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Adapting to the Weather:  
Lessons from U.S. History

HOYT BLEAKLEY AND SOK CHUL HONG

An important unknown in understanding the impact of climate change is the scope 
of adaptation, which requires observations on historical time scales. We consider 
how weather across U.S. history (1860–2000) has affected various measures of 

effects of hotter and wetter weather early in U.S. history, but these effects have 
generally been attenuated in recent decades. The results suggest that estimates 
from a given period may be of limited use in forecasting the longer-term impacts 
of climate change. 

A major issue in forecasting the economic effects of climate change 
is the extent to which people can adapt to different weather patterns 

in the long term. If weather affects production or investment, adaptation 
can take several forms: adjusting the mix of inputs, choosing alternative 
technologies, or even developing a new technology that is more suited 
to the new climate. In addition, long-term changes in weather may lead 

-

2007). In any case, understanding the scope of long-term adjustment is 
key for measuring the impact of climate change.

While early approaches to this question relied on simulations of agro-
nomic models, recent econometric work has used hedonic/cross-sectional 

land across areas with various factors, including climate variables. The 
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these factors to land productivity. Important studies were conducted by 

2006). If areas have had enough time to adapt to permanent features of 
their climate, then hedonic estimates can measure the long-term effects 
of climate. One limitation of such cross-sectional comparisons, however, 
is that they measure the effect of climate on land value plus the value 
of any omitted variables that happen to be correlated with the measures 
of climate employed. Moreover, the hedonic approach cannot provide 
direct evidence of adaptation: hedonic methods do not actually observe 
adaptation, but rather assume it. A complementary approach to this ques-

year weather variations within an area (for example, Deschênes and 

and Guryan 2009; Guitieras 2009; Dell, Jones, and Olken 2012; Burke, 
Hsiang, and Miguel 2015). Both methods have advantages but are limited 
by the range of technology during their sample window and, especially 
for panel methods, by the scope for adjustment over the time range 
implicit in their research design. Meaningful adaptation occurs over long 
periods of time; thus, direct evidence of adaptation requires observation 
over longer periods.

This study adopts aspects of both methodologies but from a longer-term 
perspective; we examine U.S. historical data spanning about 140 years. 
We investigate geospatial data on average weather conditions as well as 
historical weather information from measurement stations on temperature 
and rainfall. These data are matched to economic variables at the county 
and state levels. The United States is well-suited for this analysis for two 

to estimate these models; second, conformable data are available on both 
weather and economic variables over a long stretch of time. 

1800s, the cross-section of farm value per acre by average temperature 
had an inverse U-shape. Below the median temperature, higher average 
temperature indicated more valuable farmland. Above the median, 
however, a warmer climate indicated lower farmland values. On the 
other hand, this negative effect for heat has attenuated, if not reversed, in 

farm value per acre increased monotonically with average temperature. A 
similar pattern is seen for rainfall: above the median, more average rain 
predicted lower farm values in the nineteenth century but higher values 
by the middle of the twentieth century.
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farm productivity to variations in temperature and rainfall. We match 
a long-term weather variable (measured at the decade level) with farm 
value, and short-term weather variables (measured by annual averages 
in each census year) with farm output value. The response of both farm-
productivity measures to high temperature or rainfall is estimated to be 
more negative in the early parts of the sample than in recent years. These 
results suggest a substantial economic effect of weather at various hori-
zons but also point to a change in both the short- and long-term relation-
ships between weather and farm productivity, particularly in warm and 
wet areas. 

In the next section, we demonstrate instability over time in the relation-
ship between weather in early life and later-life human capital, measured 
by occupation-based adult income, using a census sample of cohorts 

warmer or wetter areas was associated with substantially lower occupa-
tional income score in adulthood, but this correlation disappears among 

-
tions in early childhood. However, this effect was strongest among those 
born earlier in the sample and is sharply attenuated among those born in 

occupational income that were strong in the past but are now consider-
ably weaker. 

The purpose of this study is to assess instability in the weather–produc-
tivity relationship over time, which measures adaptation to climate. We 

such as government policies and investments, market access, local infra-
structure, and so on. Such analyses are quite limited due to a lack of 
historical variables and endogeneity problems. More importantly, those 
determinants could be part of adaptation to climate, and controlling for 
them would obscure the measurement of historical adaptation. 

What is the relevance of these results to more contemporary issues? 
The timescale of anthropogenic climate change is best measured in 
centuries, with the greatest impacts occurring in the far future. This study 
suggests a simple thought experiment. Suppose we were in 1910 but were 
nevertheless charged with forecasting the impacts of climate change. We 
show that estimating standard models with circa 1900 data yields results 
quite different from those obtained from estimating such models with 
circa 2000 data. Therefore, estimates from the turn of one century would 
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be poor guides to forecasting climate-change impacts in the century that 
follows. However, the recent literature is doing something similar by 
using estimates from the late twentieth century to forecast the systematic 
response of economic variables to weather or climate over the course 

suggest that greater caution is called for when conducting such exercises. 

