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THE CURVATURE AND TOPOLOGICAL PROPERTIES OF
HYPERSURFACES WITH CONSTANT SCALAR CURVATURE

SHU SHICHANG AND LIU SANYANG

In this paper, we consider n (n > 3)-dimensional compact oriented connected hy-
persurfaces with constant scalar curvature n(n — 1)r in the unit sphere S™+!(1).
We prove that, if 7 > (n—-2)/(n—1) and S < (n — 1)(n(r-1)+2)/(n~2)
+ (n — 2)/(n(r — 1) + 2), then either M is diffeomorphic to a spherical space form if
n = 3; or M is homeomorphic to a sphere if n 2> 4; or M is isometric to the Rieman-
nian product S!(v/1 — ¢2) x §"~!(c), where ¢ = (n — 2)/(nr) and S is the squared
norm of the second fundamental form of M.

1. INTRODUCTION

Let M be an n-dimensional hypersurface in the unit sphere S™*!(1) of dimension

n+1. Suppose the scalar curvature n(n—1)r of M is constant and 7 > 1. Cheng and Yau
[3] and Li [7] obtained some characterisation theorems in terms of the sectional curvature
or the squared norm of the second fundamental form of M respectively. We should notice
that the condition r > 1 plays an essential role in the proofs of their theorems. On
the other hand, for any 0 < ¢ < 1, by considering the standard immersions S"~!(c)
C R, S'(V1=¢c) C R? and taking the Riemannian product immersion S'(v/1— c2)
x S"1(c) < R? x R", we obtain a hypersurface S!(v/1— ¢?) x §*~1(c) in S"*+1(1) with
constant scalar curvature n(n — 1)r, where r = (n — 2)/(nc®) > 1 — (2/n). Hence, not
all Riemannian products S'(v/1T — ¢?) x S™~!(c) are covered by the results of [3, 7]; since
the Riemannian product S*(v/1 — ¢2) x S"~1(c) has only two distinct principal curvatures
and its scalar curvature n(n — 1)r is constant and satisfies 7 > 1 — (2/n). Hence, Cheng
[4] asked the following interesting problem:
PROBLEM 1. ([4]). Let M be an n-dimensional compact hypersurface with con-
stant scalar curvature n(n — 1)r in S™*(1). Ifr > 1 - (2/n) and S < (n — 1)
(n(r —1) +2)/(n — 2) + (n — 2)/(n(r — 1) + 2), then is M isometric to either a totally
umbilical hypersurface or the Riemannian product S'(v1 — ¢2) x §™1(c)?

Cheng [4] said that when r = (n — 2)/(n — 1), he answered the Problem 1 affirma-
tively. For the general case, Problem 1 is still open.
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In this paper, we try to solve Problem 1. We shall give a topological answer, which
relies on the Lawson-Simons formula ([8]) for the nonexistence of stable k-currents, which
enables us to eliminate the homology groups and to show M is a homology sphere. We
prove the following

THEOREM. Let M be an n(n > 3)-dimensional compact oriented connected hyper-
surface with constant scalar curvature n(n — 1)r in S**'(1). Ifr > (n —2)/(n — 1) and
S < (n-1)(n(r—1) +2)/(n —2)+ (n—2)/(n(r — 1) + 2), then either M is diffeomor-
phic to a spherical space form if n = 3; or M is homeomorphic to a sphere ifn > 4; or M
is isometric to the Riemannian product S*(v/1 — ¢?) x §"~(c), where ¢ = (n — 2)/(nr).

2. PRELIMINARIES

Let M .be an n-dimensional hypersurface in a unit sphere S$”*!(1) with constant

scalar curvature n(n — 1)r. We take a local orthonormal frame field e, - ,e,4; in
Sn*1(1), restricted to M,e;, - ,e, are tangent to M. Let w;,---,wyyy be the dual
coframe fields in S™"*1(1). We use the following convention on the ranges of indices:
1< ABC,---, < n+1;1< 4,5k, -, < n The struture equations of S"*!(1) are
given by

n+1
(2.1) dwp = = > wapAwp, wap+wpa=0,

5—:11 n+l
(2.2) dwap = — ) wac Awcs + 3 > Rapcpwe Awp,

c=1 ¢,D=1
(2.3) Ruapep = (6acépp — 84pdpc),
where R pcp denotes the components of the curvature tensor of S™t!(1). Then,
in M
(24) Wpel1 = 0.

