1 δ(· −ξ i,N

t ), where δ(· −ξ ) is the Dirac mass concentrated in ξ ∈ B. This
implies especially that we can write

μN
t (f )= 1

N

N∑
i=1

f (ξ i,N
t ), CovμN

t
(f , g)= 1

N

N∑
i=1

f (ξ i,N
t )g(ξ i,N

t )− 1

N2

N∑
i=1

N∑
j=1

f (ξ i,N
t )g(ξ j,N

t ),

for appropriate functions f and g. The particles are constrained to stay within B by the last term in the
equations of the (ξ 1,N

t , . . . , ξN,N
t )t≥0. Here, n(x)=−x/ ‖x‖ for x ∈ ∂B is the inner normal vector field.

Although we focus on Abram (θN
t , ξ 1,N

t , . . . , ξN,N
t )t≥0, we remark that the solution of equations (3.1)

is (θN
t , ξ 1,N

t , . . . , ξN,N
t , l1,N

t , . . . , lN,N
t )t≥0. The functions (l1,N

t , . . . , lN,N
t )t≥0 are uniquely defined under the

additional conditions:

(1) li,N’s are non-decreasing with li,N(0)= 0 and
(2)

∫ t

0
1[ξ i,N

s /∈ ∂B(ε)]dli,N(s)= 0.

Condition (2) implies that li,N can increase only when ξ i,N is in ∂B(ε). Intuitively, li,N cancels out part
of ξ i,N so that it stays inside B(ε). For more discussion on diffusion processes with reflecting boundary
conditions, see e.g. [40]. Additionally, it is convenient to define

G(θ , ν)=∇θ

[
ν(�(·, θ ))+Varν[�(·, θ )]/2

]
= ν(∇θ�(·, θ ))+Covν(�(·, θ ),∇θ�(·, θ )),

for any probability measure ν on (B, BB) and θ ∈ X, where BB denotes the Borel-σ -algebra correspond-
ing to B and, following the notation above, ν(�(·, θ ))= ∫

B
�(ξ , θ )ν(dξ ). We finish this background

section by defining the limiting McKean–Vlasov SDE with reflection

θt = θ0 −
∫ t

0

μs(∇θ�(·, θs))ds−
∫ t

0

Covμs (�(·, θs),∇θ�(·, θs))ds, (3.2)

ξt = ξ0 +
∫ t

0

∇x�(ξs, θs)ds+√2Wt +
∫ t

0

n(ξs)dls,

with μt denoting the law of ξt at time t≥ 0. The goal of this work is to show that the particle system
(3.1) converges to this McKean–Vlasov SDEs as N→∞ and to then show that the McKean–Vlasov
SDE can find the minimiser of F.
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3.2 Assumptions

We now list assumptions that we consider throughout this work. We start with the Lipschitz continuity
of ∇� and G.

Assumption 3.1 (Lipschitz). The function ∇ξ� is Lipschitz continuous, i.e. there exists a Lipschitz
constant L > 1 such that∥∥∥∇ξ�(ξ , θ̃ )−∇ξ�(ξ̃ , θ̃ )

∥∥∥≤ L
( ∥∥∥ξ − ξ̃

∥∥∥+ ∥∥∥θ − θ̃

∥∥∥ )
,

for any ξ , ξ̃ ∈ B and θ , θ̃ ∈Rn. Similarly, we assume that G(θ , μ) is Lipschitz in the following sense:
there is an L > 1 such that ∥∥∥G(θ , ν)−G(θ̃ , ν̃)

∥∥∥≤ L
( ∥∥∥θ − θ̃

∥∥∥+W1(ν, ν̃)
)

,

for any probability measures ν, ν̃ on (B, BB) and θ , θ̃ ∈Rn. �
In Assumption 3.1 and throughout this work, Wp denotes the Wasserstein-p distance given by

Wp
p(ν, ν ′)= inf

{∫
X×X

∥∥y− y′
∥∥p


(dy, dy′):
 is a coupling of ν, ν ′
}

,

for probability distributions ν, ν ′ on (X, BX) and p≥ 1. In addition to the Wasserstein distance, we some-
times measure the distance between probability distributions ν, ν ′ on (X, BX) using the total variation
distance given by

‖ν − ν ′‖ TV = sup
A∈BX
|ν(A)− ν ′(A)|.

The Lipschitz continuity of G actually already implies the Lipschitz continuity of ∇θ�. By setting
ν = δ( · −ξ ) and ν̃ = δ( · −ξ̃ ), we have∥∥∥∇θ�(ξ , θ̃ )−∇θ�(ξ̃ , θ̃ )

∥∥∥= ∥∥∥G(θ , δ( · −ξ ))−G(θ̃ , δ( · −ξ̃ ))
∥∥∥

≤ L
( ∥∥∥θ − θ̃

∥∥∥+W1(δ( · −ξ ), δ( · −ξ̃ ))
)
= L

( ∥∥∥ξ − ξ̃

∥∥∥+ ∥∥∥θ − θ̃

∥∥∥ )
.

We assume throughout that the constant L > 1 to simplify the constants in the Theorem 5.5. Finally, we
note that Assumption 3.1 implies the well-posedness of both (3.1) and (3.2), see ([1], Theorems 3.1,
3.2).

Next, we assume the strong monotonicity of G, which, as we note below, also implies the strong con-
vexity of �(x, ·) for any x ∈ B. This assumption is not realistic in the context of deep learning (e.g. [7]),
but not unusual when analysing learning techniques.

Assumption 3.2 (Strong monotonicity). For any probability measure ν on (B, BB), G(·, ν) is 2λ-
strongly monotone, i.e. for any θ , θ̃ ∈Rn, we have〈

G(θ , ν)−G(θ̃ , ν), θ − θ̃
〉
≥ 2λ

∥∥∥θ − θ̃

∥∥∥2

,

for some λ > 0. �
By choosing ν = δ( · −ξ ) in Assumption 3.2 for ξ ∈ B, we have Covν(�(·, θ ),∇θ�(·, θ ))= 0, which

implies that 〈∇θ�(x, θ )−∇θ�(x, θ ′), θ − θ ′〉 ≥ 2λ ‖θ − θ ′‖2. Thus, the 2λ-strong monotonicity of G in
θ also implies the 2λ-strong convexity of � in θ .

The assumptions stated throughout this sections are fairly strong, they are satisfied in certain linear-
quadratic problems on bounded domains. We illustrate this in an example below.

Example 3.3. We consider a prototypical adversarial robustness problem based on the potential
�(ξ , θ ) := ‖ξ − θ‖2 with θ in a bounded set X′ ⊆ X – problems of this form appear, e.g. in adversarially
robust linear regression. Next, we are going to verify that this problem satisfies Assumptions 3.1 and 3.2.
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We have ∇ξ�(ξ , θ )= 2(ξ − θ ), which is Lipschitz in both θ and ξ . Since

∇θ�(ξ , θ )= 2(ξ − θ ),

�(ξ , θ )−
∫

B

�(ξ , θ )ν(dξ )=
(
‖ξ‖2 −

∫
B

‖ξ‖2
ν(dξ )

)
− 2θ ·

(
ξ −

∫
B

ξν(dξ )

)
,

∇θ�(ξ , θ )−
∫

B

∇θ�(ξ , θ )ν(dξ )=−2

(
ξ −

∫
B

ξν(dξ )

)
,

we have that

G(θ , ν)= 2θ − 2Eν[ξ ]+ 4θ ·Varν(ξ )− 2Covν( ‖ξ‖2 , ξ ),

where Eν[ξ ]= ∫
B
ξν(dξ ) and Covν( ‖ξ‖2 , ξ )= ∫

B
( ‖ξ‖2 −Eν[ ‖ξ‖2 ])(ξ −Eν[ξ ])ν(dξ ). Since the ε-

ball and θ ∈ X′ are bounded, we have that G(θ , ν) is Lipschitz in both θ and ν. Thus, it satisfies
Assumption 3.1. In order to make G(θ , ν) satisfy Assumption 3.2, we choose ε small enough such that the
term 4θ ·Varν(ξ ) is 1-Lipschitz. In this case, we can verify that 〈G(θ , ν)−G(θ ′, ν), θ − θ ′〉 ≥ ‖θ − θ ′‖2

and, thus, Assumption 3.2.

