
Glasgow Math. J. 48 (2006) 203–215. C© 2006 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089506003004. Printed in the United Kingdom

HERMITE FUNCTION EXPANSIONS VERSUS HERMITE
POLYNOMIAL EXPANSIONS

I. ABU-FALAHAH and J. L. TORREA∗
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Abstract. We consider expansions with respect to the multi-dimensional Hermite
functions and to the multi-dimensional Hermite polynomials. They are respectively
eigenfunctions of the Harmonic oscillator L = −� + |x|2 and of the Ornstein-
Uhlenbeck operator L = −� + 2x · ∇. The corresponding heat semigroups and Riesz
transforms are considered and results on both aspects (polynomials and functions) are
obtained.
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1. Introduction. We shall work in the space �d, endowed either with the Lebesgue
measure dx or with the Gaussian measure dγ (x) = π−d/2e−|x|2 dx. Consider the system
of multidimensional Hermite polynomials

Hα(x) = Hα1 (x1) · . . . · Hαd (xd), x = (x1, . . . , xd), α = (α1, . . . αd), αi ∈ {0, 1, . . .},

where Hk(s) = (−1)kes2 dke−s2

dsk , s ∈ �, denotes the 1-dimensional kth Hermite
polynomial, see [18]. It is well known that the Hermite polynomials are the
eigenfunctions of the Ornstein-Uhlenbeck differential operator L = −� + 2x · ∇,
namely

LHα = 2|α|Hα, |α| = α1 + · · +αd . (1)

The operator L is positive and symmetric in L2(�d, dγ (x)) on the domain C∞
c (�d).

The orthonormalized Hermite polynomials, H̃k = 2−k/2√
k!

Hk form an orthonormal basis

for L2(dγ (x)).
We shall also consider the system of multidimensional Hermite functions

hα(x) = hα1 (x1) · . . . · hαd (xd), x = (x1, . . . , xd), α = (α1, . . . αd), αi ∈ {0, 1, . . .},

where hk(s) = (π1/22kk!)−1/2Hk(s)e−s2/2 and Hk denotes the 1-dimensional kth Hermite
polynomial. It is well known that the Hermite functions are the eigenfunctions of the
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Hermite differential operator L = −� + |x|2, namely

Lhα = (2|α| + d)hα. (2)

The functions hα form an orthonormal basis for L2(�n, dx). The operator L is positive
and symmetric in L2(�d, dx) on the domain C∞

c (�d), see [19].
The Ornstein-Uhlenbeck, e−tL, (respectively the Hermite, e−tL,) semigroup with

infinitesimal generator −L (respectively −L) can be defined in a spectral sense.
Namely for functions g ∈ L2(dγ (x)) such that g = ∑

cαH̃α define e−tLg the L2(e−|x|2 dx)
function given by e−tLg = ∑

e−2t|α|cαH̃α. On the other hand if f ∈ L2(dx) such that
f = ∑

cαhα define e−tLf be the L2(dx) function given by e−tLf = ∑
e−t(2|α|+d)cαhα.

B. Muckenhoupt initiated in 1969 the study, in dimension one, of the maximal
operator of the Ornstein-Uhlenbeck semigroup, supt e−tL, and also the notion of
“conjugate function” related to that semigroup, see [9], [10]. e−tL is a symmetric
diffusion semigroup, in the sense of [13], the (Lp, Lp), 1 < p < ∞, boundedness of
the maximal operator is deduced from the general theory developed in [13]. In finite
dimensions, the proof of the (1, 1)-weak boundedness for the maximal operator was
given in 1982 by P. Sjögren, see [12]. The corresponding result for the Riesz transforms
was proved by Fabes, Gutiérrez and Scotto in [4]. They also proved that the Riesz
transforms are principal value operators. Due to the relation with Wiener chaos,
proving that the constants appearing in the boundedness are independent of the
dimension became an important task. Some research was done in this direction, see [5]
and the references in the survey [17]. Finally, weighted inequalities and vector-valued
inequalities were studied in [7] and [6].

As for the semigroup e−tL, the main reference is by Thangavelu. He proved
(in several papers but we refer to his book, [19], and the references there) the
(Lp(dx), Lp(dx)) and (L1(dx), L1,∞(dx)) boundedness for the maximal operator of
the semigroup. He also proved, by using analogues of the classical conjugate harmonic
functions, that the Riesz transforms, see the definition in section 2 formula (6) and
the comments there, are (Lp(dx), Lp(dx)) and (L1(dx), L1,∞(dx)) bounded. This study
was extended in [15] and weighted inequalities for the weights in the Ap-class of
Muckenhoupt were proved. For an introduction to the Ap theory see [3]. Neither in
[19] nor in [15] was the description of the Riesz transforms as principal value operator
considered.