It follows from Cartan’s Lemma that

(25) Wyt = Z h,‘jw]', h,‘j = h],
J

The second fundamental form B and the mean curvature of M are defined by
B = Y hijwiwjeny1 and nH = Y hy;, respectively. The structure equations of M are
0 i

2]
given by
(2.6) dw; = — Zwik A Wi, wij + wj; = 0,
k=1
n 1 n
(2.7 dw;; = - ;wik Awyj + 3 HZ=1 Rijwr A wi,
(2-8) Rijet = (8ixbj — 0adjx) + (hichji — hahi),
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where R;j. denotes the components of the Riemannian curvature tensor of M. From the
above equation, we have

(2.9) n(n—1)r =n(n—-1)+n’H* - S,

where n(n — 1)r is the scalar curvature of M and S = Z h; is the squared norm of the
i,j=1
second fundamental form of M.

The Codazzi equation and the Ricci identities are
(2.10) hijx = hixj,
(2.11) hijet — hijie = Z himRmjxi + Z Rjm Remikis
m m

where the first and the second covariant derivatives of h;; are defined by
(2.12) > hijpw = dhij — > hagwis — Y hjrwi,
k k k
(2.13) > hijrwn = dhigi = Y hijiwn — D hawwi; — Y g
i ! ! 1

We need the following Lemmas.
LEMMA 1. ([5]or[9].) Let A = (ai;),%,j =1, -+ ,n be a symmetric (n xn) matrix,
> 2. Assume that A; =trA, A, = 3 _(ai;)?, then
iJ

(214) ) (ain)® — Arnn

< %{n(n - 1)A2~+ (TL - 2)\fn - 1|A1|\/TZA2 - (A1)2 - 2('[7, — ]_)(A1)2}

We prove the following algebraic Lemma by a simple and direct method.

LEMMA 2. Let A = (a;j),4,j = 1,---,n be a symmetnc (n x n) matrix, p+ q
=n,p,q = 2 are positive integers. Assume that Z Qg5 + Z ay = A, ﬁ:(a,,) = A2
Then s=1 t=p+1 i=1

019 ($on) - a(Fen)

s=1 s=1

1 ~ ~
< S {pands - 200(4)" + |p - alvPal Arly/nE; - (A1)}

Proor: By Cauchy-Schwarz inequality we obtain

(2.16) Z (ass)? + Z aw)? > %(Zp:a,,)z + %( Xn: a“)2

t=p+1 t=p+1

= pﬁq (SZ:; a,,) - —Al (Zp: aa,) -

s=1

-Q»—a
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Hence
N\ 2p, (L p Pq 5
2
(2.17) (; a”) - A (; a,,,) +(4) - A, <0,
From (2.17) we have
A = Ld A =
(2.18) ’% - @ nd; — (A1)2< ) a4 < ”—n‘ + ‘/n—p—q nA, — (4;)2.

From (2.17) we also have

p 2 14 P
bg ~ p 2, P—¢
(2,19) (BE=1 a”) — A <’E=l a”) < %-Az — E(Al) + TA1< E asa) .

By (2.18) we have

14 2 b4
(Z asa) - A (Z ass) < %A2 - %(Al)z
s=1

s=1

Hence (2.15) holds. Lemma 2 is proved. 0
From [8] we have the following result.

LEMMA 3. ([8}.) Let M be a compact n-dimensional submanifold of the unit sphere
S™+™(1) with second fundamental form B, and let p,q be positive integers such that
1< p,g<n-—1,p+ q=n. If the inequality

(220) Z Z (2 I B(es, et) |2 —(B(e,,e,),B(e,,et))) < g,

s=1 t=p+1
holds for any point of M and any local orthonormal frame field {es,e;} on M, then
Hy(M,Z) = Hy(M,Z) = 0, where H,(M, Z) denotes the s-th homology group of M
whth integer coeflicients.
REMARK. Lemma 3 is ture for general submanifold with any codimension m of S™+™(c),
of course is true for hypersurface of S™*1(1).

LEMMA 4. ([11]or [1].) Let p;,i =1, - ,n be real numbers such that 3 p; = 0
and ¥ p? = 2, B = constant > 0, then '

n—2 3 n—-2 4

———p" < i § —V/—=0",

, n(n—l)ﬂ ; # \/n(n—l)ﬂ

and the equality holds in (2.21) if and only if at least (n — 1) of the p; are equal.
From Aubin [2, see p. 344], we have.

LEMMA 5. ([2].) If the Ricci curvature of a compact Riemannian manifold is non-
negative and positive at somewhere, then the manifold carries a metric with positive

(2.21)

Ricci curvature.
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3. PROOF OF THEOREM

PROOF: For a given point P € M, we choose an orthonormal frame field e, - - - , e,
such that h;; = Ai6;;. From (2.10) and (2.11) by a standard calculation we have

(3.1) —AS Z h,J,, + Z Ai(nH)y; + % %:&jij(A

1.5,k

Let u; = A; — H and f2 =Y u?, we have

(3.2) Zu,- =0, f2=5 - nH?,

(3.3) Z A} = Z ud+3Hf? + nH®,
From (2.8) we get Rij; = 1+ A;A;, putting this into (3.1), by (3.2),(3.3) we get

_Ag Zhvk—i-Z)\ nH)ii + Z:(1+A,\),\-,\,)2

1,7,k

(3.4) _Zh,,k+z,\,- n,H,-,~+nS—n 2-S*4nHY N

1,9,k

=Y R+ Y N(nH)s+nfP+nH f - f 4 nHY 4.