4 Propagation of chaos

We now study the large particle limit (N→∞) of the Abram dynamics (3.1). When considering a finite
time interval [0, T], we see that the particle system (3.1) approximates the McKean–Vlasov SDE (3.2) in
this limit. We note that we assume in the following that 0 < ε < 1. Moreover, we use the Wasserstein-2
distance instead of Wasserstein-1 distance in Assumption 3.1. We have W1(ν, ν ′)≤W2(ν, ν ′) for any
probability measures ν, ν ′ for which the distances are finite, see [52]. Thus, convergence in W2 also
implies convergence in W1. We now state the main convergence result.

Theorem 4.1. Let Assumption 3.1 hold. Then, there is a constant Cd,T > 0 such that for all T ≥ 0 and
N ≥ 1 we have the following inequality

sup
t∈[0,T]

E
[ ∥∥θN

t − θt

∥∥2 +W2
2(μN

t , μt)
]≤ od,T ,N := Cd,T

{
N−αd , if d �= 4,

log (1+N)N−
1
2 , if d= 4,

where αd = 2/d for d > 4 and αd = 1/2 for d < 4.

The dependence of d, T on Cd,T is not explicit except in some special cases which we discuss in Section 5.
The upper bound is essentially N−2/d +N−1/2 with the dominating term differing for d > 4 and d < 4. In
fact, when d < 4, the convergence rate can not be better than N−1/2, see ( [11], Page 2) for an example
in which the lower bound is obtained.

Hence, we obtain convergence of both the gradient flow approximation (θN
t )t≥0 and the particle

approximation (μN
t ) to the respective components in the McKean–Vlasov SDE. We prove this result

by a coupling method. To this end, we first collect a few auxiliary results: studying the large sample
limit of an auxiliary particle system and the distance of the original particle system to the auxiliary
system. To this end, we sample N trajectories of (ξt)t≥0 from equations (3.2) as

ξ i
t = ξ i

0 +
∫ t

0

∇x�(ξ i
s , θs)ds+√2Wi

t +
∫ t

0

n(ξ i
s)dli

s (i= 1, . . . , N), (4.1)

where the Brownian motions (W1
t , . . . , WN

t )t≥0 are the ones from (3.1). Of course these sample paths
(ξ 1

t , . . . , ξN
t )t≥0 are different from the (ξ 1,N

t , . . . , ξN,N
t )t≥0 in equation (3.1): Here, (θt)t≥0 only depends on

the law of (ξt)t≥0, whereas (θN
t )t≥0 depends on position of the particles (ξ i,N

t )t≥0. As the (ξ 1
t )t≥0, . . . , (ξN

t )t≥0

are i.i.d., we can apply the empirical law of large numbers from [11] and get the following result.

Proposition 4.2. Let Assumption 3.1 hold. Then,

sup
t≥0

E

[
W2

2

(
N−1

N∑
i=1

δξ i
t
, μt

)]
≤ od,T ,N ,
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where od,T ,N is the constant given in Theorem 4.1.

For any i= 1, . . . , N, we are now computing bounds for the pairwise distances between ξ i
t and ξ i,N

t for
t≥ 0. We note again that these paths are pairwise coupled through the associated Brownian motions
(Wi

t )t≥0, respectively.

Lemma 4.3. Let Assumption 3.1 hold and recall that ξ
i,N
0 = ξ i

0. Then,

∥∥ξ i,N
t − ξ i

t

∥∥2 ≤ 2L
∫ t

0

[ ∥∥ξ i,N
s − ξ i

s

∥∥2 + ∥∥θN
s − θs

∥∥2
]
ds (i= 1, . . . , N),

for t ∈ [0, T].

Proof. Recall that (l1,N
t , . . . , lN,N

t )t≥0 is non-decreasing in time and, hence, has finite total variation. We
apply Itô’s formula to

∥∥ξ i,N
t − ξ i

t

∥∥2 and obtain

∥∥ξ i,N
t − ξ i

t

∥∥2 = 2
∫ t

0

〈
ξ i,N

s − ξ i
s ,∇x�(ξ i,N

s , θN
s )−∇x�(ξ i

s , θs)
〉
ds︸ ︷︷ ︸

(I1)

+ 2
∫ t

0

〈
n(ξ i,N

s ), ξ i,N
s − ξ i

s

〉
dli,N

s − 2
∫ t

0

〈
n(ξ i

s), ξ
i,N
s − ξ i

s

〉
dli

s︸ ︷︷ ︸
(I2)

.

We first argue that (I2)≤ 0. Recall that n(x)=−x/ ‖x‖ and that the processes (ξ i,N
t )t≥0 and (ξ i

t )t≥0 take
values in the ε-ball B with ε < 1. Then, we have

2
∫ t

0

〈
n(ξ i,N

s ), ξ i,N
s − ξ i

s

〉
dli,N

s = 2
∫ t

0

〈
n(ξ i,N

s ), ξ i,N
s

〉
dli,N

s − 2
∫ t

0

〈
n(ξ i,N

s ), ξ i
s

〉
dli,N

s

=−2εli,N
t − 2

∫ t

0

〈
n(ξ i,N

s ), ξ i
s

〉
dli,N

s ≤−2εli,N
t + 2ε

∫ t

0

dli,N
s = 0,

where the last inequality holds since −2
∫ t

0

〈
n(ξ i,N

s ), ξ i
s

〉
dli,N

s ≤ 2
∫ t

0

∣∣〈n(ξ i,N
s ), ξ i

s

〉∣∣ dli,N
s ≤ 2ε

∫ t

0
dli,N

s .
Similarly, we have

−2
∫ t

0

〈
n(ξ i

s), ξ
i,N
s − ξ i

s

〉
dli

s = 2
∫ t

0

〈
n(ξ i

s), ξ
i
s − ξ i,N

s

〉
dli

s ≤ 0.

Hence, we have (I2)≤ 0.
For (I1), due to Assumption 3.1 and, again, due to the boundedness of B, we have

(I1)≤ L
∫ t

0

∥∥ξ i,N
s − ξ i

s

∥∥ [ ∥∥ξ i,N
s − ξ i

s

∥∥+ ∥∥θN
s − θs

∥∥ ]
ds≤ 2L

∫ t

0

[ ∥∥ξ i,N
s − ξ i

s

∥∥2 + ∥∥θN
s − θs

∥∥2
]
ds.

Finally, we study the distance between θN
t and θt for t≥ 0.

Lemma 4.4. Let Assumption 3.1 hold. Then, we have

∥∥θN
t − θt

∥∥2 ≤ 3L
∫ t

0

∥∥θN
s − θs

∥∥2 ds+ 2L

N

N∑
i=1

∫ t

0

∥∥ξ i,N
s − ξ i

s

∥∥2 ds+ 2L
∫ t

0

W2
2(N−1

N∑
i=1

δξ i
s
, μs)ds,

for t ∈ [0, T].

https://doi.org/10.1017/S0956792525000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000105


12 Z. Ding et al.

Proof. Due to Assumption 3.1 and since W1(μN
s , μs)≤W2(μN

s , μs), we have∥∥θN
t − θt

∥∥2 =− 2
∫ t

0

〈
θN

s − θs, G(θN
s , μN

s )−G(θs, μs)
〉
ds

≤ 2L
∫ t

0

∥∥θN
s − θs

∥∥ ( ∥∥θN
s − θs

∥∥+W2(μ
N
s , μs)

)
ds

≤ 2L
∫ t

0

∥∥θN
s − θs

∥∥2 ds+ 2L
∫ t

0

∥∥θN
s − θs

∥∥W2(μN
s , μs)ds

≤ 3L
∫ t

0

∥∥θN
s − θs

∥∥2 ds+ L
∫ t

0

W2
2(μ

N
s , μs)ds. (4.2)

The triangle inequality implies that

W2
2(μ

N
s , μs)≤ 2W2

2(μ
N
s , N−1

N∑
i=1

δξ i
s
)+ 2W2

2(N
−1

N∑
i=1

δξ i
s
, μs)

≤ 2

N

N∑
i=1

∥∥ξ i,N
s − ξ i

s

∥∥2 + 2W2
2(N

−1

N∑
i=1

δξ i
s
, μs). (4.3)

Combining (4.2) and (4.3), we obtain∥∥θN
t − θt

∥∥2 ≤ 3L
∫ t

0

∥∥θN
s − θs

∥∥2 ds+ 2L

N

N∑
i=1

∫ t

0

∥∥ξ i,N
s − ξ i

s

∥∥2 ds+ 2L
∫ t

0

W2
2(N−1

N∑
i=1

δξ i
s
, μs)ds.

