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Characterizations of Three Classes of
Zero-Divisor Graphs

John D. LaGrange

Abstract. The zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of

the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In

this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative

rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains

are classified, as well as those whose zero-divisor graphs are central vertex complete.

1 Introduction

Let R be a commutative ring with 1 6= 0, and define the zero-divisors of R to be the

elements in the set Z(R) = {r ∈ R | rs = 0 for some 0 6= s ∈ R}. Given any vertex

v of any simple graph Γ (that is, any undirected graph Γ with no loops or multiple

edges), the neighborhood of v is the set N(v) of all vertices that are adjacent to v. The

zero-divisor graph of R is the simple graph Γ(R) whose vertices are the nonzero zero-

divisors of R such that r ∈ N(s) if and only if r 6= s and rs = 0. The notion of a

zero-divisor graph was introduced in [3], where every element in R was considered

to be a vertex. The present definition is due to D. F. Anderson and P. S. Livingston [2].

While many subjects in the area have been explored, one topic of interest in zero-

divisor graph theory involves the investigation of properties satisfied by neighbor-

hoods. In particular, one attempts to classify rings whose zero-divisor graphs have

neighborhoods that satisfy certain criteria. For example, a complement of a vertex v

is defined in [1] as any vertex w such that v is adjacent to w, and no vertex of the

graph is adjacent to both v and w. A graph is called complemented if every vertex has

a complement. A characterization of commutative rings whose zero-divisor graphs

are complemented is given in [1, Corollary 3.10, Theorem 3.14] (see Theorem 4.3).

Rings having zero-divisor graphs such that all vertices have unique complements are

classified in [7, Theorem 2.5]. In [12], any nonempty simple graph is called uniquely

determined if all distinct vertices have distinct neighborhoods; that is, N(v) = N(w) if

and only if v = w. A characterization of rings whose zero-divisor graphs are uniquely

determined is provided in [12, Theorem 2.5]. In this paper, we continue the investi-

gations of [1, 7, 12].

Let Γ be a simple graph with vertex-set V(Γ). Define the neighborhood of any

A ⊆ V(Γ) by N(∅) = V(Γ), and N(A) =
⋂

{N(a) | a ∈ A} if A 6= ∅. If A =

{a1, . . . , an}, then N(A) will be denoted by N(a1, . . . , an). Recall that a ring R is a

Boolean ring if r2
= r for all r ∈ R. In [12, Theorem 2.5], it was shown that the zero-

divisor graph of any commutative ring R is uniquely determined if and only if either
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R is a Boolean ring, or the total quotient ring of R (that is, the ring T(R) = RR\Z(R))

is local and x2
= 0 for all x ∈ Z(R). In [7, Theorem 2.5], it was shown that any

commutative ring R is a Boolean ring if and only if either R is isomorphic to one of

the rings in the set {Z2, Z2 ⊕ Z2}, or R has at least three nonzero zero-divisors and

every vertex of Γ(R) has a unique complement. The idea of a graph being uniquely

determined is generalized by considering graphs with the property that N(A) = N(x)

for some A ⊆ V(Γ) if and only if A = {x}. In Section 2, it is shown that Z2⊕Z2 is the

only Boolean ring that realizes a zero-divisor graph satisfying this stronger condition

(Theorem 2.4). As a corollary, another characterization of zero-divisor graphs of

Boolean rings is provided (Corollary 2.5).

It is well known that the zero-divisor graph of any direct product of integral do-

mains is isomorphic to that of a direct product of fields, namely, the zero-divisor

graph of its total quotient ring [1, Theorem 2.2]. Lest one attempt to make general-

izations based on this scenario, note that the ring R = {r ∈
∏

N
R | |{r(i)}i∈N| < ∞}

is a total quotient ring, i.e., R = T(R), such that Γ(R) ≃ Γ(
∏

N
R), but R is not iso-

morphic to any direct product of integral domains. On the other hand, the maximal

ring of quotients Q(R) (discussed in Section 3) of R is a direct product of fields; in

fact, Q(R) =
∏

N
R [7, Example 3.5].

Let F denote the class of graphs that are realizable as zero-divisor graphs of direct

products of integral domains. The members of F are completely characterized in [9].