There is a close relation between the semigroups e−tL and e−tL. This relation,
that is determined by the fact hk(s) = (π1/22kk!)−1/2Hk(s)e−s2/2, is propagated to the
operators defined through the semigroups (maximal operators, Riesz transforms,
etc). This kind of correspondence between these operators is sometimes described
vaguely (in this case) saying that the operators associated to L and L are “unitary
equivalent in L2”. The purpose of this note is to describe, in a transparent and
clear way, this relation and to get, as a consequence, new results for several
operators associated either to L or to L. The relationship between both parts is
described in Proposition 3.3 and Theorem 3.5. By using these results we can get
new weighted inequalities in both sides, see Theorems 2.1 and 2.5, we also get new
descriptions of the Riesz transforms in the Hermite function case, see Theorem 2.2
and 2.3.

The organization of the paper is the following. We present the results in Section 2.
These results shall be proved in Section 4, with the help of some technical results that
we present in Section 3.
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2. Main results. If f is a linear combination of Hermite functions then e−tLf (x) =∫
�n Gt(x, y)f (y) dy, where Gt(x, y) is given by

Gt(x, y) =
∑

α

e−t(2|α|+d)hα(x)hα(y)

= (2π sinh 2t)−d/2 exp
( − 1

2 |x − y|2 coth 2t − x · y tanh t
)
, (3)

see [19], [15]. Clearly e−t(L−d)f (x) = ∫
�n etdGt(x, y)f (y) dy

We have the following theorem.

THEOREM 2.1. Let v be a positive measurable function. The following conditions are
equivalent:

(i) There exists a positive measurable function u and a constant C such that for every
f ∈ L2(v(x) dx) we have

sup
t

∫
�d

|e−t(L−d)f (x)|2u(x) dx ≤ C
∫

�d
|f (x)|2v(x) dx.

(ii) There exists a positive measurable function u and a constant C such that for every
f ∈ L2(v(x)dx) we have

∫
�d

sup
t

|e−t(L−d)f (x)|2u(x) dx ≤ C
∫

�d
|f (x)|2v(x) dx.

(iii) The function v satisfies
∫

�d v−1(x)e−|x|2 dx < ∞.

In particular for a function v satisfying (iii) the operator supt e−tL maps L2(�d, v(x)dx)
into L2(�d, u(x)dx) for some positive u.

It is well known that Tt = e−tL (respectively Tt = e−tL) is a diffusion semigroup
in Lp(dx), 1 ≤ p ≤ ∞ (respectively in Lp(dγ (x)), 1 ≤ p ≤ ∞ ) in the sense of [13], see
[17], [19] and [15] for details.

The operators e−tL and e−tL are positive, (f (x) ≥ 0 → e−tLf (x) ≥ 0), bounded in
Lp(dγ (x)) (respectively Lp(dx)) and therefore each Tt (respectively each Tt) have a
straightforward extension to Lp

B(dγ (x)) (respectively Lp
B(dx)) for every Banach space

B. Moreover the norm of the extension is the same as the original norm of the operator.
By Lp

B(dγ (x)) we denote the Bochner-Lebesgue space of B-valued functions defined in
�n such that

∫
�n ‖f (x)‖p

Bdγ (x) < ∞. Analogous definitions can be given for Lp
B(dx).

Since these extensions are linear, they act in a natural way over the tensor products
B ⊗ Lp(dγ (x)) and B ⊗ Lp(dx). In particular

Tt

(
n∑

i=1

biϕi

)
=

n∑
i=1

biTtϕi, bi ∈ B, ϕi ∈ Lp(dγ (x)). (4)

Analogous expressions can be given for Tt.
Let µ be a σ -finite measure in �n. Let {Tt} be a symmetric diffusion semigroup of

operators acting on measurable functions on (�n, dµ), with a second order differential
operator −L, (symmetric in L2(dµ)) as its infinitesimal generator. In this context, the
following operators can be considered; see [13],
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Riesz potentials:

given a > 0, (−L)−af (x) = 1
�(a)

∫ ∞

0
ta−1Ttf (x) dt. (5)

Riesz transforms:

For 1 ≤ i ≤ n, Rif (x) = “
∂

∂xi
"L−1/2f (x). (6)

Here “ ∂
∂xi

” denotes the component of the “gradient” associated to the operator L.
It is easy to check that

L =
n∑

j=1

δ∗
j δj, where δj = ∂

∂xj
and δ∗

j = − ∂

∂xj
+ 2xj. (7)

Observe that δ∗
j is the adjoint operator of δj in L2(dγ (x))-sense. In a parallel way we

have

L = 1
2

n∑
j=1

(
A∗

j A∗ + AjA∗
j

)
, where Aj = ∂

∂xj
+ xj, and A∗

j = − ∂

∂xj
+ xj. (8)

Observe that A∗
j and Aj are adjoints in L2(dx)−sense.