We now proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1 We commence by constructing an upper bound for

uN
t := N−1

N∑
i=1

∥∥ξ i,N
t − ξ i

t

∥∥2 + ∥∥θN
t − θt

∥∥2
.

From Lemma 4.3 and Lemma 4.4, we have

uN
t ≤ 5L

∫ t

0

uN
s ds+ 2L

∫ t

0

W2
2(N

−1

N∑
i=1

δξ i
s
, μs)ds.

Grönwall’s inequality implies that

uN
t ≤ 2Le5Lt

∫ t

0

W2
2(N−1

N∑
i=1

δξ i
s
, μs)ds.

According to Proposition 4.2, we have

E[uN
t ]≤ 2Le5Lt

∫ t

0

E[W2
2(N−1

N∑
i=1

δξ i
s
, μs)]ds≤ 2CdLe(1+5L)tod,T ,N ,

whereas (4.3) implies ∥∥θN
t − θt

∥∥2 +W2
2(μ

N
s , μs)≤ uN

t + 2W2
2(N

−1

N∑
i=1

δξ i
s
, μs).

Therefore,

sup
t∈[0,T]

E
[ ∥∥θN

t − θt

∥∥2 +W2
2(μN

t , μt)
]≤ sup

t∈[0,T]
E[uN

t ]+ sup
t∈[0,T]

E
[W2

2(μN
t , μt)

]≤Cd,Tod,T ,N ,

where Cd,T = 2Cd(1+ Le(1+5L)t).
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5 Longtime behaviour of the McKean–Vlasov process

Theorem 4.1 implies that the gradient flow approximation in Abram (θN
t )t≥0 converges to the corre-

sponding part of the McKean–Vlasov SDE (θt)t≥0 given in (3.2). In this section, we show that this
McKean–Vlasov SDE is able to find the minimiser θ∗ of F= ∫

B(ε)
�(ξ , ·)πγ ,ε(dξ | · ). This, thus, gives us

a justification to use Abram to solve the Bayesian adversarial robustness problem. We start by showing
that F admits a minimiser.

Proposition 5.1. Let Assumptions 3.1 and 3.2 hold. Then, F admits at least one minimiser in X.

Proof. We first argue that F is bounded below and obtains a minumum at some point θ∗. From
Subsection 3.2, we already know that �(0, θ ) is 2λ-strongly convex in θ . Without loss of generality,
we assume �(0, 0)= 0 and ∇θ�(0, 0)= 0, that is �(0, θ ) reaches its minimum 0 at θ∗ = 0. Since �(ξ , ·)
is 2λ strongly convex for any ξ ∈ B, we have that

�(ξ , θ )≥�(ξ , 0)+ θ · ∇θ�(ξ , 0)+ λ ‖θ‖2 . (5.1)

Assumption 3.1 implies that,

‖∇θ�(ξ , 0)‖ = ‖∇θ�(ξ , 0)−∇θ�(0, 0)‖ ≤ L ‖ξ‖ ≤ L,

and

|�(ξ , 0)| = |�(ξ , 0)−�(0, 0)| ≤ sup
ζ∈B

∥∥∇ξ�(ζ , 0)
∥∥ ‖ξ‖ ≤ (L+C0) ‖ξ‖ ≤ L+C0,

where C0 =
∥∥∇ξ�(0, 0)

∥∥ . Therefore, we have �(ξ , θ )≥−L−C0 − L ‖θ‖ + λ ‖θ‖2 , which is bounded
below by−L−C0 − L2

4λ
. Thus, F is bounded below by the same value. We can always choose some R0 =

R0(L, λ, C0), such that for ‖θ‖ ≥ R0, �(ξ , θ )≥C0 + L. Moreover, we already have �(ξ , 0)≤ L+C0.
Thus, F(θ )≥C0 + L when ‖θ‖ ≥ R0 and F(0)≤C0 + L. Hence, F attains its minimum on the R0-ball
{θ ∈ X: ‖θ‖ ≤ R0}.

Before stating the main theorem of this section – the convergence of the McKean–Vlasov SDE to the
minimiser of F – we need to introduce additional assumptions.

Assumption 5.2 (Neumann Boundary Condition). Let �(·, θ ) satisfy a Neumann boundary condition
on ∂B,

∂ξ�(ξ , θ )

∂n
=∇ξ�(ξ , θ ) · n(ξ )= 0,

for any θ ∈ X. �
For a general function � defined on B, this assumption can be satisfied by smoothly extending � on B′

with radius 2ε such that it vanishes near the boundary of B′. We shall see that this assumption guarantees
the existence of the invariant measure of the auxiliary dynamical system (5.3) that we introduce below.

Assumption 5.3 (Small-Lipschitz). For any probability measures ν, ν̃ on (B, BB) and θ ∈Rn,

‖G(θ , ν)−G(θ , ν̃)‖ ≤ � ‖ν − ν̃‖ TV ,

where �= ( (δ∧λ)
√

λe−t0

4
√

2CL
)∧ (

√
λ√

2L
) and t0 = t0(δ, λ, C)= (δ ∧ λ)−1 log (4C). The constants δ and C appear in

Proposition 5.6. �
Equivalently, we may say that this assumption requires G to have a small enough Lipschitz constant.

If ε (the radius of B) is very small, this assumption is implied by Assumption 3.1, since W1(ν, ν̃)≤
εd

∫
B

∫
B

1x �=yπ (dx, dy)= εd ‖ν − ν̃‖ TV .
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We illustrate these assumptions again in the linear-quadratic problem that we considered in
Example 3.3 and show that Assumptions 5.2 and 5.3 can be satisfied in this case.

Example 5.4 (Example 3.3 continued). We consider again �(ξ , θ )= ‖ξ − θ‖2 with θ in a bounded
X′ ⊆ X. Unfortunately, � does not satisfy Assumption 5.2, since the term (ξ − θ ) · ξ is not necessary
to be zero on the boundary of B. Instead, we study a slightly larger ball by considering ε̂= 2ε instead
of ε and also replace � by �̂(ξ , θ )= ‖m(ξ )− θ‖2 , where m:Rd→R

d is smooth and equal to ξ on
the ε-ball and vanishes near the boundary of the 2ε-ball. Since m(ξ ) varnishes near the boundary of
2ε-ball, �̂ satisfies Assumption 5.2.

We note that∇ξ �̂(ξ , θ )= 2Dξ m(ξ )(m(ξ )− θ ). Hence,∇ξ �̂ is Lipschitz in both θ and ξ which directly
follows from the boundedness and Lipschitz continuity of m, Dξ m. Analogously to Example 3.3, we have

G(θ , ν)= 2θ − 2Eν[m(ξ )]+ 4θ ·Varν(m(ξ ))− 2Covν( ‖m(ξ )‖2 , m(ξ )),

and also see that it still satisfies Assumptions 3.1, 3.2 when θ is bounded and ε is small. Finally,
Assumption 5.3 is satisfied if ε is chosen to be sufficiently small.

We are now able to state the main convergence theorem of this section. Therein, we still consider θ∗
to be a minimiser of function of F.

Theorem 5.5. Let Assumptions 3.1, 3.2, 5.2, and 5.3 hold and let (θt, μt)t≥0 be the solution to the
McKean–Vlasov SDE (3.2). Then, there are constants η > 0 and C̃ > 0 with which we have

‖θt − θ∗‖2 + ‖μt − πγ ,ε( · |θ∗)‖2
TV ≤ C̃

(
‖θ0 − θ∗‖2 + ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
e−ηt. (5.2)

We can see this result as both a statement about the convergence of (θN
t )t≥0 to the minimiser, but also as

an ergodicity statement about (θN
t , ξt)t≥0. The ergodicity of a McKean–Vlasov SDE with reflection has

also been subject of Theorem 3.1 in [53]. In their work, the process is required to have a non-degenerate
diffusion term. Hence, their result does not apply immediately, since the marginal (θt)t≥0 is deterministic
(conditionally on (ξt)t≥0). Our proof ideas, however, are still influenced by [53].