The effect of climate change on agriculture was extensively studied 
in the 1980s amid the increasing worldwide concern about global 
warming (Houghton, Jenkins, and Ephraums 1990). The early approach 
was based on agronomic models of production functions (Adams 1989; 
Adams et al. 1990; inter alia). This traditional approach models a func-
tion of crop production from empirical or experimental results. Climatic 
components such as temperature and precipitation are used as key input 

input variables. Using this production-function approach, various studies 
-

ship because of global warming. This method is useful and accurate if 
the response of crop yield to weather is constant across space and time. 

example, new technologies (including plant varieties) and economic 
conditions might reduce the negative effects of drought and extreme 
temperature on crop production—that is, adaptation.

Mendelsohn, Nordhaus, and Shaw (1994) emphasized the scope of 
adaptations and adjustments farmers ordinarily make in response to 

(2008, 2011) observed the converse in U.S. economic history, where 
farmers have adopted innovative varieties that dramatically increased the 
range over which certain crops can be grown. Thus, without considering 
adaptation or substitution, the production-function approach can overes-
timate the agricultural damage from climate change.

As an alternative approach, Mendelsohn, Nordhaus, and Shaw (1994) 

the hedonic approach assumes that the economic value of adaptive activi-

had enough time to adapt to climate change, the land rent will be equal to 
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the net yield of the highest and best use of the land.1 They measured land 
rent with farm value, which should be the present value of future rent. By 
running a regression of farm value on climatic, environmental, economic, 
and agronomic variables, they estimated the discounted marginal value 
or price sensitivity of these factors to land productivity. They found a 

the traditional production-function approach. Although the newly devel-

change, the study does not actually observe the adaptation to climate or 
dynamic adjustment because it conducted cross-sectional comparisons in 
c.1980. Instead, it assumes adaptation.

Other limitations of the hedonic approach have been reported by 
several studies. William Cline (1996) questioned the validity of applying 
cross-sectional analyses of current land values to predict future global-
warming impacts because the relative price of grain will change due to the 

produced estimates that violate basic agricultural principles, as it insuf-

effects of climate change on agriculture must be assessed differently in 
dry land and irrigated areas, emphasizing the role of irrigation and water 
supply in the hedonic approach.

The validity of the hedonic regression was carefully examined by 
Olivier Deschênes and Michael Greenstone (2007), who recognized that 
unobserved characteristics are spatially correlated, such that the standard 

be incorrect. In this case, the hedonic approach can confound climate 
with other regional factors that happen to be correlated with the measures 
of climate employed. As a possible solution to the omitted variable bias 

that uses the across-year variation in temperature and precipitation within 

large panel of crop yields and daily weather variables spanning most U.S. 

1

example, if the adaptation in non-U.S. countries was even less successful than that in the United 

affect the global supply of substitutes or complements for U.S.-produced goods, altering the 
terms of trade for the United States (and for its regions).
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the temperature thresholds above which crop yields sharply decline. The 

yields within the century, contrary to the prediction of Deschênes and 
Greenstone (2007).

Each of those previous studies has an advantage for understanding the 
effect of climate change on agriculture. One advantage of the hedonic 
approach is that it can account for adaptive behavior (for example, crop 

effects model can resolve the omitted variable bias problem. Nevertheless, 

noted earlier, this is not actually observed but is assumed in the hedonic 

time window employed in their research design.
Meaningful adaptation takes place over a long time span; therefore, 

direct evidence of adaptation requires observation over longer periods 
of time. One strength of this study is that it harnesses the advantages of 

it extends the time window to span 140 years, throughout which humans 
have created various technological adaptations to the weather.

adaptations by examining how North American wheat farmers over-

Hornbeck (2012) examined how agricultural adjustment occurred in the 
counties severely eroded by the 1930s American Dust Bowl throughout 
the Depression to the 1950s. This study investigates general patterns of 
adaptation to climate instead; therefore, their work is complementary to 
ours. 

non-agricultural outcomes. Most have focused on identifying the causal 
effect of climatic variables on outcomes such as mortality, health, educa-
tional attainment, and income (Deschênes, Greenstone, and Guryan 2009; 
Maccini and Yang 2009), which we will discuss at greater length in a later 

to 2004 by employing cross-sectional and panel methods. They argued 
that existing studies have ignored long-term adaptation to changes in 
climatic variables that evolve over decades or more and emphasize that 
more adaptation becomes available in the future. 
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DATA

This study merges historical weather variables with measures of farm 
productivity at the county level and of income (proxied by occupational 

variable is constructed or obtained. Detailed information on data sources 
and related issues is provided in Appendix 1.