3,5,k
By Lemma 4, we get
(3.5) —AS S RE+ Y N(nH)u + f2{n +nH? - f2 - n|H|n—_15f}.
- n
3,7,k i

We denote
(3.6) PH(f)=n+nH2—f2—n|H|Tn(;——f—l—)-f.

From (2.9) we know f2 = S — nH? = (n—1)/n[S ~ n(r — 1)], then by (2.9) we
write Py(f) as

n—2

(3.7 P(S)=n+n(r-1)- [S —n(r—1))

n_z\/[n(n—l)(r—1)+S][S—n(r—1)].

Hence(3.5) can be written as

(38) 2852 SR+ S0 AnH)s + T[S — nlr = D] PAS)

i3,k i
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On the other hand, for any point and any unit vector v € TpM, we choose a local
orthonormal frame field e,,-- - , e, such that e, = v, we have from Gauss equation (2.8)
that the Ricci curvature Ric{v,v) of M with respect to v is expressed as

(3.9) Ric(v,v) = (n — 1)+ nHh,, — ihfn.

=1
By Lemma 1,(3.6) and (3.7) we get
n—1 n(n — 2)
n{n —1)
When S < (n—1)(n(r — 1) +2)/(n - 2) + (n — 2)/(n(r - 1) +2), we know this is
equivalent to

(3.10) Ric(v,v) >

[n+nH? - HIf - f?] = n; P.(S).

(n —
n2

2" {n(n-1)(r-1)+S}{S-n(r-1)}.

(311) {nin(r=1)-""2(s-n(r-1)]} >

Since 7 > (n—2)/(n—1), then we get r — 1 > ~1/(n~1) and n(r — 1) + 2
> (n—2)/(n — 1), hence

n+nr—1) - 2=2[5 - n(r - 1)]
e e
_ _n—l _ _(n—2)2 1
=nt2n-Lir-1) n [rr-1)+2] n  n(r—1)+2
_n?=2(n-1) (n—2)? 1
= +(n—-1)(r-1)— PR Y
>n2_2(n—1)_1_(n_2)2n_1=0.

n n n-—2

Obviously, by (2.9) and f2 = (n—1)/n[S ~ n(r - 1)}, we have n(n — 1)(r — 1)
+8 20,58 —n(r —1) > 0. Hence from (3.11) we have

(3.12) n+n(r—1)—2;—2 [S-n(r-1)] > 2;—2 [n(n = 1)(r — 1) + 8] [S - n(r - 1)],

that is
(3.13) P.(S)20.

From (3.10),(3.13) we have Ric(v,v) > 0 at all points of M.

Cask (i). When S < (n—1)(n(r - 1) +2)/(n— 2)+(n — 2)/(n(r — 1) + 2) holds at all
points of M, or it holds at somewhere of M, then we all have the fundamental group of
M is finite.
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In fact, when S < (n — 1)(n(r — 1) +2)/(n - 2) + (n — 2)/(n(r — 1) +2) holds at
all points of M, from the assertions above, we have Ric(v,v) > 0 at all points of M.
Hence by the classical Myers Theorem, we know that the fundamental group of M is
finite.

When S < (n ~ 1)(n(r —1)+2)/(n - 2) + (n — 2)/(n(r — 1) + 2) holds at some
points of M, from the assertions above, we know that Ric(v,v) > 0 holds at such points
of M. From Lemma 5, we know that there exists a metric on M such that the Ricci
curvature is positive on M. Hence, we also know that the fundamental group of M is
finite.

Therefore, the proof of Theorem in the case where n = 3 following directly from
the Hamilton Theorem (see [6]) which states that a compact and connected oriented
Riemannian 3-manifold with positive Ricci curvature is diffeomorphic to a spherical space
form.

Now, we consider the case n > 4. Taking any positive mtegers P, q such that p + q

=n,1 <p,g<n—1 Then pg=p(n - p)—n+(p—1)n p? +(@-1)(p+2) -
=n+(p—2) > n. Let T =tr(hy;) = Z hss + E hy, S = E(hu S =Y (hij)? then
t=p+1 7
we have
P n
(3.14) 2>y (h,t)2+%5 [ Z Z st) +s] < qs.
s=1 t=p+1 s=1 t=p+1

Whenp2q,[p—gql=p-q=n-2¢<n-2,whenp<q,lp-ql=q-p=n-2p
< n — 2, therefore, |p — q| <n — 2 for all p,q and \/pg > /n > /n— 1.