We note additionally that Theorem 5.5 implies the uniqueness of the minimiser θ∗ – we had only
shown existence in Proposition 5.1: If there exists another minimiser θ ′∗, then the dynamics (3.2) is
invariant at (θ0, ξ0)∼ δθ ′∗ ⊗ πγ ,ε( · |θ ′∗), which means (θt, ξt)∼ δθ ′∗ ⊗ πγ ,ε( · |θ ′∗) for all t≥ 0. Hence, we
have

∥∥θ ′∗ − θ∗
∥∥≤ C̃

∥∥θ ′∗ − θ∗
∥∥ e−ηt. The right-hand side vanishes as t→∞, which implies θ ′∗ = θ∗.

In order to prove Theorem 5.5, we first consider the case where θt ≡ θ∗, i.e.

ξ̂t = ξ0 +
∫ t

0

∇x�(̂ξs, θ∗)ds+√2Wt +
∫ t

0

ν (̂ξs)d̂ls. (5.3)

We denote the law of ξ̂t by μ̂t, t≥ 0. Motivated by [53], we first show the exponential ergodicity for the
process (̂ξt)t≥0.

Proposition 5.6. Let Assumptions 3.1 and 5.2 hold. Then, (̂ξt)t≥0 defined in (5.3) is well-posed and
admits an unique invariant measure πγ ,ε( · |θ∗). Moreover, (̂ξt)t≥0 is exponentially ergodic. In particular,
there exist C, δ > 0, such that

‖μ̂t − πγ ,ε( · |θ∗)‖2
TV ≤C ‖μ0 − πγ ,ε( · |θ∗)‖2

TV e−δt.

Proof. The well-posedness and exponential ergodicity is a direct corollary of ( [53], Theorem 2.3). We
only need to verify that πγ ,ε( · |θ∗) is invariant under the dynamics (5.3). We know that the probability
distributions (μ̂t)t≥0 satisfies the following linear PDE with Neumann boundary condition

∂tμ̂t =�μ̂t − div(μ̂t∇ξ�(ξ , θ∗)),
∂μ̂t

∂n

∣∣∣
∂B
= 0.
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So any invariant measure of the dynamics (5.3) is a probability distribution that solves the following
stationary PDE

�μ̂− div(μ̂∇ξ�(ξ , θ∗))= 0,
∂μ̂

∂n

∣∣∣
∂B
= 0.

Now, μ̂= πγ ,ε( · |θ∗) is a basic result in the theory of Langevin SDEs with reflection, see, e.g. [44].

Most of the time, we are not able to quantify the constants C and δ: the Harris-like theorem from
[53] is not quantitative. A special case in which we can quantify C and δ is when the potential separates
in the sense that ∇ξ�(ξ , θ∗)= (f1(ξ1, θ∗), . . . , fdY (ξdY , θ∗)). Then (5.3) can be viewed as dY independent
reflection SDEs. If we denote their ergodicity constants as Ci and δi for i= 1, . . . , dY , then ( [22], Proof
of Proposition 1) implies that we can choose C := ∑d

i=1 Ci and δ := mini=1,...,d δi. Thus, in this case, the
constant C is linear in the dimension d.

Next, we bound the distance ‖μt − μ̂t‖ TV by Girsanov’s theorem – a classical way to estimate the
distance between two SDEs with different drift terms. This is again motivated by ( [53], proof of Lemma
3.2). There, the method is used to bound the distance between two measure-dependent SDEs. In our
case, it also involves the state θt, which depends on t. Hence, the right-hand side depends on the path of
(θs)0≤s≤t.

Lemma 5.7. Let Assumption 3.1 hold. Then, we have

‖μt − μ̂t‖2
TV ≤ L2

∫ t

0

‖θs − θ∗‖2 ds.

Proof. We follow the same idea as ( [53], proof of Lemma 3.2). In our case, we need to choose

Zt = exp
( ∫ t

0

z(θ∗, θs, ξs) · dWs − 1

2

∫ t

0

‖z(θ∗, θs, ξs)‖2 ds
)

,

where z(θ∗, θ , x)= (∇x�(x, θ )−∇x�(x, θ∗))/
√

2. ( [29], Proposition 5.6) implies that the process (Zt)t≥0

is a martingale due to z(θ∗, θs, ξs) being bounded and
∫ t

0
‖z(θ∗, θs, ξs)‖2 ds being the quadratic variation

process of
∫ t

0
z(θ∗, θs, ξs) · dWs.

We define the probability measureQt := ZtP, i.e. Qt(A) := E[Zt1A] for any Ft-measurable set A. And
we notice that the quadratic covariation between

∫ t

0
z(θ∗, θs, ξs) · dWs and Wt is given by〈∫ .

0

z(θ∗, θs, ξs) · dWs, W.

〉
t

=
∫ t

0

z(θ∗, θs, ξs)ds.

Hence by Girsanov’s theorem (see ([29], Theorem 5.8, Conséquences (c))]), W̃t := Wt −
∫ t

0
z(θ∗, θs, ξs)ds

is a Brownian motion under Qt with the same filtration Ft.
We rewrite (3.2) as

ξt = ξ0 +
∫ t

0

∇x�(ξs, θ∗)ds+√2W̃t +
∫ t

0

n(ξs)dls,

which has the same distribution as ξ̂t under Qt. Hence

‖μt − μ̂t‖ TV = sup
|f |≤1
|E[f (ξt)]−E[f (ξt)Zt]| ≤E[ |Zt − 1| ]

≤2E[Rt log (Rt)]
1
2 = 2EQt

[ ∫ t

0

z(θ∗, θs, ξs) · dWs − 1

2

∫ t

0

‖z(θ∗, θs, ξs)‖2 ds
] 1

2

=2EQt

[ ∫ t

0

z(θ∗, θs, ξs) · dW̃s + 1

2

∫ t

0

‖z(θ∗, θs, ξs)‖2 ds
] 1

2

=√2EQt

[ ∫ t

0

‖z(θ∗, θs, ξs)‖2 ds
] 1

2 ≤ L
( ∫ t

0

‖θs − θ∗‖2 ds
) 1

2
.

where the first “≤” is implied by Pinsker’s inequality.
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Using these auxiliary results, we can now formulate the proof of Theorem 5.5.

Proof of Theorem 5.5 We take the time derivative of ‖θt − θ∗‖2 ,

d ‖θt − θ∗‖2

dt
=− 〈G(θt, μt)−G(θ∗, π

γ ,ε( · |θ∗)), θt − θ∗〉
≤−2λ ‖θt − θ∗‖2 + � ‖θt − θ∗‖ ‖μt − πγ ,ε( · |θ∗)‖ TV

≤−λ ‖θt − θ∗‖2 + �2

λ
‖μt − πγ ,ε( · |θ∗)‖2

TV ,

where the first “≤” is due to the ε-Young’s inequality. This implies

d(eλt ‖θt − θ∗‖2 )

dt
≤ �2

λ
eλt ‖μt − πγ ,ε( · |θ∗)‖2

TV .

Hence, we have

‖θt − θ∗‖2 ≤ e−λt ‖θ0 − θ∗‖2 + �2

λ

∫ t

0

‖μs − πγ ,ε( · |θ∗)‖2
TV ds. (5.4)

Then, using the triangle inequality, we see that

‖θt − θ∗‖2 +m ‖μt − πγ ,ε( · |θ∗)‖2
TV ≤ ‖θt − θ∗‖2︸ ︷︷ ︸

(5.4)

+ 2m ‖μt − μ̂t‖2
TV︸ ︷︷ ︸

Lemma5.7

+ 2m ‖μ̂t − πγ ,ε( · |θ∗)‖2
TV︸ ︷︷ ︸

Proposition5.6

≤
∫ t

0

(�2

λ
‖μs − πγ ,ε( · |θ∗)‖2

TV + 2mL2 ‖θs − θ∗‖2
)
ds

+ 2C
(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
e−(δ∧λ)t.