on the Nineteenth-Century U.S. Climate Data Set Project developed by 
the National Climate Data Center and the Long-Term Daily and Monthly 
Climate Records from the Stations across the Contiguous United States 
provided by the U.S. Historical Climatology Network. Both datasets 
report monthly mean temperature and monthly accumulated precipitation 
according to thousands of weather stations that have existed over the past 
two centuries. However, weather information is not available for all coun-
ties. Weather variables for counties without historical weather stations in 
certain periods need to be estimated. We use a geostatistical technique 
called “Kriging,” an algorithm that imputes the climatic value at a given 
(target) location as a weighted sum of the data values at surrounding loca-
tions. Kriging assigns weights with inverse distance squared among loca-
tions; it assigns a lower weight to surrounding weather stations located 
at a greater distance from the target location (Stein 1999). Using this 
method, we estimate monthly mean temperatures and monthly accumu-
lated precipitation by county and for every month from 1860 to 2000.2 
Then, we utilize the monthly estimation results to calculate annual, 
decadal, and centurial mean temperature and precipitation at the county- 
or state-level according to the research designs in later sections.

Second, this study uses two measures of county farm productivity 
found in Historical, Demographic, Economic, and Social Data: The 
United States, 1790–2002

of census enumeration. Although it is available from the 1850 agricul-
tural census, we use the variable only from 1870 to 2000, considering the 
periods when the quality of estimated weather variables was acceptable. 

prior to the enumeration day.3 However, the variable is not found in the 
earlier source for the census years of 1910, 1920, and 1930. 

2 We test the validity of the Kriging estimation in Appendix 1.
3 There is a double counting issue in calculating farm output value because some crops, particularly 

corn and hay, are used for feeding livestock. We discuss the issue in more detail later and statistically 
test whether measurement error due to double counting can affect our main estimation.
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county variables from 1880 to 2000 on the 1870 county boundary, using 
the area-weighted average method.4 We use every 10 years from 1870 on, 

year when each census was conducted is different from the referred year 

1997.
occupational 

income score, which is available for a large number of censuses. The 
variable represents the median total income by disaggregated occupa-
tional categories that were calibrated using data from the 1950 census. 
Occupation has been recorded by the census for more than a century; 
thus, the income proxy is available for a substantial stretch of cohorts. 
We use micro samples from the 1880 and 1900–1990 IPUMS-Integrated 

adult white males aged 20 to 65 who were born between 1860 and 
1960. We choose 1860 as the earliest year of birth in view of the low 
quality of the weather data in earlier years. The units of observation of 

 
birth.

Long-Term Weather Conditions and County Farm Value

the county average of farm value and its weather conditions using scatter 
plots. This cross-sectional analysis is intended to show that county farm 
value has adapted to the permanent features of local weather over time in 
the United States. Although the range of temperature and precipitation is 

address the over-time instability of such relationships outside the United 
States.

-
rithm of each county’s average farm value per acre against its decadal 

4 This adjustment of county boundary change can cause biases if new county areas had quite 
different climate over time. We test this possibility by analyzing (1) unbalanced panel data 
without adjustment in Appendix 3 and (2) only counties whose boundaries have not changed 
from 1870 to 2000 in Appendix 3. The results suggest that the adjustment does not undermine the 
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FIGURE 1

Notes: Each weather variable on the x-axis denotes the 10-year average of annual weather values 
prior to each census year. The y-axis denotes the logarithm of the county average farm value per 

Sources: Authors’ calculations based on farm statistics found in the historical census records 

Appendices 1 and 2.
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for the 10 years prior to the year of census.5 We also put a linear trend 

diagrams suggest that the relevance of temperature to farm value gradu-
ally changed across decades. High temperatures depressed farm value 
in the second half of the nineteenth century, but this negative associa-
tion weakened throughout the early twentieth century. In recent decades, 
farm value has been (marginally) increasing with temperature. In addi-
tion, a quadratic relationship is evident in the late nineteenth century, 
with a peak of around 50o -

 
decades.

A similar historical pattern is observed between county farm value and 
decadal averages of annual accumulated precipitation, which is presented 

of annual accumulated precipitation was below about 35 inches, farm 
value increased with precipitation. However, a high level of precipitation 
above this threshold depressed farm value. The nonlinear pattern indi-
cates a negative correlation between county farm value and precipitation 

of the negative relationship and inverse U-shape relationship accelerated 
toward the late twentieth century; county farm value has been rapidly 
increasing with precipitation levels in recent decades.

This bivariate cross-sectional analysis shows that (a) adaptation to hot 
and wet weather can be clearly observed if we look at adaptation across 
longer time periods and that (b) the pattern of adaptation has occurred 
very gradually. However, this hedonic approach does not determine 
whether this adaptation to permanent weather conditions resulted from a 
change in the climate effect or a change in the effect of other local agri-
cultural, socioeconomic, or demographic characteristics that happen to 
be correlated with weather variables.