Therefore the operator “ ∂
∂xi

” will be, δi in the case of L, and either Ai or A∗
i in the case

of the operator L.

Since 0 is an eigenvalue of L, the negative powers L−a are not defined for every function
in L2(�n, dγ (x)). Let 
0 be the orthogonal projection onto the orthogonal complement
of the eigenspace correponding to the eigenvalue 0. Then the Riesz transforms for the
Ornstein-Uhlenbeck operator are defined as, see [17], Ri = δi(L)−1/2
0, in particular
in defining Rif we always can assume that

∫
�n f (x)dγ (x) = 0. As we said it is known

that Ri are bounded from Lp(�n, dγ ) into itself for p in the range 1 < p < ∞, and from
L1(�n, dγ ) into L1,∞(�n, dγ ). They are principal value operators, that is

Rif (x) = lim
ε→0

∫
|x−y|>ε

Ri(x, y)f (y)dγ (y), a.e.x, f ∈ L1(dγ ).

See the survey [17] and the references there.
In the case of L, the Riesz transforms, due to (8), were defined, see [19], as R+

i =
Ai(L)−1/2 and R−

i = A∗
i (L)−1/2. For these we shall prove the following theorem.

THEOREM 2.2. The operators R±
i , i = 1, . . . , n are principal valued operators. That

is

R±
i f (x) = lim

ε→0

∫
|x−y|>ε

R±
j (x, y)f (y) dy, f =

∑
finite

cαhα.

The operators δ∗
i (L)−1/2
0, i = 1, . . . , n are principal value operators over the class of

polynomial functions.

We call R±
i the linear extension of these operators, in the sense described in (4), to

functions taking values in a Banach space B. We recall that a Banach space is in the
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UMD class if the Hilbert transform has a bounded extension to L2
B(�, dx), see [2] and

[1]. We have the following theorem.

THEOREM 2.3. Let B be a Banach space. The following statements are equivalent:
(i) B is a UMD Banach space.

(ii) |{x ∈ �n : ‖R+
j f (x)‖B > λ}| ≤ C

λ

∫
�n ‖f (x)‖B dx, 1 ≤ j ≤ n.

(iii) For every p, 1 < p < ∞ (and equivalently for some 1 < p < ∞),

‖R+
j f ‖Lp

B(dx) ≤ Cp‖f ‖Lp
B(dx), 1 ≤ j ≤ n

(iv) R+
j maps boundedly L∞

B into BMOB, 1 ≤ j ≤ n.

(v) R+
j maps H1

B into L1
B, 1 ≤ j ≤ n.

In (ii), (iii), (iv) and (v), R+
j can be replaced by R−

j . The constants C and Cp are
independent of f but they may depend on the Banach space B.
Moreover if B is a UMD Banach space then, for 1 ≤ j ≤ n,

R±
j f (x) = lim

ε→0
R±

j,εf (x) = lim
ε→0

∫
|x−y|>ε

R±
j (x, y)f (y) dy, a.e.x, f ∈ ∪1≤p≤∞Lp

B(dx).

REMARK 2.4. Observe that in the above theorem we said that R±
j are defined in

L∞(�n, dx). This is different from the case of the classical euclidean Riesz transforms
for which a definition for L∞ functions has to be given “ad hoc”, see [14]. To justify
this fact it is enough to see that for a function f ∈ L∞, the limit

lim
n→∞(R+

j (f χB(0,n))(x) +
∫

|y|>n
R+

j (x, y)f (y)dy)

exists a.e. x. In order to prove the existence of this limit we need two ingredients: first the
existence of the limit for functions in Lp (this is the case of f χB(0,n)), second, the bound
R+

j (x, y) ≤ Ce− |x−y|2
c for |x − y| > 1, see Proposition 3.4, guarantees the convergence

of the second summand.

The Riesz transforms R±
j are Calderón-Zygmund operators with associated

Calderón-Zygmund kernels R±
j (x, y), see [15], in the sense that

R±
i f (x) =

∫
�n

R±
j (x, y)f (y) dy, f ∈ C∞

c (�n), x /∈ sup f.

Therefore they are bounded from Lp(�n, ω(x)dx) into itself for p in the range 1 <

p < ∞ and from L1(�n, ω(x)dx) into L1,∞(�n, ω(x)dx), where ω is a weight in the
Muckenhoupt Ap−class , 1 ≤ p < ∞. We have the following theorem.