Let m=m(�, L, λ)= �

L
√

2λ
, we conclude from the above inequality that

‖θt − θ∗‖2 +m ‖μt − πγ ,ε( · |θ∗)‖2
TV ≤ 2mL2

∫ t

0

(
m ‖μs − πγ ,ε( · |θ∗)‖2

TV + ‖θs − θ∗‖2
)
ds

+ 2C
(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
e−(δ∧λ)t.

Hence, by Grönwall’s inequality, we have

‖θt − θ∗‖2 +m ‖μt − πγ ,ε( · |θ∗)‖2
TV

≤C
(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)(
2mL2

∫ t

0

e2mL2(t−s)e−(δ∧λ)sds+ e−(δ∧λ)t
)

=C
( 2mL2

2mL2 + δ ∧ λ
(e2mL2t − e−(δ∧λ)t)+ e−(δ∧λ)t

)(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
≤C

(2mL2

δ ∧ λ
e2mL2 t + e−(δ∧λ)t

)(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
≤Ct,L,�,λ

(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
, (5.5)

where Ct,L,�,λ =C
(

2mL2

δ∧λ
e2mL2t + e−(δ∧λ)t

)
. According to Assumption 5.3, we know that 2mL2 = �L

√
2√

λ
≤ 1.

Next, we are going to show that 0 < Ct0,L,�,λ ≤ 1/2 for t0 = t0(δ, λ, C)= (δ ∧ λ)−1 log (4C). Again, from
Assumption 5.3, we know 2mL2

δ∧λ
et0 ≤ 1

4C
. Hence we finally have,

Ct0,L,�,λ ≤ 2CmL2

δ ∧ λ
et0 +Ce−(δ∧λ)t0 ≤ 1

2
.
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For any t≥ 0, we always have [ t
t0

]t0 ≤ t < [ t
t0

]t0 + t0, where [x] denotes the greatest integer ≤ x. Hence,

‖θt − θ∗‖2 +m ‖μt − πγ ,ε( · |θ∗)‖2
TV ≤ 2−[ t

t0
]
( ∥∥∥θt−[ t

t0
]t0 − θ∗

∥∥∥2 +m
∥∥∥μt−[ t

t0
]t0 − πγ ,ε( · |θ∗)

∥∥∥2

TV

)
≤ 2−

t
t0
+1 sup

0≤s≤t0

(
‖θs − θ∗‖2 +m ‖μs − πγ ,ε( · |θ∗)‖2

TV

)
≤ 2−

t
t0
+1C

( et0

δ ∧ λ
+ 1

)(
‖θ0 − θ∗‖2 +m ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
,

where the last inequality is from (5.5) and Cs,L,�,λ could be bounded by C( et0

δ∧λ
+ 1) for 0≤ s≤ t0. And

since m≤ 1
2L2 < 1, we conclude that

‖θt − θ∗‖2 + ‖μt − πγ ,ε( · |θ∗)‖2
TV ≤m−12−

t
t0
+1C

( et0

δ ∧ λ
+ 1

)(
‖θ0 − θ∗‖2 + ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
≤ 2L22−

t
t0
+1C

( et0

δ ∧ λ
+ 1

)(
‖θ0 − θ∗‖2 + ‖μ0 − πγ ,ε( · |θ∗)‖2

TV

)
.

Finally, we choose the constants η= η(δ, λ, C)= log (2)t−1
0 = (δ ∧ λ) log (2)

log (4C)
and C̃= C̃(L, C, δ, λ)=

4CL2
(

et0

δ∧λ
+ 1

)
= 4CL2

(
(4C)(δ∧λ)−1

δ∧λ
+ 1

)
.

6 Algorithmic considerations

Throughout this work, we have considered Abram as a continuous-time dynamical system. To employ
it for practical adversarially robust machine learning, this system needs to be discretised, i.e. we need
to employ a time stepping scheme to obtain a sequence (θN

k , ξ 1,N
k , . . . , ξN,N

k )∞k=1 that approximates Abram
at discrete points in time. We now propose two discrete schemes for Abram, before then discussing the
simulation of Bayesian adversarial attacks.

6.1 Discrete Abram

We initialise the particles by sampling them from the uniform distribution in the ε-ball. Then, we employ
a projected Euler–Maruyama scheme to discretise the particles (ξ 1,N

t , . . . , ξN,N
t )t≥0. The Euler–Maruyama

scheme (see, e.g. [19]) is a standard technique for first order diffusion equation—we use a projected
version to adhere to the reflecting boundary condition inside the ball B. Projected Euler–Maruyama
schemes of this form have been studied in terms of almost sure convergence [49] and, importantly, also
in terms of their longtime behaviour [27]. The gradient flow part (θN

t )t≥0 is discretised using a forward
Euler method – turning the gradient flow into a gradient descent algorithm [39]. In applications, it is
sometimes useful to allow multiple iterations of the particle dynamics (ξ 1,N

t , . . . , ξN,N
t )t≥0 per iteration of

the gradient flow (θN
t )t≥0. This corresponds to a linear time rescaling in the particle dynamics that should

lead to a more accurate representation of the respective adversarial distribution.
If the number of data points (yk, zk)K

k=1 is large, we may be required to use a data subsampling
technique. Indeed, we approximate 1

K

∑K
k=1 �(yk, zk|θ )≈�(yk′ , zk′) with a k′ ∼Unif({1, . . . , K}) being

sampled independently in every iteration of the algorithm. This gives us a stochastic gradient descent-
type approximation of the gradients in the algorithm, see [42]. We note that we have not analysed
data subsampling within Abram – we expect that techniques from [22, 28] may be useful to do so.
We summarise the method in Algorithm 1.
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Algorithm 1 Abram
1: initialise learning rate h, θ0, γ , ε

2: for j= 1, 2, . . . , J do
3: pick a data point (yj, zj) from training data
4: for i= 1, 2, . . . , N do
5: initialise ξ i

0,j = ξ i
T ,j−1 if j > 1 else ξ i

0,j ∼Unif[− ε, ε]
6: for τ = 1, 2, . . . , T do
7: ξ i

τ ,j← Proj‖·‖≤ε(ξ i
τ−1,j + h∇ξ�(yj + ξ i

τ−1,j, zj|θj−1)+ γ −1
√

2hwi
τ ,j) (wi

τ ,j ∼N(0, Id) iid.)
8: end for
9: end for
10: μN

j ← 1
N

∑N
i=1 δ( · −ξ i

T ,j)
11: Ĉj←CovμN

j
(�(yj + ·, zj|θj−1),∇θ�(yj + ·, zj|θj−1))

12: θj← θj−1 − h
N

∑N
i=1 ∇θ�(yj + ξ i

T ,j, zj|θj−1)− γ hĈj

12: end for
12: return θJ

Algorithm 2 Mini-batching Abram
1: initialise learning rate h, θ0, γ , ε

2: for j= 1, 2, . . . , J do
3: pick N data points (yi

j, zi
j)

N
i=1 from the training data (yk, zk)K

k=1

4: for i= 1, 2, . . . , N do
5: initialise ξ i

0,j← ξ i
T ,j−1 if j > 1 else ξ i

0,j ∼Unif[− ε, ε] iid.
6: for τ = 1, 2, . . . , T do
7: ξ i

τ ,j← Proj‖·‖≤ε(ξ i
τ−1,j + h∇ξ�(yi

j + ξ i
τ−1,j, zi

j|θj−1)+ γ −1
√

2hwi
τ ,j) (wi

τ ,j ∼N(0, Id) iid.)
8: end for
9: end for
10: μN

j ← 1
N

∑N
i=1 δ( · −(yi

j + ξ i
T ,j))

11: Ĉj←CovμN
j
(�(·, zj|θj−1),∇θ�(·, zj|θj−1))