In Section 3, it is shown that the zero-divisor graph of any commutative ring R is

isomorphic to a member of F if and only if either Γ(R) is a star graph (i.e., any graph

with at least two vertices such that there exists a vertex that is adjacent to every other

vertex, and these are the only adjacency relations), or Q(R) is isomorphic to a direct

product of fields and Γ(R) ≃ Γ(Q(R)) (Theorem 3.4). In contrast to total quotient

rings, the zero-divisor graph of any rationally complete commutative ring R (that is,

R = Q(R)) is isomorphic to a member of F if and only if either Γ(R) is a star graph

or R is isomorphic to a direct product of fields.

A graph Γ is central vertex complete, or c.v.-complete, if for every ∅ 6= A ⊆ V(Γ)

such that N(A) 6= ∅, there exists a v ∈ V(Γ) such that N(v) = N(A). This condition

was studied in [7,8] as an invariant of zero-divisor graphs of rationally complete com-

mutative rings without nonzero nilpotents (Corollary 4.2). For example, it is known

that any Boolean ring R is rationally complete if and only if Γ(R) is c.v.-complete

[8, Theorem 3.4]. In Section 4, commutative rings whose zero-divisor graphs are

c.v.-complete are classified (Theorem 4.5 and Remark 4.6). Moreover, it is shown

that connected simple c.v.-complete graphs having at least two vertices are comple-

mented (Theorem 4.1). As a corollary, it is shown that the zero-divisor graph of any

finite commutative ring having at least two vertices is complemented if and only if it

is c.v.-complete (Corollary 4.7).

2 The Zero-Divisor Graph of a Boolean Ring

Recall that [7, Theorem 2.5] classifies zero-divisor graphs of Boolean rings in terms

of (graph-theoretic) complements. In this section, zero-divisor graphs of Boolean

rings are characterized by strengthening a graph-theoretic condition investigated in

[12]. In particular, we shall investigate zero-divisor graphs Γ(R) such that A = {x}
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whenever A ⊆ V(Γ(R)), x ∈ V(Γ(R)), and N(A) = N(x).

Given any A ⊆ R, let ann(A) = {r ∈ R | ra = 0 for all a ∈ A}. If A =

{a1, . . . , an}, then write ann(A) = ann(a1, . . . , an). The sufficiency portion of [12,

Theorem 2.5] is generalized in the following lemma. The converse of Lemma 2.1 is

handled in Proposition 2.2.

Lemma 2.1 Let R be a commutative ring and suppose that 0 6= x ∈ R such that

x2
= 0. Let A ⊆ V(Γ(R). Then N(A) = N(x) if and only if A = {x}.

Proof The sufficiency portion is clear. To prove the converse, suppose that N(A) =

N(x) for some A ⊆ V(Γ(R)). Since zero-divisor graphs are connected [2, Theo-

rem 2.3], the equality N(x) = ∅ implies that V(Γ(R)) = {x}. Then the result is clear

if N(x) = ∅.

Assume that N(x) 6= ∅. To the contrary, suppose that N(A) = N(x) for some

A ⊆ V(Γ(R)) with A 6= {x}. Clearly A 6= ∅ (Γ(R) is simple). Also, ax 6= 0 for all

a ∈ A \ {x}. Thus ann(x) ∩ ann(A) = N(x) ∪ {0}. In particular, N(x) ∪ {0} is

an ideal. Let y ∈ N(x). Then x + y ∈ ann(x) \ {x} = N(x) ∪ {0}, and therefore

x = x + y − y ∈ N(x) ∪ {0}. Since x 6= 0, it follows that x ∈ N(x). This is a

contradiction, and therefore A = {x}.

Proposition 2.2 Let R be a commutative ring and x ∈ V(Γ(R)). Given any A ⊆
V(Γ(R)), suppose that N(A) = N(x) if and only if A = {x}. Then x2 ∈ {0, x}.

Proof Suppose that x2 6∈ {0, x}. If x3 6= 0, then x2 6∈ N(x), and thus N(x) ⊆
N(x, x2). The reverse inclusion is clear, contradicting the assumptions on x. There-

fore, assume that x3
= 0. Note that the equality x = −x holds since N(x) = N(−x).