THEOREM 2.5. Let ω be a weight in Muckenhoupt class A2. The operators Ri and
δ∗

i (L)−1/2
0, i = 1, . . . , n are bounded from L2(�n, ω(x)dγ (x)) into itself.

3. Technical Lemmas. We define in the following simple lemma the key operator
which shall be the carrier of the results from the polynomial side to the function side
and vice-versa.

LEMMA 3.1. Let B be a Banach space and ω a weight in �n. The operator U defined

by Uf (x) = f (x)πd/4e− |x|2
2 , is an isometry from L2

B(ω(x)dγ (x)) into L2
B(ω(x)dx).
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Proof.

‖Uf ‖2
L2

B(ω(x)dx) =
∫

‖Uf (x)‖2
Bω(x)dx =

∫
‖f (x)‖2

Bπd/2e−|x|2ω(x)dx

= ||f ||2L2
Bω(x)dγ (x)).

�

DEFINITION 3.2. Let B a Banach space . Let Hk be the Hermite polynomials in �d .

Any function f of the form f (x) = ∑
finite bαHα, x ∈ �d, where bα ∈ B, will be called

“B-valued polynomial function”.

PROPOSITION 3.3. Let B be a Banach space and f be a B-valued polynomial function
in �n. We have the following pointwise identities

(i) AjUf (x) = Uδjf (x), A∗
j Uf (x) = Uδ∗

j f (x).
(ii) (L − d)Uf (x) = ULf (x), LUf (x) = U(L + d)f (x).

(iii) e−t(L−d)Uf (x) = Ue−tLf (x), e−t(L)Uf (x) = Ue−t(L+d)f (x).
(iv) Let s > 0.

If
∫

�n f (x)dγ (x) = 0 then (L − d)−sUf (x) = U(L)−sf (x).
For every f, (L)−sUf (x) = U(L + d)−sf (x).

(v) If
∫

�n f (x)dγ (x) = 0 then Ai(L − d)−1/2Uf (x) = URif (x).
For every f we have R+

i Uf (x) = Uδi(L + d)−1/2f (x), i = 1, . . . , n.

We use the notations in (7) and (8).

Proof. (i) and (ii) are tedious calculations. By using (1), (2) we get (iii). By using
the definition of Riesz potentials, it is very easy to check that L−sHk = (2|k|)−sHk

and L−s
H hk = (2|k| + d)−shk. Observe that a polynomial function f belongs to 
0 when∫

�d f (x)e−|x|2 dx = 0. Finally, by using (7) and (8) we get (v). �

The size of the kernels involved with the Riesz transforms where analyzed in
Theorem 3.3 of [15]. In fact the following result is proved there.

PROPOSITION 3.4. Let f be a finite combination of Hermite functions. Then
(i) There exists a positive kernel L such that

∣∣L−1/2f (x)
∣∣ ≤

∫
�d

L(x, y)|f (y)| dy, x ∈ �d .

If d = 1 there exists an ε, 0 < ε < 1 with

L(x, y) ≤ C
(

1
|x−y|ε χ|x−y|<1+ e− |x−y|2

c χ|x−y|>1

)
.

If d > 1, there exists a constant C with

L(x, y) ≤ C
(

1
|x−y|d−1 χ|x−y|<1+ e− |x−y|2

c χ|x−y|>1

)
.

(ii) There exist constants c, C such that

|R±
j (x, y)| ≤ C

(
1

|x−y|d χ|x−y|<1+ e− |x−y|2
c χ|x−y|>1

)
The Proposition 3.3 suggest us to study the difference (L)−1/2 − (L − d)−1/2.

THEOREM 3.5. There exist kernels N, Li, i = 1, . . . , n such that for any function f
which is a linear combination of Hermite functions, with

∫
�n f (y)e− y2

2 dy = 0 we have
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(i) ((L − d)−1/2 − L−1/2)f (x) = ∫
�d N(x, y)f (y)dy, x ∈ �d .

(ii) (Ai(L − d)−1/2 − R+
i )f (x) = ∫

�d L+
i (x, y)f (y)dy, x ∈ �d, i = 1, . . . n.

(iii) (A∗
i (L − d)−1/2 − R−

i )f (x) = ∫
�d L−

i (x, y)f (y)dy, x ∈ �d, i = 1, . . . n.

Moreover there exist a one variable positive decreasing function � ∈ L1(�, dx) such
that if we denote by M either the kernel N or the kernel L±

i , i = 1, . . . , n, we have
|M(x, y)| ≤ C�(|x − y|).