12: θj← θj−1 − h
N

∑N
i=1 ∇θ�(yi

j + ξ i
T ,j, zj|θj−1)− γ hĈj

12: end for
12: return θJ

6.2 Discrete Abram with mini-batching

When subsampling in machine learning practice, it is usually advisable to choose mini-batches of data
points rather than single data points. Here, we pick a mini-batch {yk′ , zk′ }k′∈K′ ⊆ {yk, zk}Kk=1, with #K ′ �K
and perform the gradient step with all elements with index in K ′ rather than a single element in the whole
data set {yk, zk}Kk=1. Abram would then require a set of N particles for each of the elements in the batch,
i.e. NK ′ particles in total. In practice, N and K ′ are both likely to be large, leading to Abram becoming
computationally infeasible. Based on an idea discussed in a different context in [17], we propose the
following method: in every time step j= 1, . . . , J we choose an identical number of particles (ξ i

T ,j)
N
i=1

and data points (yi
j, zi

j)
N
i=1 in the mini-batch, i.e. #K ′ =N. Then, we employ the Abram dynamics, but

equip each particle ξ i
T ,j with a different data point (yi

j, zi
j) (i= 1, . . . , N). As opposed to Abram with

separate particles per data point, we here compute the sampling covariance throughout all subsampled
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Algorithm 3 Bayesian sample attack
Require: unperturbed input data set y

1: initialise h, γ , ε, ξ0 ∼Unif[− ε, ε]
2: for j= 1, 2, . . . , J do
3: ξj← Proj‖·‖≤ε(ξj−1 + h∇ξ�(x+ ξj−1, θ )+ γ −1

√
2hwj) (wj ∼N(0, Id))

4: end for
5: return adversarially perturbed input data point y+ ξJ

Algorithm 4 Bayesian mean attack
Require: unperturbed input data point y

1: initialise h, γ , ε, ξ0 ∼Unif[− ε, ε]
2: for j= 1, 2, . . . , J do
3: ξj← Proj‖·‖≤ε(ξj−1 + h∇ξ�(x+ ξj−1, θ )+ γ −1

√
2hwj) (wj ∼N(0, Id))

4: end for
5: return adversarially perturbed input data point y+ 1

J

∑J
j=1 ξj

data points rather than separately for every data point. The resulting dynamics are then only close to
(3.1), if we assume that the adversarial attacks for each data point are not too dissimilar of each other.
However, the dynamics may also be successful, if this is not the case. We summarise the resulting method
in Algorithm 2.

6.3 Bayesian attacks

The mechanism used to approximate the Bayesian adversary in Algorithm 1 can naturally be used as a
Bayesian attack. We propose two different attacks:

1. We use the projected Euler–Maruyama method to sample from the Bayesian adversarial distribution
πγ ,ε corresponding to an input dataset y ∈ Y and model parameter θ ∗. We summarise this attack in
Algorithm 3.

2. Instead of attacking with a sample from πγ ,ε, we can attack with the mean of said distribution.
From Proposition 5.6, we know that the particle system (̂ξt)t≥0 that is based on a fixed parameter
θ∗, is exponentially ergodic. Thus, we approximate the mean of πγ ,ε, by sampling (̂ξt)t≥0 using pro-
jected Euler–Maruyama and approximate the mean by computing the sample mean throughout the
sampling path. We summarise this method in Algorithm 4.

7 Deep learning experiments

We now study the application of Abram in deep learning. The model parameter θ is updated with batch
size/number of particles N. For each particle in the ensemble, the perturbation parameter ξ is updated
for T steps. Each experimental run is conducted on a single Nvidia A6000 GPU.

7.1 MNIST

We test Algorithm 1 and Algorithm 2 on the classification benchmark data set MNIST [30] against
different adversarial attacks and compare the results with the results after an FGSM-based [57]
adversarial training. We utilise the Adversarial Robustness Toolbox (ART) for the experiments,
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Table 2. Comparison of test accuracy (%) on MNIST with different adversarial attack
after Abram, mini-batching Abram, and FGSM [57] adversarial training

Adversarial Attack (ε= 0.1) Abram Mini-batching Abram FGSM
Benign Test 92.41±0.05 99.28±0.04 99.44±0.05
Auto-PGD 78.18±0.20 95.86±0.18 98.84±0.05
PGD 78.24±0.17 95.86±0.17 98.85±0.04
Wasserstein Attack 86.27±0.12 96.51±0.13 96.97±0.04
Carlini & Wagner Attack 8.76±0.015 5.14±0.1 62.60±0.02
Bayesian sample attack 92.43±0.10 99.29±0.03 99.44±0.06
Bayesian mean attack 92.42±0.08 99.28±0.04 99.44±0.05

see [37] for more details. ART is a Python library for adversarial robustness that provides vari-
ous APIs for defence and attack. We use a neural network with two convolution layers each fol-
lowed by a max pooling. In Algorithm 1, we set γ = 1, h= ε, ε= 0.2. In Algorithm 2, we set γ =
1, h= 10ε, ε= 0.2. We observe that setting larger noise scale for the attack during training helps
Abram’s final evaluation performance. We train the neural network for 30 epochs (i.e. 30 full iter-
ations through the data set) for each method. The number of particles (and batch size) is N = 128,
and the inner loop is trained for T = 10 times. To better understand how Abram responds to dif-
ferent attacks, we test against six attack methods: PGD [32], Auto-PGD [9], Carlini and Wagner
[6], Wasserstein Attack [56], as well as the Bayesian attacks introduced in this paper – see
Algorithms 3 and 4. We also test the method’s accuracy in the case of benign (non-attacked) input data.
For the Bayesian sample attack and Bayesian mean attack, we set γ = 1000. See Table 2 for the com-
parison. The results are averaged over three random seeds. We observe that Abram performs similarly
to FGSM under Wasserstein, Bayesian sample and Bayesian mean attack. FGSM outperforms Abram
under Auto-PGD, PGD and Carlini & Wagner attack. We conclude that Abram is as effective as FGSM
under certain weaker attacks, but can usually not outperform the conventional FGSM.

Another observation is that mini-batching Abram outperforms Abram significantly. Recall that in
Abram we have used 128 particles for each data point which can be viewed as SGD with batch
size 1, whereas the mini-batching Abram is similar to the mini-batching SGD. Mini-batching Abram has
the freedom to set the batch size which helps to reduce the variance in the stochastic optimisation and,
thus, gives more stable results. In particular, with mini-batching Abram, gradients are approximated by
multiple data points instead of one data point which is the case in Abram. Having a larger batch size
also increases computation efficiency by doing matrix multiplication on GPUs, which is important in
modern machine learning applications as the datasets can be expected to be large.

7.2 CIFAR10

Similarly, we test Algorithm 2 on the classification benchmark dataset CIFAR10 [23] by utilising
ART. The dataset is pre-processed by random crop and random horizontal flip following [23] for data
augmentation. The neural network uses the Pre-act ResNet-18 [18] architecture. For Abram, we set
γ = 1, h= ε, ε= 16/255. Similar as in the MNIST experiments, practically we find that setting larger
noise scale for attack in training Abram helps to obtain a better final evaluation performance. The batch
size N = 128 and the inner loop is simulated for T = 10 times. We train both mini-batching Abram and
FGSM for 30 epochs. Due to its worse performance for MNIST and the large size of CIFAR10, we have
not used the non-mini-batching version of Abram in this second problem. For the Bayesian sample attack
and the Bayesian mean attack, we set γ = 1000. We present the results in Table 3. There, we observe
that mini-batching Abram outperforms FGSM under Wasserstein and the Bayesian attacks, but not in
any of the other cases.
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Table 3. Comparison of test accuracy (%) on CIFAR10 with different adversarial attack
after mini-batching Abram and FGSM [57] adversarial training

Adversarial Attack (ε= 8/255) Mini-batching Abram FGSM
Benign Test 65.35±0.05 55.61±0.03
Auto-PGD 11.15±0.12 43.70±0.06
PGD 11.22±0.09 43.65±0.04
Wasserstein Attack 58.04±0.15 55.30±0.03
Carlini & Wagner Attack 19.01±0.12 62.60±0.02
Bayesian sample attack 62.52±0.03 55.83±0.05
Bayesian mean attack 63.72±0.06 55.81±0.05

8 Conclusions

We have introduced the Bayesian adversarial robustness problem. This problem can be interpreted as
either a relaxation of the usual minmax problem in adversarial learning or as learning methodology that
is able to counter Bayesian adversarial attacks. To solve the Bayesian adversarial robustness problem,
we introduce Abram – the Adversarially Bayesian Particle Sampler. Under restrictive assumptions, we
prove that Abram approximates a McKean–Vlasov SDE and that this McKean–Vlasov SDE is able
to find the minimiser of certain (simple) Bayesian adversarial robustness problems. Thus, at least for
a certain class of problems, we give a mathematical justification for the use of Abram. We propose
two ways to discretise Abram: a direct Euler–Maruyama discretisation of the Abram dynamics and an
alternative method that is more suitable when training with respect to large data sets. We apply Abram in
two deep learning problems. There we see that Abram can effectively prevent certain adversarial attacks
(especially Bayesian attacks), but is overall not as strong as classical optimisation-based heuristics.