Then the assumption x2 6= x implies that x2 + x 6= 0. Also, x(x2 + x) = x2 6= 0. Thus

N(x) ⊆ N(x, x2 + x). The reverse inclusion is clear, contradicting the assumptions

on x. This exhausts all possibilities, and hence x2 ∈ {0, x}.

Observe that Proposition 2.2 fails if the assumption on x is weakened to the defin-

ing condition for being uniquely determined. For example, let R = Z4 ⊕ Z2. Then

N(v) = N((2, 1)) for some v ∈ V(Γ(R)) if and only if v = (2, 1), but (2, 1)2 6∈
{(0, 0), (2, 1)}. On the other hand, if the weaker condition is imposed on all ele-

ments of V(Γ(R)), then the following lemma is a consequence of [12, Theorem 2.5].

Lemma 2.3 Let R be a commutative ring such that Z(R) 6= {0}. If Γ(R) is uniquely

determined, then either R is a Boolean ring or x2
= 0 for all x ∈ Z(R).

The next theorem captures the effect of strengthening the “uniquely determined”

hypothesis in the previous lemma.

Theorem 2.4 Let R be a commutative ring such that Z(R) 6= {0}. Then the following

are equivalent:

(i) Given any x ∈ V(Γ(R)) and A ⊆ V(Γ(R)), the equality N(A) = N(x) holds if

and only if A = {x}.

(ii) Either R ∼= Z2 ⊕ Z2 or x2
= 0 for all x ∈ Z(R).
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Proof Clearly (i) holds if R ∼= Z2 ⊕ Z2. Therefore, (ii) implies (i) by Lemma 2.1. It

remains to show that (i) implies (ii).

Suppose that (i) holds. Then Γ(R) is uniquely determined, and therefore Lem-

ma 2.3 shows that either R is a Boolean ring or x2
= 0 for all x ∈ Z(R). Assume

that R is a Boolean ring such that R 6∼= Z2 ⊕ Z2. Since Z(R) 6= {0}, it follows

that |V(Γ(R))| > 2. Hence there exists x, y ∈ V(Γ(R)) such that x 6∈ {y, 1 + y}
(= {1 + (1 + y), 1 + y}). Moreover, if x = xy, then x 6= x(1 + y). Therefore, it can

be assumed that x 6∈ {1 + t, xt} for some t ∈ V(Γ(R)). Suppose that xt 6= 0. Then

x(xt) = xt 6= 0, and hence N(x) = N(x, xt), a contradiction. Suppose that xt = 0.

Then x(1 + t) = x, and thus N(1 + t) = N(x, 1 + t). Again, this is a contradiction.

Therefore, if (i) holds and R is a Boolean ring, then R ∼= Z2 ⊕ Z2. The result now

follows by Lemma 2.3.

Corollary 2.5 The following are equivalent for a commutative ring R:

(i) R is a Boolean ring.

(ii) Either R ∼= B for some B ∈ {Z2, Z2 ⊕ Z2}, or |V(Γ(R))| > 2 and every element of

V(Γ(R)) has a unique complement.

(iii) Either R ∼= B for some B ∈ {Z2, Z2 ⊕ Z2}, or Γ(R) is uniquely determined and

N(A) = N(x) for some x ∈ V(Γ(R)) and A ⊆ V(Γ(R)) with A 6= {x}.

Proof The equivalence of (i) and (ii) is established in [7, Theorem 2.5]. It remains

to verify the equivalence of (i) and (iii).

Suppose that R is a Boolean ring and R is not isomorphic to any ring in the set

{Z2, Z2 ⊕ Z2}. Clearly Γ(R) is uniquely determined, e.g., by (ii), every vertex has a

unique complement. Since R 6∼= Z2 ⊕ Z2 and R has no nonzero nilpotents, Theo-

rem 2.4 implies that N(A) = N(x) for some x ∈ V(Γ(R)) and A ⊆ V(Γ(R)) with

A 6= {x}.

Conversely, suppose that (iii) holds. If R ∼= B for some B ∈ {Z2, Z2 ⊕ Z2}, then R

is a Boolean ring. Suppose that Γ(R) is uniquely determined and N(A) = N(x) for

some x ∈ V(Γ(R)) and A ⊆ V(Γ(R)) with A 6= {x}. Then x2 6= 0 by Lemma 2.1, and

therefore R is a Boolean ring by Lemma 2.3.