Proof. Observe that the change of parameter

t = t(s) = 1
2

log
1 + s
1 − s

, 0 < s < 1, 0 < t < ∞

produces

Gt(x, y) = Ks(x, y) =
(

1 − s2

4πs

)d/2

exp
(

−1
4

(
s|x + y|2 + 1

s
|x − y|2

))
. (9)

where Gt is the kernel in (3). On the other hand, this change of parameter in (5) leads
us to the expression

L−1/2f = 1
�(1/2)

∫ 1

0

(
log

1 + s
1 − s

)−1/2

e−t(s)Lf
ds

1 − s2
.

Therefore for functions f satisfying
∫

�n f (y)e− |y|2
2 dy = 0 we have

L−1/2f = 1
�(1/2)

∫ 1

0

(
log

1 + s
1 − s

)−1/2 ∫
�n

Ks(x, y)f (y) dy
ds

1 − s2

= 1
�(1/2)

∫ 1

0

∫
�n

(
Ks(x, y) − χ(1/2,1)(s)

(
1 − s2

4πs

)d/2

e− 1
2 (|x|2+|y|2)

)
f (y) dy

×
(

log
1 + s
1 − s

)−1/2 ds
1 − s2

,

where Ks is the kernel defined in (9). Analogous considerations can be made with
e−t(L−d) = etde−tL and we can write(

(L − d)−1/2 − L−1/2)f (x)

=
√

2
π

∫ 1

0

{(
1 + s
1 − s

)d/2

− 1

}

×
∫

�n

(
Ks(x, y) − χ(1/2,1)(s)

(
1 − s2

4πs

)d/2

e− 1
2 (|x|2+|y|2)

)
f (y) dy

×
(

log
1 + s
1 − s

)−1/2 ds
1 − s2

:= N(x, y). (10)

We shall see that the function N(x, y) just defined satisfies the theorem. Write

N(x, y) =
∫ 1/2

0
+

∫ 1

1/2
= I0 + I1
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Observe that for s ∈ (0, 1/2) we have
( 1 + s

1 − s

)d/2 − 1 ∼ s and log 1 + s
1 − s ∼ s therefore

I0 ≤ C
∫ 1/2

0
s1/2 1

sd/2
e− c

s |x−y|2 ds ≤ C
|x − y|d−3

∫ ∞

c0|x−y|2
u

d−3
2 e−u du

u
.

In the last inequality we performed the change of variables u = c |x−y|2
s . If c0|x − y| > 1,

by using the inequality zne−z ≤ Ce−z/2, we get

I0 ≤ C
|x − y|d−3

e− |x−y|2
c

∫ ∞

c
u

d−3
2 e−u/2 du

u
≤ Ce− |x−y|2

c .

On the other hand, if c0|x − y| < 1 and d ≥ 4 we have

I0 ≤ C
|x − y|d−3

(∫ 1

c0|x−y|2
+

∫ ∞

1

)
u

d−3
2 e−u du

u
≤ C

|x − y|d−3
.

If c0|x − y| < 1 and d < 4 we have

I0 ≤ C
|x − y|d−3

(∫ 1

c0|x−y|2
+

∫ ∞

1

)
u

d−3
2 e−u du

u
≤ C

|x − y|d−3

(∫ 1

c0|x−y|2
u

d−3
2 e−u du

u
+ C

)

≤ C
(∫ 1

c0|x−y|2
e−u du

u
+ C

)
≤ C(log |x − y| + 1).

Where we have used ( u
|x − y|2 )d−3 ≤ C, valid for d ≤ 3.

On the other hand we write I1 = I11 + I12 where

I12 =
√

2
π

∫ 1

1/2

[(
1 + s
1 − s

)d/2

Ks(x, y) −
(

1 + s
4πs

)d/2

exp
(

−|x|2 + |y|2
2

)]

×
(

log
1 + s
1 − s

)−1/2 ds
1 − s2

.

Consider the function β(θ ) = exp(− 1
4 (θ |x + y|2 + 1

θ
|x − y|2). Since 1

2 < s < 1,
applying the mean value theorem we have∣∣∣∣exp

(
− 1

4 (s|x + y|2 + 1
s
|x − y|2

)
− exp

(
−|x|2 + |y|2

2

)∣∣∣∣ ≤ Ce− |x−y|2
c (1 − s).

Hence

I12 ≤ Ce− |x−y|2
c

∫ 1

1/2
(1 − s)

(
log

1 + s
1 − s

)−1/2 ds
1 − s

≤ Ce− |x−y|2
c .