By Lemma 2,(3.14) and S < S, we make use of the same calculation for general
submanifold in [12], we get for hypersurface that

>3 (21Besed F ~(Blesse.), Blew, )
= Z Z (h'“ _Z E hsshee

s=1 t=p+1 s=1 t=p+1

14 n 14
= z Z (hst) + (Zh‘") T(Zh’ss)

s=1 t=p+1 s=1

4 n

Pas  2pg pP—4q 5

<2 > (ha)®+ 5 - 5T+ l—nz—l\/ﬁlTl\/nS ~T?

s=1 t=p+1

Pi, 209, , lp—dl J
sFS_?T +T\/ﬁIT| nS — T?

< p_: [S ~2nH? + |—p_—qllHWnS - n2H2]

VP4
< % [s - 2nH? + @%m\/s - n2H2]
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_pq

= n+nH? - __n(n—2)
n

n(n-1)
Therefore, from (3.6) or (3.7) and (3.13) we have

|HIf - f2] + pg.

P n

3.15 2| B(e,, e;)|? — (B(es, ), Bles, e <—?EP,S+ < pq.
(3.15) ZJ_Z(I (enre0)l® = (Bles,es), Blewer))) < ~2LP(S) +pq < pg
Hence from Lemma 3 H,(M,2) = Hy(M,Z) =0, forall1 < p,g < n—1,p+q = n. Since
H,_3(M,Z) = 0, taking the same discussion in [10], by the universal coefficient theo-
rem H" (M, Z) has no torsion and consequently H,(M, Z) has no torsion by Poincare
duality. By our assumption, since the fundamental group n;(M) of M is finite, hence
H,(M,Z) =0, so M is a homology sphere The above arguments can be applied to the
universal covermg M of M. Since M is a homology sphere which is simple connected,
that is 1r1(M ) =0, it is also a homotopy sphere By the generalised Poincare conjecture
(Smale n > 5, Freedman n = 4) we have M is homeomorphlc to a sphere and hence we
have a homotopy sphere M which is covered by a sphere M , 50 by a result of Sjerve [13]
we have m (M) = 0, and hence M is homeomorphic to a sphere.
Case (ii). S = (n - 1)(n(r—1)+2)/(n-2) + (n—2)/(n(r —1)+2) on M, from
the discussion above this is equivalent to P.(S) = 0. Since the scalar curvature
n(n — 1)r is constant, thus S is constant, and by (2.9) H is also constant. Hence
the equalities in (3.8),(3.5) and (2.21) in Lemma 4 hold. If r > (n — 2)/(n — 1), since

= (n-1)(n(r — 1) +2)/(n ~ 2)+(n — 2)/(n(r = 1) + 2) > (n—1)(n(r — 1) +2)/(n - 2)
> n(r — 1), then f2 = (n—1)/n[S — n(r —1)] # 0, that is M is not umbilical. When
the equality in (2.21) holds, by Lemma 4 M is of only two distinct principal curvatures,
one with multiplicity 1 and the other with multiplicity n — 1. After renumberation if
necessary, we can assume that A = A, = -+ = Ay, 4 = A,. When the equalities in (3.8)
or(3.5) hold. We have

(3.16) h,‘jk =0.

Choose a local frame of orthonormal vector fields such that h;; = \;d;;, from (2.6) w;; = 0.
Let : = j in (2.12), from (3.16) and (2.12) we have 0 = d\; — 2 hjxwi; = d);, hence );
k

is constant, again from (2.12) we have

(3.17) 0 = hwyj + Ajwji = (A = Aj)wij,
then for A; # A;

(3.18) wij =0.

From (2.7) and (3.18), if A; # A;, then

1
(3.19) 0= dw;j = — ;wgk Awg+ 5 ; R,-J-k,wk A wy.
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If for some k such that wi # 0 and wy; # O,then by (3.17) we have A; = Ay = A, this
contradicts to A; # Aj, s0 Y Rijuwk Aw; =0, thus, if A; # A; we have

Kl
(3.20) Riji =0.
From(3.20) and the Guass equation (2.8) we have 1+ A\ = 0 for A; # );, that is
(3.21) , 1+ Au=0.

From (2.9) we have

nir—1 n—2
L onr=1)

2) 2 A

(3.22)

Hence from (3.21),(3.22) we get A2 = (n(r—1)+2)/(n—2) and p? = (n-2)/
(n(r —1) + 2). Thus we get that M is isoparametric. Therefore, M is isometric to the
Riemannian prodnct S'(v/1— ¢2) x S*~!(c), where ¢ = (n — 2)/(nr). The Theorem is
proved. 0
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