Competing interests. The authors declare none.

References
[1] Adams, D., dos Reis, G., Ravaille, R., Salkeld, W. & Tugaut, J. (2022) Large deviations and exit-times for reflected McKean–

Vlasov equations with self-stabilising terms and superlinear drifts. Stoch. Proc. Appl. 146, 264–310.
[2] Johnston, T., Crucinio, F. R., Akyildiz, Ö. D., Sabanis, S. & Girolami, M. (2023) Interacting particle Langevin algorithm

for maximum marginal likelihood estimation. ESAIM: PS (forthcoming). DOI: 10.1051/ps/2025005
[3] Bachute, M. R. & Subhedar, J. M. (2021) Autonomous driving architectures: Insights of machine learning and deep learn-

ing algorithms. Mach. Learn. Appl. 6, 100164. DOI: 10.1016/j.mlwa.2021.100164. https://www.sciencedirect.com/science/
article/pii/S2666827021000827

[4] Bungert, L., Trillos, N. G., Jacobs, M., McKenzie, D., Nikolić, D. & Wang, Q. (2024) It begins with a boundary: A geometric
view on probabilistically robust learning, arXiv e-prints, 2305.18779. URL https://arxiv.org/abs/2305.18779

[5] Carlini, N. & Wagner, D. (2017a) Adversarial examples are not easily detected: Bypassing ten detection methods,
Association for Computing Machinery. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
AISec’17, pp. 3–14, New York, NY, USA, 9781450352024.

[6] Carlini, N. & Wagner, D. (2017b) Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), pp. 39–57, Los Alamitos, CA, USA: IEEE Computer Society.

[7] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B. & LeCun, Y. (2015) The loss surfaces of multilayer networks. In
Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, Vol. 38, pp. 192–204, San Diego,
CA, USA: PMLR.

[8] Cipriani, C., Scagliotti, A. & Wöhrer, T. (2024) A Minimax Optimal Control Approach for Robust Neural ODEs. In 2024
European Control Conference (ECC), Stockholm, Sweden, pp. 58–64. DOI: 10.23919/ECC64448.2024.10590973

[9] Croce, F. & Hein, M. (2020) Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free
attacks. In Proceedings of the 37th International Conference on Machine Learning, Vol. 119, pp. 2206–2216, PMLR.

[10] Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X. & Li, J. (2018) Boosting adversarial attacks with momentum. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9185–9193, Los Alamitos, CA, USA:
IEEE Computer Society.

https://doi.org/10.1017/S0956792525000105 Published online by Cambridge University Press

https://doi.org/10.1051/ps/2025005
https://doi.org/10.1016/j.mlwa.2021.100164
https://www.sciencedirect.com/science/article/pii/S2666827021000827
https://www.sciencedirect.com/science/article/pii/S2666827021000827
https://arxiv.org/abs/https://arxiv.org/abs/2305.18779
https://doi.org/10.23919/ECC64448.2024.10590973
https://doi.org/10.1017/S0956792525000105


22 Z. Ding et al.

[11] Fournier, N. & Guillin, A. (2015) On the rate of convergence in Wasserstein distance of the empirical measure. Probab.
Theory Relat. Fields 162(3–4), 707–738.

[12] Fu, S., He, F., Xu, Y. & Tao, D. (2021) Bayesian inference forgetting. arXiv eprints, 2101.06417. URL
https://arxiv.org/abs/2101.06417

[13] Ghiasi, A., Shafahi, A. & Goldstein, T. (2020) Breaking certified defenses: Semantic adversarial examples with spoofed
robustness certificates. In International Conference on Learning Representations.

[14] Goodfellow, I. J., Shlens, J. & Szegedy, C. (2015) Explaining and harnessing adversarial examples, In Proceedings
of the 3rd International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015. URL
https://arxiv.org/abs/1412.6572

[15] Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R.,Qin, C., Uesato, J., Arandjelovic, R., Mann, T. A. & Kohli, P. (2019)
Scalable verified training for provably robust image classification. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 4841–4850.

[16] Guo, C., Rana, M., Cisse, M. & van der Maaten, L. (2018) Countering adversarial images using input transformations. In
International Conference on Learning Representations.

[17] Hanu, M., Latz, J. & Schillings, C. (2023) Subsampling in ensemble Kalman inversion. Inverse Probl. 39(9), 094002.
DOI: 10.1088/1361-6420/ace64b. URL https://dx.doi.org/10.1088/1361-6420/ace64b

[18] He, K., Zhang, X., Ren, S. & Sun, J. (2016) Identity mappings in deep residual networks. In Computer Vision – ECCV
2016, pp. 630–645, Springer International Publishing.

[19] Higham, D. & Kloeden, P. (2021) An introduction to the numerical simulation of stochastic differential equations. SIAM.
[20] Hwang, C.-R. (1980) Laplace’s method revisited: Weak convergence of probability measures. Ann. Probab. 8(6), 1177–

1182. URL http://www.jstor.org/stable/2243019
[21] Jia, J., Qu, W. & Gong, N. Z. (2022) Multiguard: Provably robust multi-label classification against adversarial examples. In

Advances in Neural Information Processing Systems.
[22] Jin, K., Latz, J., Liu, C. & Schönlieb, C.-B. (2023) A continuous-time stochastic gradient descent method for continuous

data. J. Mach. Learn. Res. 24(274), 1–48.
[23] Krizhevsky, A. (2009) Learning multiple layers of features from tiny images, Technical Report. URL

https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf
[24] Kuntz, J., Lim, J. N. & Johansen, A. M. (2023) Particle algorithms for maximum likelihood training of latent variable models.

In Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, Vol. 206 of Proceedings of
Machine Learning Research, pp. 5134–5180, PMLR.

[25] Kurakin, A., Goodfellow, I. J. & Bengio, S. (2017a) Adversarial examples in the physical world. In Artificial Intelligence
Safety and Security, pp. 99–112.

[26] Kurakin, A., Goodfellow, I. J. & Bengio, S. (2017b) Adversarial machine learning at scale. In International Conference on
Learning Representations. URL https://openreview.net/forum?id=BJm4T4Kgx

[27] Lamperski, A. (2021) Projected stochastic gradient Langevin algorithms for constrained sampling and non-convex learning.
In Belkin, M. & Kpotufe, S. (eds.), Proceedings of 34th Conference on Learning Theory, Vol. 134 of Proceedings of Machine
Learning Research, pp. 2891–2937, PMLR. URL https://proceedings.mlr.press/v134/lamperski21a.html

[28] Latz, J. (2021) Analysis of stochastic gradient descent in continuous time. Stat. Comput. 31(4), 39. DOI:
10.1007/s11222-021-10016-8

[29] Gall, J.-F. Le (2013) Mouvement Brownien, Martingales et Calcul Stochastique, Springer.
[30] LeCun, Y. & Cortes, C. (2005) The MNIST database of handwritten digits. URL http://yann.lecun.com/exdb/mnist
[31] Liu, J., Levine, A., Lau, C., Chellappa, R. & Feizi, S. (2022) Segment and complete: Defending object detectors against

adversarial patch attacks with robust patch detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14953–14962.Los Alamitos, CA, USA: IEEE Computer Society.

[32] Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. (2018) Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations.

[33] Maini, P., Wong, E. & Kolter, Z. (2020) Adversarial robustness against the union of multiple perturbation models. In H.,
D.III & Singh, A. (eds.), Proceedings of the 37th International Conference on Machine Learning, Vol. 119 of Proceedings
of Machine Learning Research, pp. 6640–6650, PMLR.