The case I11 is similar. In order to prove part (ii) of the Theorem we consider the kernel

AiN(x, y) =
(

∂

∂xi
− xi

)
N(x, y) = ∂

∂xi
N(x, y) − xiN(x, y) = N1(x, y) − N2(x, y).

In order to handle these kernels we follow the procedure we did for N, that is, consider
separately the cases 0 ≤ s ≤ 1/2 and 1/2 ≤ s ≤ 1. We shall estimate first the kernel N2.
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We call again I0 the integral in the range 0 ≤ s ≤ 1/2. If x · y ≤ 0 then |x| ≤ |x − y|,
therefore by using zne−z ≤ Ce−z/2 we have

I0 ≤ C
∫ 1/2

0
|x − y|s1/2 1

sd/2
e− |x−y|2

cs ds ≤ C
∫ 1/2

0
s

1
sd/2

e− |x−y|2
cs ds

≤ C
|x − y|d−4

∫ ∞

c|x−y|2
u

d−4
2 e−u du

u
.

In the last inequality we performed the change of variables u = c |x−y|2
s . If c|x − y| > 1,

by using the inequality zne−z ≤ Ce−z/2, we get

I0 ≤ C
|x − y|d−4

e− |x−y|2
c

∫ ∞

c
u

d−4
2 e−u/2 du

u
≤ Ce− |x−y|2

c .

On the other hand, if c|x − y| < 1 and d ≥ 5 we have

I0 ≤ C
|x − y|d−4

(∫ 1

c0|x−y|2
+

∫ ∞

1

)
u

d−4
2 e−u du

u
≤ C

|x − y|d−4
.

If c0|x − y| < 1 and d < 5 we have

I0 ≤ C
|x − y|d−4

(∫ 1

c0|x−y|2
+

∫ ∞

1

)
u

d−4
2 e−u du

u
≤ C

|x − y|d−4

(∫ 1

c0|x−y|2
u

d−4
2 e−u du

u
+ C

)

≤ C
(∫ 1

c0|x−y|2
e−u du

u
+ C

)
≤ C(log |x − y| + 1).

where we have used that since d ≤ 4 then ( u
|x−y|2 )d−4 ≤ C. If x · y ≥ 0 then |x| ≤ |x + y|,

therefore we have (we use the term es|x+y|2 in Ks and the fact s1/2|x + y|e−s|x+y|2 ≤ C)

I0 ≤ C
∫ 1/2

0

1
sd/2

e− |x−y|2
cs ds ≤ C

|x − y|d−2

∫ ∞

c|x−y|2
u

d−2
2 e−u du

u
.

In the last inequality we performed the change of variables u = c |x − y|2
s . We proceed

analogously to the case x · y ≤ 0. Pasting up the above arguments with the arguments
we gave above for the integral I1 (in the range 1/2 ≤ s ≤ 1) for N we get in this case

I1 ≤ Ce− |x−y|2
c . This completes the proof for the kernel N2.

Now we shall analyze the kernel N1 = ∂
∂xi

N(x, y). Observe that

∂

∂xi
N(x, y) =

√
2
π

∫ 1

0

(
log

1 + s
1 − s

)−1/2
{(

1 + s
1 − s

)d/2

− 1

}

×
[(

−1
2

(
s(xi + yi) + xi − yi

s

))
Ks(x, y) + χ[1/2,1](s)

(
1 − s2

4πs

)d/2

× xi exp
( − 1

2 (|x|2 + |y|2)
)] ds

1 − s2

=
√

2
π

(∫ 1/2

0
+

∫ 1/2

0
. . . ds

)
= I1 + I2. (11)
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Observe that |(− 1
2 (s(xi + yi) + xi − yi

s ))| ≤ ( 1
2 (s|x + y| + |x − y|

s )). We consider again
separately the case 0 ≤ s ≤ 1/2 and denoting I0 the corresponding integral, we have

I0 ≤ C
∫ 1/2

0

(
s|x + y| + 1

s
|x − y|

)
s1/2 1

sd/2
e− 1

4 (s|x+y|2+ 1
s |x−y|2)ds. (12)

The same arguments used for N2 can be repeated to get the required bound for N1 in
this case.

As for I1 we can proceed analogously by considering the function

β(θ ) =
(

− 1
2

(
θ (xi + yi) + 1

θ
(xi − yi)

))
exp

(
− 1

4 (θ |x + y|2 + 1
θ
|x − y|2

)
.

Since 1
2 < s < 1, applying the mean value theorem we have

∣∣∣∣
(

− 1
2

(
s(xi + yi) + 1

s
(xi − yi)

))
exp

(
− 1

4

(
s|x + y|2 + 1

s
|x − y|2

))

+ xi exp
(

−|x|2 + |y|2
2

)∣∣∣∣= |β(s) − β(1)| ≤ Ce− |x−y|2
c (1 − s).