Fixed-Effects Model

compare it with the cross-sectional results described earlier. Equation (1) 
estimates the historical pattern of the effect of long-term weather on farm 

5

for 1870 to 1879. Thus, we assume that farm value depended on farm productivity affected by 
weather condition in the 1870s. 
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-
tural technologies and time-invariant county factors:6

∑α ∑ δ δ δ ε( )β +) +δ
=

Y = α ∑ β ,α ∑ δ δ ε)β +) +δY αα ∑ βijtYY ijt ijt
t

t jδ δδ t iδ+ ijt
1880

2000

(1)

where Yijt is the logarithm of county i (in state j)’s average farm value 
per acre measured at census year t, Wijt is the decadal average of each 
weather variable (temperature or precipitation) in county i, Xijt are vectors 
of county-level agricultural controls and constant terms, Dt are dummies 
indicating year t, t jt
and i

use county population density, the ratio of white population to county 
population, the ratio of farmland to total available county area, and the 
estimated number of farmers per farmland acre. Sources and the construc-
tion of each control variable are discussed in Appendix 2. Equation (1) 
considers the impact of cross-decade variation in weather within a county 
and focuses only on the linear relationship between county farm value 
and weather variables. In the estimation model, the reference year is 

t estimate the extent to which the response of 
farm value at census year t to local temperature or precipitation differed 

ordinary least squares regressions. We calculated standard errors of esti-
mated weather values using the Kriging process and used the inverse of 
the standard errors as regression weights.

t for 
temperature and precipitation. Dotted lines represent the results of esti-

7

rainfall on farm value rapidly changed until the mid-twentieth century. 
The increasing trend of t over the years implies that high temperatures 

t remains stable after the period between 1960 and 1970, suggesting that 

6 Agricultural control variables are limited because those that appear in some census years are 

7

terms denoted by variable X
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adaptation to hot and rainy weather slowed in recent decades. The esti-

models estimate smaller effects of cross-decade variation in weather 
on farm value relative to 1870 levels than do the year or state-by-year 

non-weather unobservable county characteristics that are correlated with 
county weather conditions.8
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FIGURE 2

Notes: We ran the weighted regressions of the logarithm of county average farm value on the 
10-year average of annual mean temperature or annual accumulated precipitation prior to each 
census year, standard controls, and their interactions with the dummies that indicate the 1880–
2000 census years, per equation (1). Thus, the reference year is 1870. Each panel is the graphical 

are reported in Appendix Table 3 in Appendix 3.
Sources: Authors’ calculations.

8

compare the result in this section with the estimation result based on data without the adjustment 
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Measuring Adaptation to the Weather across Centuries

weather on farm value substantially changed over the past two centuries, 

the beginning (late nineteenth century) and end (late twentieth century) 
periods of the sample time window, the magnitude of the adaptation can 
be estimated more accurately. 

2000. In columns (1) and (2) of Table 1, we run weighted regressions of 
county farm value on decadal weather variables, the standard controls 

marginal effects between the two centuries by examining interactions 
between all control variables and a dummy that indicates the census 
year in the nineteenth century (D19). The estimation model also controls 

effect of temperature (denoted by T in Table 1) and precipitation (P) on 

errors for weather variables in Table 1. The results of columns (1) and 
-

variables interacted with D19 in column (3) shows that the cross-century 

δ δ δ ε+ Γ + Π +δ +δY α=α W D XΓ + ,ijtYY ijt ijtWW ijt ijt t jδ δδ t iδ+δ ijt19 19 (2)

where i, j, and t denote county, state, and census year, respectively. This 
slightly changes the marginal effect of weather in each century and the 
magnitude of its difference across centuries (  in equation [2]). However, 

The purpose of the analysis throughout is not to characterize the agri-
cultural and policy determinants of farm productivity but rather to assess 
instability in the weather–productivity relationship over time, which we 

endogenous factors affect farm productivity, such as government policies 
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TABLE 1
 

Dependent Variable: ln(county average farm value per acre)

(1) (2) (3) (4)

Period of sample Nineteenth Century Twentieth Century Both Centuries Both Centuries

x x

x

x

x

Panel A: Only Temperature (T)

T –0.0219*** 0.0063 0.0063 0.0231***

(0.0047) (0.0047) (0.0047) (0.0088)

T × D19 –0.0282*** –0.0470***

(0.0055) (0.0056)

2 0.690 0.430 0.823 0.949

Panel B: Only Precipitation (P)

P –0.0100*** 0.0297*** 0.0297*** 0.0114***

(0.0021) (0.0019) (0.0019) (0.0025)

P × D19 –0.0396*** –0.0162***

(0.0026) (0.0030)

2 0.690 0.474 0.830 0.948

Panel C: Temperature (T) and Precipitation (P)

T –0.0164*** –0.0031 –0.0031 0.0246***

(0.0051) (0.0043) (0.0043) (0.0080)

T × D19 –0.0133** –0.0472***

(0.0056) (0.0057)

P –0.0098*** 0.0305*** 0.0305*** 0.0098***

(0.0020) (0.0019) (0.0019) (0.0024)

P × D19 –0.0403*** –0.0119***

(0.0026) (0.0028)