[34] McKean, H. P. (1966) A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci.
56(6), 1907–1911. DOI: 10.1073/pnas.56.6.1907 URL https://www.pnas.org/doi/abs/10.1073/pnas.56.6.1907

[35] Metzen, J. H., Genewein, T., Fischer, V. & Bischoff, B. (2017) On detecting adversarial perturbations. In International
Conference on Learning Representations.

[36] Mosbach, M., Andriushchenko, M., Trost, T., Hein, M. & Klakow, D. (2019) Logit pairing methods can fool gradient-based
attacks. In NeurIPS 2018 Workshop on Security in Machine Learning. URL https://arxiv.org/abs/1810.12042

[37] Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M., Zantedeschi, V., Baracaldo, N., Chen, B., Ludwig,
H., Molloy, I., & Edwards, B. (2018) Adversarial robustness toolbox v1.2.0, arXiv eprints, 1807.01069, 2018.

[38] Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A. & Anandkumar, A. (2022) Diffusion models for adversarial purification.
In Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning
Research, pp. 16805–16827, PMLR.

[39] Nocedal, J. & Wright, S. J. (1999) Numerical Optimization, Springer.
[40] Pilipenko, A. (2014) An introduction to stochastic differential equations with reflection. Universität Potsdam, Lectures in

Pure and Applied Mathematics

https://doi.org/10.1017/S0956792525000105 Published online by Cambridge University Press

2101.06417Help
https://arxiv.org/abs/https://arxiv.org/abs/2101.06417
https://arxiv.org/abs/https://arxiv.org/abs/1412.6572
https://doi.org/10.1088/1361-6420/ace64b
https://dx.doi.org/10.1088/1361-6420/ace64b
http://www.jstor.org/stable/2243019
https://openreview.net/forum?id$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}BJm4T4Kgx
https://proceedings.mlr.press/v134/lamperski21a.html
https://doi.org/10.1007/s11222-021-10016-8
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1073/pnas.56.6.1907
https://www.pnas.org/doi/abs/10.1073/pnas.56.6.1907
https://arxiv.org/abs/https://arxiv.org/abs/1810.12042
https://arxiv.org/abs/https://arxiv.org/abs/1807.01069
https://doi.org/10.1017/S0956792525000105


European Journal of Applied Mathematics 23

[41] Rajkomar, A., Dean, J. & Kohane, I. (2019) Machine learning in medicine. New England J. Med. 380(14), 1347–1358.
DOI: 10.1056/NEJMra1814259 URL https://www.nejm.org/doi/full/10.1056/NEJMra1814259

[42] Robbins, H. & Monro, S. (1951) A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407.
[43] Robey, A., Chamon, L., Pappas, G. J. & Hassani, H. (2022) Probabilistically robust learning: Balancing average and worst-

case performance, Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of
Machine Learning Research, pp. 18667–18686, PMLR.

[44] Sato, K., Takeda, A., Kawai, R. & Suzuki, T. (2024) Convergence error analysis of reflected gradient Langevin dynamics
for non-convex constrained optimization. Japan J. Indust. Appl. Math. 42, 127–151. DOI: 10.1007/s13160-024-00667-1

[45] Sharma, S., Bhatt, M. & Sharma, P. (2020) Face recognition system using machine learning algorithm. In
2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 1162–1168. DOI:
10.1109/ICCES48766.2020.9137850

[46] Sheikholeslami, F., Lotfi, A. & Kolter, J. Z. (2021) Provably robust classification of adversarial examples with detection. In
International Conference on Learning Representations.

[47] Song, Y., Kim, T., Nowozin, S., Ermon, S. & Kushman, N. (2018) Pixeldefend: Leveraging generative models to understand
and defend against adversarial examples. In International Conference on Learning Representations.

[48] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J. & Fergus, R. (2014) Intriguing properties of
neural networks, In International Conference on Learning Representations. URL https://arxiv.org/abs/1312.6199

[49] Słomiński, L. (1994) On approximation of solutions of multidimensional SDE’s with reflecting boundary condi-
tions. Stoch. Proc. Appl. 50(2), 197–219. DOI: 10.1016/0304-4149(94)90118-X, https://www.sciencedirect.com/science/
article/pii/030441499490118X

[50] Tramer, F. & Boneh, D. (2019) Adversarial training and robustness for multiple perturbations, Advances in Neural
Information Processing Systems, Vol. 32.

[51] Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D. & McDaniel, P. (2018) Ensemble adversarial training:
Attacks and defenses. In International Conference on Learning Representations.

[52] Villani, C. (2009) Optimal Transport: Old and New. Springer.
[53] Wang, F.-Y. (2023) Exponential ergodicity for singular reflecting McKean–Vlasov SDEs. Stoch. Proc. Appl. 160, 265–293.
[54] Wang, Z., Pang, T., Du, C., Lin, M., Liu, W. & Yan, S. (2023) Better diffusion models further improve adversarial training.

In Proceedings of the 40th International Conference on Machine Learning, Vol. 202 of Proceedings of Machine Learning
Research, pp. 36246–36263, PMLR.

[55] Wong, E. & Kolter, Z. (2018) Provable defenses against adversarial examples via the convex outer adversarial polytope.
In Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning
Research, pp. 5286–5295, PMLR.

[56] Wong, E., Schmidt, F. & Kolter, Z. (2019) Wasserstein adversarial examples via projected Sinkhorn iterations. In
Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning
Research, pp. 6808–6817, PMLR.

[57] Wong, E., Rice, L. & Kolter, J. Z. (2020) Fast is better than free: Revisiting adversarial training. In International Conference
on Learning Representations.

[58] Xu, K., Xiao, Y., Zheng, Z., Cai, K. & Nevatia, R. (2023) Patchzero: Defending against adversarial patch attacks by
detecting and zeroing the patch. In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp. 4621–4630. Los Alamitos, CA, USA: IEEE Computer Society.

[59] Xu, W., Evans, D. & Qi, Y. (2018) Feature squeezing: Detecting adversarial examples in deep neural networks. In Network
and Distributed System Security Symposium.

[60] Xue, H., Araujo, A., Hu, B. & Chen, Y. (2023) Diffusion-based adversarial sample generation for improved stealthiness and
controllability. In Advances in Neural Information Processing Systems, Vol. 36, pp. 2894–2921.

[61] Yang, Y., Zhang, G., Katabi, D. & Xu, Z. (2019) ME-net: Towards effective adversarial robustness with matrix estimation.
In Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning
Research, pp. 7025–7034, PMLR.

[62] Ye, N. & Zhu, Z. (2018) Bayesian adversarial learning. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N. & Garnett, R. (eds.), Advances in Neural Information Processing Systems, Vol. 31.

[63] Yun, S., Han, D., Chun, S., Oh, S., Yoo, Y. & Choe, J. (2019) Cutmix: Regularization strategy to train strong classifiers
with localizable features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6022–6031. Los
Alamitos, CA, USA: IEEE Computer Society.

Cite this article: Ding Z., Jin K., Latz J. and Liu C. How to beat a Bayesian adversary. European Journal of Applied Mathematics,
https://doi.org/10.1017/S0956792525000105

https://doi.org/10.1017/S0956792525000105 Published online by Cambridge University Press

https://doi.org/10.1056/NEJMra1814259
https://www.nejm.org/doi/full/10.1056/NEJMra1814259
https://doi.org/10.1007/s13160-024-00667-1
https://doi.org/10.1109/ICCES48766.2020.9137850
https://arxiv.org/abs/https://arxiv.org/abs/1312.6199
https://doi.org/10.1016/0304-4149(94)90118-X
https://www.sciencedirect.com/science/article/pii/030441499490118X
https://doi.org/10.1017/S0956792525000105
https://doi.org/10.1017/S0956792525000105

	Introduction
	Adversarial robustness and its Bayesian relaxation
	Relaxation
	Bayesian attackers

	Adversarial Bayesian particle sampler
	Mean-field limit
	Assumptions

	Propagation of chaos
	Longtime behaviour of the McKean"2013`Vlasov process
	Algorithmic considerations
	Discrete Abram
	Discrete Abram with mini-batching
	Bayesian attacks

	Deep learning experiments
	MNIST
	CIFAR10

	Conclusions
	References