Again the arguments given for N1 and N are valid in this case. �

4. Proofs of the main results. We begin this section by presenting the proof of
Theorem 2.1. This theorem will be obtained by using the following theorem, that can
be found in [6].

THEOREM 4.1. Let v be a positive measurable function. The following conditions are
equivalent:

(i) There exists a positive measurable function u and a constant C such that for
every f ∈ L2(v(x)dx) we have
supt

∫
�d |e−tLf (x)|2u(x)dγ (x) ≤ C

∫
�d |f (x)|2v(x)dγ (x).

(ii) There exists a positive measurable function u and a constant C such that for
every f ∈ L2(v(x)dγ (x)) we have∫

�d supt |e−tLf (x)|2u(x) dx ≤ C
∫

�d |f (x)|2v(x)dγ (x).
(iii) The function v satisfies

∫
�d v−1(x)dγ (x) < ∞.

Observe that by using Proposition 3.3 (iii) and Lemma 3.1 we have

‖e−t(L−d)f ‖L2(u(x)dx) = ‖U−1e−t(L−d)f ‖L2(u(x)dγ (x)) = ‖e−t(L)U−1f ‖L2(u(x)dγ (x))

≤ C‖U−1f ‖L2(v(x)dγ (x)) = ‖f ‖L2(v(x)dx)

were in the penultimate inequality we have used Theorem 4.1. In order to finish
the proof of Theorem 2.1 observe that for each t and each x we have e−t(L)f (x) ≤
e−t(L−d)f (x).

We continue by presenting the proof of Theorem 2.2. If f is a linear combination

of Hermite functions with
∫

�n f (y)e− |y|2
2 dy = 0, then f = Ug and g(y) = U−1f (y) =

f (y)e
|y|2

2 π−d/4 (where U is the isometry in Lemma 3.1 and g is a scalar valued polynomial
function with

∫
g(y)dγ (y) = 0) . Then as we mention in the introduction, the Riesz
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transforms associated to the Ornstein-Uhlenbeck differential operator are principal
value operators, therefore by using Proposition 3.3(v), we have

Aj(L − d)−1/2f (x) = Uδj(L)−1/2g(x) = URjg(x)

= e− |x|2
2 πd/4 lim

ε→0

∫
|x−y|>ε

Rj(x, y)f (y)e
|y|2

2 π−d/4dγ (y)

= π−d/2 lim
ε→0

∫
|x−y|>ε

Rj(x, y)f (y)e− |x|2
2 e

−|y|2
2 dy.

If h is a linear combination of Hermite functions and
∫

�n h(y)e−|y|2/2dy = 0,

then the conclusion of the theorem for the operator R+
i , follows from Theo-

rem 3.5(ii). For a general f linear combination of Hermite functions we have f (x) =
h(x) + π−d/2e−|x|2/2(

∫
�n f (y)e−|y|2/2dy) = h(x) + ch0(x) with

∫
�n h(y)e−|y|2/2 = 0 and h0

is the first Hermite function. Therefore, as Ai(h0) = 0, we have R+
i f = Ai(L)−1/2f =

Ai(L)−1/2h + cAi(L)−1/2(h0) = R+
i h. Then the theorem follows for R+

i . Observe that
since L−1/2 is given by an integrable kernel, see Proposition 3.4, the operator xiL−1/2 is
a principal value operator. Therefore asR−

i = −R+
i + 2xiL−1/2 we get the desired result

for R−
i . Once we get the conclusion for R−

i we use again Theorem 3.5 and Proposi-
tion 3.3 and we obtain the conclusion for δ∗

i L−1/2
0. �

Proof of Theorem 2.5. Observe that given a function f ∈ L2(�n, dx) then

f (x) = g(x) + π−1/2e−|x|2/2
(∫

�n
f (y)e−|y|2/2dy

)
= g(x) + P0(f )(x),

and
∫

�d g(x)e−|x|2/2dx = 0. Clearly R+
j f = R+

j g and

R−
j f = R−

j g + cp(x)e−|x|2/2
(∫

�n
f (y)e−|y|2/2 dy

)
, (13)

where p(x) is a polynomial de degree one in x. As we said in the introduction, see [15],
the operators R±

i , i = 1, . . . , n are bounded in L2(�n, ω(x)dx) for any weight ω which
belongs to the A2 Muckenhoupt class. In particular

‖R+
j g‖2

L2(�d ,ω(x)dx) ≤ ‖g‖2
L2(�d ,ω(x)dx)

It is well known that the Hardy-Littlewood maximal operator M maps L2(�n, ω(x)dx)
into itself, again for ω ∈ A2. Therefore Theorem 3.5 says that the difference Ai(L −
d)−1/2 − R+

i maps L2(�n, ω(x)dx) into itself. Then Ai(L − d)−1/2 maps L2(�n, ω(x)dx),
we get the result for Ri by using Proposition 3.3 and Lemma 3.1.