(T-Tm) × (P-Pm) 0.0005** –0.0005** –0.0005** 0.0001

(0.0003) (0.0002) (0.0002) (0.0004)
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and investments, local infrastructure like railroads, and so on. Of course, 

potential control variables are consistently measured across the censuses. 
Second, because of a lack of plausible instruments, we would not be able 
to correct the endogeneity problems for the policy and infrastructure vari-
ables, which are likely biased by reverse causality and omitted variables. 
Third and most importantly, such factors are investments in adapting to 
circumstances, including the climate. We would not want to remove such 
adaptation from the estimates, because they are part of the story.9

TABLE 1 (CONTINUED)
 

Dependent Variable: ln(county average farm value per acre)

(1) (2) (3) (4)

Panel C: Temperature (T) and Precipitation (P)

(T-Tm) × (P-Pm) × D19 0.0011*** –0.0007**

(0.0003) (0.0003)

2 0.692 0.475 0.830 0.950

Observations 8,432 8,432 16,864 16,864

* 
**  
***  
Notes: We estimate the century difference in the response of county farm value to long-term weather 

1870, 1880, 1890, and 1900 for the nineteenth century, and the decades ending with 1970, 1980, 1990, and 
2000 for the twentieth century. The long-term weather conditions are measured by the 10-year average of 
annual mean temperature (T) and annual accumulated precipitation (P) from each census year, respectively. 
Tm and Pm denote the sample mean of temperature and precipitation variables, respectively. D19 denotes 
the dummy variable that indicates the census years in the nineteenth century (in other words, 1870, 1880, 
1890, or 1900). In all the regression models, we control for each county’s population density, ratio of white 
populations, ratio of farmland to total county area, and number of farmers per farmland acre in each census 
year. Columns (1) and (2) estimate the marginal effect of weather on farm value in each century. Columns 

centuries and adding the interaction terms between weather variables and D19, per equation (2). However, we 

where the regression weight is the inverse value of the weather estimates’ standard errors. Panels A and 
B employ temperature and precipitation, respectively; Panel C employs both variables together. The table 

parentheses, are clustered on county.
Sources: Authors’ calculations. 

9 In the Online Appendix, we present a speculative analysis of mechanisms that might be at 
play in understanding the instability of the weather–productivity relationships over time.
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TABLE 2

Dependent Variable: ln(county average farm output value per acre)

(1) (2) (3) (4)

Period of sample Nineteenth Century Twentieth Century Both Centuries Both Centuries
x x

x
x
x

Panel A: Only temperature (T)

T –0.0330*** 0.0119* 0.0119* 0.0327***
(0.0038) (0.0064) (0.0064) (0.0101)

T × D19 –0.0449*** –0.0416***
(0.0067) (0.0086)

2 0.520 0.476 0.684 0.841

Panel B: Only precipitation (P)

P 0.0014* 0.0152*** 0.0152*** 0.0074***
(0.0008) (0.0018) (0.0018) (0.0023)

P × D19 –0.0138*** –0.0114***
(0.0020) (0.0031)

2 0.508 0.489 0.686 0.840

Panel C: Temperature (T) and precipitation (P)

T –0.0315*** 0.0111* 0.0111* 0.0298***
(0.0036) (0.0062) (0.0062) (0.0096)

T × D19 –0.0426*** –0.0378***
(0.0067) (0.0086)

P 0.0008 0.0156*** 0.0156*** 0.0082***
(0.0008) (0.0019) (0.0019) (0.0021)

P × D19 –0.0148*** –0.0110***
(0.0020) (0.0030)

(T-Tm) × (P-Pm) 0.0003*** –0.0003 –0.0003 –0.0008**
(0.0001) (0.0003) (0.0003) (0.0003)

(T-Tm) × (P-Pm) × D19 0.0006** 0.0004
(0.0003) (0.0004)

2 0.520 0.490 0.690 0.842

Observations 8,432 8,432 16,864 16,864

* 
**  
***  
Notes: We estimate the century differences in the response of county farm output value to short-term 
weather conditions. The short-term weather conditions are measured by the annual mean temperature (T) and 
accumulated precipitation (P

Sources: Authors’ calculations.
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southern counties’ climates are characterized not only by high tempera-
tures but also by wet and humid weather. The impact of one weather 
component on farm value can be compounded by another. We consider 
this issue in Panel C by running a regression for county farm value on 
decadal temperature and precipitation and the demeaned interaction of 

in column (4), which uses stricter controls, the interaction effect and its 

we imagine two counties with different levels of annual mean tempera-
ture: 55.4o o

one standard deviation higher than the mean temperature.10 We assume 
that the levels of precipitation and other agricultural conditions are iden-

of T×D19 in column (4) of Panel C, the cross-century difference in farm 
value as a ratio (in other words, the level of farm value in the late twen-
tieth century relative to that in the late nineteenth century) is estimated 
to be 13.7 for the average county and 19.1 for the hot county.11 Because 
there is little difference in county farm value by local temperature today, 
this simulation suggests that adaptation occurred more rapidly in hotter 

P×D19 in column (4) of 
Panel C, the cross-century difference in farm value as a ratio is estimated 
to be 1.6 for a county with average annual precipitation (41.4 inches) and 
1.9 for a wet county with 51.9 inches of annual precipitation, which is 
one standard deviation higher than the average precipitation. The rate of 
adaptation seems to be smaller than is that of temperature. However, it 
still suggests that adaptation to precipitation was evident in wetter areas.