3 The Complete Ring of Quotients

In [9, Theorem 2.2], graphs that are realizable as zero-divisor graphs of direct prod-

ucts of integral domains are characterized. In this section, we describe commutative

rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product

of integral domains. Recall that the zero-divisor graph of any commutative ring R is

isomorphic to that of its total quotient ring T(R) [1, Theorem 2.2]. It may happen

that Γ(R) is isomorphic to the zero-divisor graph of a direct product of fields even

if T(R) is not isomorphic to any direct product of fields [7, Example 3.5]. However,

the ring-theoretic structure is less ambiguous for a particular generalization of T(R),

which we now describe.

A subset D of a ring R is called dense if r ∈ R with rD = {0} implies r = 0. Let D1

and D2 be dense ideals of R and let fi ∈ HomR(Di , R) (i = 1, 2). Note that f1 + f2 is

an R-module homomorphism on the dense ideal D1 ∩D2, and f1 ◦ f2 is an R-module
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homomorphism on the dense ideal f −1
2 (D1) = {r ∈ R | f2(r) ∈ D1}. Then the

complete ring of quotients Q(R) = F/∼ of R is a commutative ring, where

F = { f ∈ HomR(D, R) | D ⊆ R is a dense ideal}

and ∼ is the congruence relation defined by f1 ∼ f2 if and only if there exists a dense

ideal D ⊆ R such that f1(d) = f2(d) for all d ∈ D [11, Proposition 2.3.1]. Given any

ring T, it is straightforward to check that any ring-isomorphism from R onto T will

induce a congruence-preserving bijection from F onto the set

{ f ∈ HomT(D, T) | D ⊆ T is a dense ideal}.

It follows that Q(R) ∼= Q(T) whenever R ∼= T.

The mapping h : R → Q(R) that assigns any t ∈ R to the congruence class contain-

ing the element (r 7→ tr) ∈ HomR(R, R) is easily seen to be a ring monomorphism

[11, Proposition 2.3.1]. Any ring S containing R is called a ring of quotients of R if

there exists a monomorphism H : S → Q(R) such that H|R = h. Equivalently, the

ideal s−1R = {r ∈ R | sr ∈ R} of R is dense in S for all 0 6= s ∈ S [11, Proposi-

tion 2.3.6]. For example, T(R) is a ring of quotients of R since dR ⊆ (r/d)−1R for

every r ∈ R and d ∈ R \ Z(R). Clearly maximal (with respect to inclusion) rings of

quotients exist and are isomorphic to Q(R). Therefore, any maximal ring of quotients

of R will be denoted by Q(R).

A ring R is called rationally complete if R = Q(R). For example, every finite com-

mutative ring is rationally complete, e.g., by [6, Theorem 80] finite rings do not

properly contain any dense ideals. If R is any commutative ring, then Q(R) is (up

to isomorphism) the unique rationally complete ring of quotients of R [11, Proposi-

tion 2.3.7]. Moreover, if R ⊆ S ⊆ Q(R), then Q(R) is a ring of quotients of S [5, 1.4].

It follows that Q(R) ∼= Q(S) whenever R ⊆ S is a ring of quotients. For in-depth

discussions on rings of quotients, see [5, 10, 11].

Recall that a commutative ring T is a von Neumann regular ring if for all r ∈ T,

there exists an s ∈ T such that r = r2s, e.g., Boolean rings and direct products of

fields. Also, as in [1], a graph is called uniquely complemented if it is complemented

and N(u) = N(v) whenever there exists a vertex w such that w is a complement of

both u and v. The next lemma follows from [1, Theorem 3.5].

Lemma 3.1 Let R be a commutative ring. Then Γ(R) is uniquely complemented if

and only if either T(R) is a von Neumann regular ring or Γ(R) is a star graph.

Given any von Neumann regular ring T, let B(T) denote the Boolean algebra of

idempotents of T, and let [r]T = {s ∈ T | ann(s) = ann(r)}. By [1, Theorem 4.1],

any two von Neumann regular rings S and T have isomorphic zero-divisor graphs if

and only if there exists a Boolean algebra isomorphism γ : B(S) → B(T) such that

|[e]S| = |[γ(e)]T | for all 1 6= e ∈ B(S). The following lemma shows that if the zero-

divisor graph of a commutative von Neumann regular ring T is isomorphic to that

of a direct product of fields, then B(T) is atomic (for more on Boolean algebras and

the Boolean algebra of idempotents, see [11, 14]).
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Lemma 3.2 Let T be a commutative von Neumann regular ring such that Γ(T) is

isomorphic to the zero-divisor graph of a direct product of fields. If b ∈ B(T) \ {0}, then

there exists an a ∈ B(T) \ {0} such that ab = a and ae ∈ {0, a} for all e ∈ B(T).