On the other hand it is well known that if ν is a weight which belongs to the A2

Muckenhoupt class then the measure ν(x)dx is doubling, that is there exists a constant
such that

∫
{|x|<2r} ν(x)dx ≤ A

∫
{|x|<r} ν(x)dx therefore, for any ε > 0, we have∫

�n
ν(y)e−ε|y|2 dy ≤

∑
j=0

(∫
2j<|y|<2j+1

ν(y)e−ε|y|2 dy
)

+
∫

|y|<1
ν(y)e−ε|y|2 dy

≤
∑
j=0

e−ε22j
(∫

2j<|y|<2j+1
ν(y) dy

)
+

∫
|y|<1

ν(y) dy

≤
∑
j=0

e−ε22j
Aj

∫
|y|<1

ν(y) dy ≤ Cε(ν).
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By using |p(x)|e−|x|2 ≤ Ce−|x|2/2 and the fact that if ω ∈ A2 then ω−1 ∈ A2 we have

∫
�d

p(x)2
(∫

�d
f (y)e−|y|2/2 dy

)2

e−|x|2ω(x)dx

≤C
∫

�d

(∫
�d

|f (y)|2ω(y) dy
) (∫

�d
ω(y)−1e−|y|2 dy

)
e−|x|2/2ω(x)dx

≤C
(∫

�d
|f (y)|2ω(y) dy

) (∫
�d

ω(y)−1e−|y|2 dy
) (∫

�d
ω(x)e−|x|2/2dx

)

≤C
(∫

�d
|f (y)|2ω(y) dy

)
.

Therefore, by using (13) and the fact that R−
i , i = 1, . . . , n are bounded in

L2(�n, ω(x)dx), we have that

‖R−
j g‖2

L2(�d ,ω(x)dx) ≤ ‖g‖2
L2(�d ,ω(x)dx).

In order to get the result for δ∗(L)−1/2
0 we can now proceed as with Ri.

Proof of Theorem 2.3. We call Ri the linear extension of these operators, in the
sense described in (4), to functions taking values in a Banach space B. The following
theorem was proved in [7].

THEOREM 4.2. The following statements are equivalent: (i) Ri, i = 1, . . . , n are
Lp

B(�n, dγ ) bounded for every p, 1 < p < ∞. (ii) Ri, i = 1, . . . , n are Lp
B(�n, dγ ) bounded

for a particular p, 1 < p < ∞. (iii) Ri, i = 1, . . . , n are bounded from L1
B(�n, dγ ) into

L1,∞
B (�n, dγ ). (iv) B has the UMD property.

It was proved in [15] that the operators R±
j are Calderón-Zygmund operators with

associated kernels R±
j (x, y), in these circumstances it is known that (ii), (iii), (iv), (v)

are equivalent, where in (iv) L∞ has to be substituted by L∞
c . The proof of this fact

consists in adapting the scalar case to this vector valued case. For the scalar case see
[8]. These equivalences have as a consequence that any of them is equivalent to the
following statement:
(iii)′ There exists a constant C2 such that ‖R+

j f ‖L2
B(dx) ≤ C2‖f ‖L2

B(dx), 1 ≤ j ≤ n.

Since by Theorem 3.5, the difference between R+
j and Aj(L − d)−1/2 is controlled

by a positive operator bounded in Lp, 1 ≤ p ≤ ∞, we have that in (iii)′ we can replace
R+

j by Aj(L − d)−1/2. Now by using Lemma 3.1 we see that (iii)′ is equivalent to
(iii)′′ There exists a constant C2 such that ‖Rjf ‖L2

B(dγ ) ≤ C2‖f ‖L2
B(dγ ), 1 ≤ j ≤ n.

But statement (iii)′′ is equivalent to say that the Banach space B is UMD, see
Theorem 4.2.

By using Theorem 2.2 and the vector valued version of the general theory of
Calderón-Zygmund operators, [8], [11], we get

R+
j f (x) = lim

ε→0
R+

j,εf (x) = lim
ε→0

∫
|x−y|>ε

R+
j (x, y)f (y) dy, a.e.x, f ∈ ∪1≤p<∞Lp

B.

Now we can use Remark 2.4 and we get the result for L∞. The theorem for R−
j follows

by observing that R−
j = −R+

j + 2xiL−1/2. �
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