Short-Term Weather Fluctuations and Farm Output Value

In this subsection, we employ an alternative measure of farm produc-
tivity: the value of county farm output. This measures how the growth 

10 We report the summary statistics of weather variables in Appendix Table 1 in Appendix 1.
11 Suppose that FV19C and FV20C denote average farm value in a county in the late nineteenth 

and late twentieth centuries, respectively. Accordingly, the cross-century difference in farm value 
as a ratio (FV20C÷FV19C  

T·T) regarding temperature(T P·P) regarding precipitation(P). The interaction 
between temperature and precipitation increases the estimated magnitude of the historical changes 
by a small amount, as discussed in the text.
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of crops is affected by local weather conditions.12 Unfortunately, farm 
output value is not available in the census years of 1910, 1920, and 1930. 
Thus, we use the panel regression described by equation (2), which 
compares 1870–1900 to 1970–2000, and to which we add state-by-year 

more on weather conditions in the year of production (in other words, 
short-term weather conditions) than decadal weather conditions. Thus, 
we estimated the short-term weather variables as average temperature 
and accumulated precipitation in one year before each census year.13

In Table 2, we examine the marginal effect of short-term weather 
conditions on county farm output value and its change over the centu-

term weather was less favorable for producing agricultural output in the 
late nineteenth century than it was in the late twentieth century and that 
the adaptation of farm output value to weather occurred more-or-less 
steadily across decades.14 Moreover, the magnitude of the adaptation to 
the weather (in other words, the difference in marginal effect across the 
centuries) is similar to what we estimated using farm value and long-term 
weather variables in the previous subsection. Again, these results suggest 
that a forecast of the impact of climate change during one century made 
with data from the prior century would be problematic.

Robustness

alternative weather variables in columns (2) and (3). Crops are cultivated 
even in winter in some regions, and most of the precipitation comes from 
the rainy winter season in others. However, weather conditions in winter 

12

13

the year ending in June 1870. We assume that farm output surveyed in 1870 was largely affected 
by weather condition in 1869. We conducted the analysis noted earlier using weather variable 
estimated for the census year (i.e., 1870), but the result did not change much. 

14 To determine whether this result is correlated with the effect of weather in other years around 
the census year, we conducted additional regressions by adding short-term weather variables 
measured in the periods one year after and before the census year. It is found that the cross-century 
change in the response to weather is strongly estimated only for the current-year weather variables 
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774TABLE 3

Key Variable

(1) (2) (3) (4) (5) (6)

Baseline

Alternative Weather Variables

March-to-October 
Average

Average Weather 
over 1860–2000

 
 

of Total County Area

 
0.54 in 1870, 0.48 in 2000

Counties above the Cutoff 
Value in both 1870 and 2000

Counties Below the Cutoff 
Value in both 1870 and 2000

Panel A: Y = farm value, T = decadal temperature
T × D19 –0.0470*** –0.0505*** –0.0495*** –0.0476*** –0.0525*** –0.0521***

(0.0056) (0.0067) (0.0053) (0.0050) (0.0070) (0.0132)

Panel B: Y = farm value, P = decadal precipitation
P × D19 –0.0162*** –0.0202*** –0.0176*** –0.0149*** –0.0397*** –0.0191***

(0.0030) (0.0054) (0.0033) (0.0027) (0.0048) (0.0047)

Panel C: Y = farm output value, T = annual temperature
T × D19 –0.0416*** –0.0381*** –0.0330*** –0.0020 –0.0710***

(0.0086) (0.0098) (0.0075) (0.0112) (0.0175)

Panel D: Y = farm output value, P = annual precipitation
P × D19 –0.0114*** –0.0151*** –0.0070*** –0.0055** –0.0137**

(0.0031) (0.0033) (0.0025) (0.0028) (0.0058)

Observations 16,864 16,864 16,864 16,864 4,360 4,336 

* 
**  
***  
Notes
in the head of columns. Panels A and B estimate the relationship between county farm value and decadal weather variables, and Panels C and D regard county farm output value and annual 

the whole time horizon, the estimation of short-term weather variables in Panels C and D is unfeasible. The regression weights, except in column (4), are the inverse value of the decadal, annual 

Sources: Authors’ calculations.
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we control for annual and decadal average weather variables calculated 
only for the months of March to October in column (2). On the other 
hand, we employ average weather variables calculated over the whole 
time horizon (1860–2000) in column (3) to eliminate the bias caused 
by the noisy nature of temperature and precipitation. The estimation 
results in both models are similar to those of the baseline estimation in  
column (1). 