Proof Suppose that F =
∏

i∈I Fi is a direct product of fields such that Γ(F) ≃ Γ(T).

By [1, Theorem 4.1], there exists an isomorphism of Boolean algebras γ : B(F) →
B(T) such that |[e]F| = |[γ(e)]T | for all 1 6= e ∈ B(F). Let b ∈ B(T) \ {0}. Since

γ−1(b) is a nonzero element of F, there exists a j ∈ I such that γ−1(b)( j) 6= 0.

Let t ∈ B(F) be the element such that t( j) = 1, and t(i) = 0 for all i ∈ I \ { j}.

Set a = γ(t). Then γ−1(ab) = γ−1(a)γ−1(b) = tγ−1(b) is nonzero, and therefore

ab 6= 0. It is clear that tγ−1(e) ∈ {0, t} for all e ∈ B(T). Thus

ae = γ(t)γ(γ−1(e)) = γ(tγ−1(e)) ∈ {γ(0), γ(t)} = {0, a}

for all e ∈ B(T). Since ab 6= 0, it follows that ab = a.

Suppose that T is a commutative von Neumann regular ring. If 0 6= a ∈ B(T)

such that ae ∈ {0, a} for all e ∈ B(T), then aT is a field. Indeed, suppose that r ∈ T

such that ar 6= 0. Choose an s ∈ T such that r = r2s. Then 0 6= rs ∈ B(T) with

a(rs) 6= 0. Thus (ar)(as) = a(rs) = a, showing that as is the multiplicative inverse

(in aT) of ar.

Lemma 3.3 Let T be a commutative von Neumann regular ring such that Γ(T) is

isomorphic the zero-divisor graph of a direct product of fields. Then

A = {a ∈ B(T) \ {0} | ae ∈ {0, a} for all e ∈ B(T)}

is a dense subset of T and Γ(T) ≃ Γ(
∏

a∈A
aT).

Proof Let 0 6= r ∈ T. There exists an s ∈ T such that r = r2s. Clearly rs ∈ B(T)\{0}.

If rs ∈ A, then the observation r(rs) = r 6= 0 shows that rA 6= {0}. Suppose that

rs 6∈ A. By Lemma 3.2 there exists an a ∈ A such that a(rs) = a 6= {0}. In particular,

ra 6= 0. This shows that rA 6= {0} for all 0 6= r ∈ T. Thus A is dense in T.

Let F and γ be as in Lemma 3.2. If t j ∈ F is the element such that t j( j) = 1 and

t j(i) = 0 for all i 6= j, then the mapping α : I → A defined by α( j) = γ(t j) is a

bijection (since γ is an isomorphism of Boolean algebras). Given any a ∈ A, it is

straightforward to check that [a]T = aT \ {0}. Hence

|Fi | = |[ti]F| + 1 = |[γ(ti)]T | + 1 = |α(i)T|

for all i ∈ I. Thus Γ(F) ≃ Γ(
∏

a∈A
aT) [1, Theorem 2.1]. Therefore, Γ(T) ≃

Γ(
∏

a∈A
aT).

It is known that any zero-divisor graph Γ(R) is a finite star graph (that is, a

star graph with finitely many vertices) if and only if either R ∼= A, where A ∈
{Z9, Z3[X]/(X2), Z8, Z2[X]/(X3), Z4[X]/(2X, X2 − 2)}, or R ∼= Z2 × F, where F is a

finite field [4, Corollary 1.11]. Moreover, Γ(R) is an infinite star graph if and only if

either R ∼= Z2 × F for some infinite integral domain F, or there exists a 0 6= x ∈ R

https://doi.org/10.4153/CMB-2011-107-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-107-3


Characterizations of Three Classes of Zero-Divisor Graphs 7

such that Z(R) = ann(x), nil(R) = {0, x}, and R/ nil(R) is an infinite integral do-

main [4, Theorem 1.12].