Second, the extent of agriculture varies across counties and decades. 
More agricultural counties can be more active in adapting to weather than 
small-scale agricultural counties. Thus, the relationship between agricul-

scale agriculture. To test this possibility, we conduct three additional 
analyses. In column (4), we run weighted regressions with the ratio of 
farmland to total county area in each census year as regression weights. 
This up-weights counties that are more agricultural. The result is similar 
to that of the baseline estimation. Alternatively, we restrict the regres-
sions to counties with large-scale agriculture both in 1870 and 2000 in 
column (5) and those with small-scale agriculture in both census years in 
column (6). In both columns, we utilize the average ratio of county farm-
land in each census year to divide large- from small-scale agriculture. In 
columns (5) and (6), the adaptation is substantially estimated not only 
for large-scale agricultural counties but also small-scale ones. In partic-
ular, the adaptation in the relationship between annual temperature and 
farm output value is estimated more substantially for small-scale agricul-
tural counties, suggesting that the adaptation to weather widely occurred 
across the broad scale of agriculture.

Third, some may argue that a substantial response to extreme weather 
conditions would be to not settle the regions with extreme conditions. In 
this case, many unsettled areas, particularly in earlier sample years, could 
skew the analysis by resulting in high farm value per farmland acre even 
though county land was not valuable on average. Then, the value per 
farmland acre could fall over time as more places become tolerable due 
to technological adaptation. We may not be able to completely test and 

is to employ farm value or output value per county area rather than those 
per farmland acre. 

The results of using those alternative dependent variables are reported 

the nineteenth century dummy are estimated to be somewhat smaller than 
those of the baseline estimation in Panels B and D. This may suggest that 
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much farmland in the late nineteenth century was unsettled or not valuable. 
If the pattern was more frequent in dry counties (more land-improved) 
than in wet counties (less land-improved), the nineteenth-century slope 
of agricultural outcomes per county acre against average precipitation 

temperature in column (2) are similar to those of the baseline.

TABLE 4

Key Variable

(1) (2) (3) (4)

Baseline
Using Per-County-

Acre Values

Double Counting Issue  

Discounting the 
Production of 
Corn and Hay

Discounting Total 

Panel A: Y = farm value, T = decadal temperature

T × D19 –0.0470*** –0.0513***
(0.0056) (0.0052)

Panel B: Y = farm value, P = decadal precipitation

P × D19 –0.0162*** –0.0067**
(0.0030) (0.0030)

Panel C: Y = farm output value, T = annual temperature

T × D19 –0.0416*** –0.0375*** –0.0402*** –0.0384***
(0.0086) (0.0078) (0.0100) (0.0097)

Panel D: Y = farm output value, P = annual precipitation

P × D19 –0.0114*** –0.0033 –0.0067** –0.0060*
(0.0031) (0.0026) (0.0032) (0.0033)

Observations 16,864 16,864 10,432 10,459
* 
**  
***  
Notes: In this table, we employ alternative measures of county farm value and output value. 
Column (2) uses county farm value or output value per county acre rather than per county 

we re-calculated county farm output value by excluding 50 percent of corn production and all 
hay production for nineteenth-century censuses and 15 percent of corn production and all hay 
production for twentieth-century censuses. We discounted crop values by 10 percent in column 
(4). Columns (3) and (4) use only the data for 1870, 1900, 1970, and 2000 due to data limitation. 

inverse value of the decadal, annual or centurial weather estimates’ standard errors, which is 

parentheses, are clustered on county.
Sources: Authors’ calculations.
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volume states the following (U.S. Bureau of Census 1883, p. 26): 

A large part of the corn, and a still greater portion of the hay, returned in the 
census are consumed for the purpose of the annual product of animal food. If the 
values of both the vegetable and the animal products are counted, there will be 
duplication to this extent…An investigation of the distribution and consumption 
of the corn crop of 1882, undertaken by the statistician of the department of 

or fattening purposes, 46.6 percent of the total crop.15

The double-counting problem can be partially addressed by constructing 
separate crop and livestock output measures. However, it seems to be 

-
atically. Calculating a county’s total value of farm output was based on 
farmers’ reports in the census. Because farmers generally report only the 
value of their ultimate product, we are not able to calculate the value 
of duplications. Handling the double-counting problem becomes more 
complex at the county level because feed crops produced in a county are 
not always consumed in the same county. 

In addition, as farms are less specialized, the double-counting problem 
is more serious; thus, the problem would be greater for data in the nine-
teenth and early twentieth centuries (Gardner 2009). As discussed earlier, 
about 46.6 percent of corn production was estimated as the proportion of 
double counting; the ratio declined to 14.2 percent in the 1982 agricul-
tural census and to 13.9 percent in the 1992 census.16 

We can partially test how double counting may affect our estimation. 

double-counting problem.17 We assume that 50 percent of corn produc-
tion was used for feeding livestock in the late nineteenth century, and 15 
percent in the late twentieth century, following the discussion earlier. We 
also assume that hay would be used only for feeding livestock. Second, 
we discount county crop value by 10 percent in calculating total farm 
output value.18 Columns (3) and (4) in Table 4 employ recalculated farm 

15

16 The ratio was estimated using information on farmland acres for corn production by purpose 
(grain vs. silage) in the census records. 