The following theorem determines when Γ(R) is isomorphic to the zero-divisor

graph of a direct product of integral domains.

Theorem 3.4 Let R be a commutative ring. Then Γ(R) is isomorphic to the zero-

divisor graph of a direct product of integral domains if and only if either

(i) Γ(R) is a star graph, or

(ii) the ring Q(R) is isomorphic to a direct product of fields and Γ(R) ≃ Γ(Q(R)).

If (ii) holds, then Q(R) ∼=
∏

a∈A
aT(R), where

A = {a ∈ B(T(R)) \ {0} | ae ∈ {0, a} for all e ∈ B(T(R))}.

Proof Suppose that Γ(R) is a star graph. If V(Γ(R)) is infinite, then Γ(R) is isomor-

phic to Γ(Z2 ⊕ F), where F is any integral domain with the appropriate cardinality.

By checking the list given prior to the statement of this theorem, it follows that Γ(R)

is isomorphic to Γ(Z2 ⊕ F) for some integral domain F. The sufficiency portion of

the theorem is now clear.

Suppose that Γ(R) is not a star graph, but is isomorphic to the zero-divisor graph

of a direct product of integral domains F. By [1, Theorem 4.2], Γ(R) ≃ Γ(T(F)),

the zero-divisor graph of a direct product of fields. Any direct product of fields is a

von Neumann regular ring. Then Γ(R) is isomorphic to the zero-divisor graph of a

von Neumann regular ring, and is therefore uniquely complemented by Lemma 3.1.

Since Γ(R) is not a star graph, Lemma 3.1 shows that T(R) is a von Neumann regular

ring.

Define ϕ : T(R) →
∏

a∈A
aT(R) by ϕ(r)(a) = ar for all a ∈ A. Then ϕ is a

homomorphism of rings (a is idempotent). Also, ϕ is injective since A is dense by

Lemma 3.3. Thus T(R) ∼= ϕ(T(R)). Let f ∈
∏

a∈A
aT(R). Any product of distinct

elements in A is 0, and thus f ϕ(a) = ϕ( f (a)) ∈ ϕ(T(R)) for all a ∈ A. Therefore,

ϕ(A) ⊆ f −1ϕ(T(R)) for all f ∈
∏

a∈A
aT(R). Also, f ϕ(a) 6= 0 whenever f (a) 6= 0,

showing that ϕ(A) is dense in
∏

a∈A
aT(R). This verifies that

∏

a∈A
aT(R) is a ring

of quotients of ϕ(T(R)).

Note that Q(K) = K for any field K since every dense set in K contains a unit (if

f ∈ Q(K) and 0 6= u ∈ f −1K, then f = ( f u)u−1 ∈ K). In particular, every direct

product of fields is rationally complete [11, Proposition 2.3.8]. The comments prior

to Lemma 3.3 imply that
∏

a∈A
aT(R) is a direct product of fields. Therefore, the

observations at the beginning of this section show that

Q(R) ∼= Q(T(R)) ∼= Q(ϕ(T(R))) ∼= Q
(

∏

a∈A

aT(R)
)

=
∏

a∈A

aT(R).

By [1, Theorem 4.2] and Lemma 3.3, it follows that Γ(R) ≃ Γ(T(R)) ≃ Γ(Q(R)).

Corollary 3.5 Suppose that R is a rationally complete commutative ring such that

Γ(R) is not a star graph. Then R is isomorphic to a direct product of fields if and only if

its zero-divisor graph is isomorphic to the zero-divisor graph of a direct product of fields.

Proof The necessity portion is trivial. The converse holds by Theorem 3.4 since

R = Q(R).

https://doi.org/10.4153/CMB-2011-107-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-107-3


8 J. D. LaGrange

4 Complemented Zero-Divisor Graphs and Central Vertex
Completeness

Recall that a graph Γ is c.v.-complete if for every ∅ 6= A ⊆ V(Γ) such that N(A) 6= ∅,

there exists a v ∈ V(Γ) such that N(v) = N(A). Commutative rings with comple-

mented zero-divisor graphs are described in [1] (see Theorem 4.3 below). This char-

acterization, together with the following graph-theoretic lemma, simplifies the task

of classifying rings with c.v.-complete zero-divisor graphs.

Theorem 4.1 Let Γ be a connected simple graph such that |V(Γ)| > 1. If Γ is c.v.-

complete, then Γ is complemented.

Proof Suppose that v ∈ V(Γ) does not have a complement. Let A = N(v). Then

A 6= ∅ since Γ is connected with |V(Γ)| > 1, and N(A) 6= ∅ since clearly v ∈ N(A).

Then there exists a w ∈ V(Γ) such that N(w) = N(A). Since v ∈ N(A) = N(w)

and v does not have a complement, there exists a u ∈ N(v, w). Hence u ∈ N(w) =

N(A). But u ∈ N(v) implies that u ∈ A, contradicting that Γ is simple. Thus Γ is

complemented.

The following corollary is stated in [8, Theorem 3.3], where the hypothesis of the

“if” statement includes the condition Γ(R) is complemented. By Theorem 4.1, this

assumption is superfluous.

Corollary 4.2 Let R be a commutative ring such that nil(R) = {0}, |R| < ℵω , and

2 6∈ Z(R). Then Γ(R) ≃ Γ(Q(R)) if and only if Γ(R) is c.v.-complete.

Note that the converse of Theorem 4.1 can fail. For example, if R is any Boolean

ring that is not rationally complete, then Γ(R) is complemented, but is not c.v.-

complete (see Theorem 4.3 and Lemma 4.4). However, it will be shown that the

converse is true for finite rings having at least two nonzero zero-divisors. First, we

state the characterization from [1] of rings with complemented zero-divisor graphs.

Theorem 4.3 ([1, Corollary 3.10, Theorem 3.14]) Let R be a commutative ring. Then

Γ(R) is complemented if and only if at least one of the following conditions is satisfied:

(i) T(R) is a von Neumann regular ring,

(ii) Γ(R) is a star graph,

(iii) R ∼= D ⊕ B, where D is an integral domain and B is either Z4 or Z2[X]/(X2).

It is clear that star graphs are c.v.-complete. Suppose that R ∼= D ⊕ B, where

D is an integral domain and B is either Z4 or Z2[X]/(X2). Then |Z(B)| = 2; say

Z(B) = {0, x}. Let ∅ 6= A ⊆ V(Γ(D ⊕ B)) with N(A) 6= ∅. Define s = (s1, s2) to be

the element of D ⊕ B defined by

s1 =

{

0 if a1 = 0 for all (a1, a2) ∈ A,

1 otherwise,

and

s2 =











0 if a2 = 0 for all (a1, a2) ∈ A,

1 if a2 6∈ Z(B) for some (a1, a2) ∈ A,

x otherwise.
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Then it is straightforward to check that N(s) = N(A), and it follows that R is c.v.-

complete. On the other hand, it has already been observed that there exist von Neu-

mann regular rings whose zero-divisor graphs are not c.v.-complete.

Given any r ∈ V(Γ(R)), let [r] = {s ∈ V(Γ(R)) | N(s) = N(r)}. Define Γ
∗(R) to

be the graph with V(Γ∗(R)) = {[r] | r ∈ V(Γ(R))}, such that [r] is adjacent to [s]

in Γ
∗(R) if and only if r and s are adjacent in Γ(R). Also, recall that the Boolean al-

gebra of idempotents B(R) of any ring R becomes a Boolean ring with multiplication

defined the same as in R and addition defined by the mapping (r, s) 7→ r + s − 2rs.

Moreover, any two Boolean algebras of idempotents are isomorphic if and only if

they are isomorphic as rings [11, Proposition 1.1.3].

The following lemma summarizes some past results to provide conditions equiv-

alent to c.v.-completeness for zero-divisor graphs of von Neumann regular rings.

Lemma 4.4 The following conditions are equivalent for a commutative von Neumann

regular ring R:

(i) Γ(R) is c.v.-complete.

(ii) B(R) is a complete Boolean algebra.

(iii) B(R) = B(Q(R)).

(iv) Γ
∗(R) ≃ Γ

∗(Q(R)).

Proof The equivalence of (i) and (ii) is established in [8, Lemma 3.1]. The equiv-

alence of (ii) and (iii) can be found in [5, Theorem 11.9]. It remains to justify the

equivalence of (iii) and (iv).

Note that Q(R) is a von Neumann regular ring [11, Proposition 2.4.1] and

Γ
∗(R) ≃ Γ(B(R)) for any commutative von Neumann regular ring R [1, Proposi-

tion 4.5]. Thus (iii) implies (iv). Since any two Boolean rings R and S are isomorphic

if and only if Γ(R) ≃ Γ(S) [7, Theorem 4.1], it follows that B(R) and B(Q(R)) are

isomorphic whenever (iv) holds. Thus (iv) implies B(R) = B(Q(R)) by [5, Theo-

rem 11.9].

The next theorem determines when any zero-divisor graph is c.v.-complete, and

Remark 4.6 translates the result into purely ring-theoretic terms.

Theorem 4.5 Let R be a commutative ring with nonzero zero-divisors. Then Γ(R) is

c.v.-complete if and only if at least one of the following conditions is satisfied:

(i) nil(R) = {0} and Γ
∗(R) ≃ Γ

∗(Q(R)),

(ii) Γ(R) is a star graph,

(iii) R ∼= D ⊕ B, where either D = {0} or D is an integral domain, and B is either Z4

or Z2[X]/(X2).

Proof Suppose that Γ(R) is c.v.-complete and that (ii) and (iii) fail. Since (iii) fails,

|V(Γ(R))| > 1 [13, Section 5]. Then T(R) is a von Neumann regular ring by Theo-

rem 4.1 and Theorem 4.3. Thus nil(R) = {0}. Also, Γ(T(R)) is c.v.-complete since

Γ(R) ≃ Γ(T(R)) [1, Theorem 2.2]. Therefore, Γ
∗(T(R)) ≃ Γ

∗(Q(T(R))) by Lemma

4.4. But Γ(R) ≃ Γ(T(R)) and Q(T(R)) = Q(R). Hence Γ
∗(R) ≃ Γ

∗(Q(R)).

Conversely, Γ(R) is c.v.-complete whenever (ii) or (iii) is satisfied (see the discus-

sion prior to Lemma 4.4, and note that Γ(Z4) and Γ(Z2[X]/(X2)) are trivially c.v.-

complete). Suppose that (i) holds. Then Q(R) is a von Neumann regular ring since
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nil(R) = {0} [11, Proposition 2.4.1]. Hence Γ(Q(R)) is c.v.-complete by Lemma 4.4.

Since Γ
∗(R) ≃ Γ

∗(Q(R)), it clearly follows that Γ(R) is c.v.-complete.

Remark 4.6 Let R be a commutative ring with nonzero zero-divisors, and sup-

pose that the statement in Theorem 4.5(i) holds. Then Γ(R) is c.v.-complete with

|V(Γ(R))| > 1, and is therefore complemented by Theorem 4.1. Since nil(R) = {0},

it is clear that the statement in Theorem 4.5(iii) fails, and if the statement in Theo-

rem 4.5(ii) holds, then the list prior to Theorem 3.4 shows that T(R) must be a direct

product of fields. By Theorem 4.3, it follows that the statement in Theorem 4.5(i) im-

plies T(R) is a von Neumann regular ring. Thus B(T(R)) = B(Q(R)) by Lemma 4.4

(since Γ(T(R)) ≃ Γ(R) is c.v.-complete and Q(T(R)) = Q(R)). Conversely, another

application of Lemma 4.4 will prove that Γ
∗(R) ≃ Γ

∗(T(R)) ≃ Γ
∗(Q(R)) when-

ever T(R) is a von Neumann regular ring and B(T(R)) = B(Q(R)). Therefore, the

statement in Theorem 4.5(i) holds if and only if T(R) is a von Neumann regular ring

and B(T(R)) = B(Q(R)). Since rings whose zero-divisor graphs are star graphs have

been classified, Theorem 4.5 provides a purely ring-theoretic characterization of any

R such that Γ(R) is c.v.-complete.

Corollary 4.7 If R is a finite ring and |V(Γ(R))| > 1, then Γ(R) is complemented if

and only if it is c.v.-complete.

Proof If Γ(R) is c.v.-complete, then it is complemented by Theorem 4.1. The con-

verse holds by Theorem 4.3 and Theorem 4.5 since nil(R) = {0} and R = Q(R) for

every finite von Neumann regular ring R.
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