17

18 At the aggregate level, the ratio of feed crops out of total value of crop production is 
estimated at around 10 percent throughout the twentieth century (calculated from Series Da1067 
and Da1069 in Volume 4 of Carter et al. [2006]).

https://doi.org/10.1017/S0022050717000675 Published online by Cambridge University Press

https://doi.org/10.1017/S0022050717000675


Bleakley and Hong778

output values as dependent variables. Their results are comparable to the 
baseline results, even though only data for 1870, 1900, 1970, and 2000 
were used due to data limitations.

Signi cance of Weather Conditions in Early Life

Many studies have revealed that climate and climate change affect 
activities and the lifetime health of individuals by causing malnutrition 

2009; Bleakley 2007; Hong 2007, 2011, 2013), distorting health condi-
tions over the course of life (WHO, WMO, and UNEP 2003; Patz et 
al. 2005), changing ecological systems (Thomas et al. 2003), and so on. 
They generally predict that the overall impact of climate change like 

perspective, the channels noted earlier are closely related to the reduction 
of individuals’ economic productivity.19

demonstrated that extreme temperature in utero can increase the risk 
of having babies with low birth weights (see also Murray et al. 2000; 

they suggest that this can be caused by the association between weather 
in utero and fetal nutrient intake and stress. The relationship between 
weather in utero
outcomes can affect life-time human capital accumulation (for example, 
schooling, disability, adult income), as suggested by the fetal origins 
hypothesis, which has been supported by many studies (Barker 1994; 
Almond 2006; Black, Devereux, and Salvanes 2007). In addition, it has 
been reported consistently that maternal exposure to infectious diseases 
promoted by weather—most notably malaria—increases the probability 
of having babies with low birth weights (Desai et al. 2007) and that early-
life exposure to malaria can reduce cognitive ability and thus the acqui-
sition of human capital (Holding and Snow 2001; Sachs and Malaney 
2002; Bleakley 2010; Barreca 2010; Hong 2011).

19

productivity and thus their income. Changes in economic sectors due to climate change can affect 
industrial structures and labor markets and therefore wages.
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Cross-Sectional Evidence

of early-life weather for later economic outcomes and relevant changes 
-

strating the relationship between weather and adult occupational income 
from a longer-term perspective using simple bivariate analysis. The adult 
income variable used is the average occupational income score by state-
of-birth cohorts aggregated from the 1880 and 1900 to 1990 IPUMS. We 
limited individuals to white males born from 1860 to 1960 and observed 
during working ages (20 to 65) in the Census IPUMS of 1880 to 1990. 
Using the county weather variables imputed by the Kriging interpolation 
technique, we construct the 1860–2000 average of annual mean tempera-
tures and annual accumulated precipitation by state. The weather vari-
ables represent the overall weather conditions that each cohort might have 

long-term average weather variables in the state of birth by two cohort 

income among the cohort born before 1900 decreases with increasing 
temperature and precipitation in the state of birth.20 In other words, people 
who were born or had spent their early lives in hotter and wetter states 
attained lower paying occupations, on average, later in life. However, this 
relationship almost completely disappears for the cohort born after 1930; 
there is little difference in adult occupational income by early-life average 
weather conditions. (The y-axis scale is the same across cohorts for the 
same outcome; note the compression of the points for the later cohorts.) 
This suggests the possibility that technological adaptation took place 
throughout the early twentieth century, mitigating the adverse effects of 
high temperature and rainfall on individuals’ economic productivity.

The Diminishing Effect of Short-Term Weather Fluctuations

In addition to the historical change in the relationship between long-

20

regressions, which use only the weather variable and constant term as controls, are –0.0094 
(0.0020) for temperature and –0.0024 (0.0012) for precipitation.
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not only captures the effect of weather around the time of birth but also 
measures the accumulated or lifetime effect of weather if a large propor-
tion of each state-of-birth cohort has lived in the same state for a consid-
erable amount of time. The use of short-term weather variables can more 
clearly identify the effect of early-life weather on adult income.

on adult income by running a regression predicting the cohort average 
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FIGURE 3

Notes:
and precipitation for earlier- and later-born cohorts in the United States. We use the 1860–2000 
average of annual mean temperature and annual accumulated precipitation by state. A cohort is 

1880 and 1900–1990 IPUMS, which span the years of birth 1860–1960. The outcome variable is 
the average occupational income score, transformed into natural logarithms. Cohorts are grouped 
into those born before 1900 (in the left plots) and those born after 1930 (in the right plots). 
The x-axis is the state-of-birth average temperature in the upper plots or precipitation in the 
bottom plots. The y-axis in each plot refers to the cohort group’s average income score. State 

line between the points.
Sources:
interpolated weather variables. 
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occupational income score from annual mean temperature and accumu-
lated precipitation at the year of birth, at the three years after birth, and at 
two years before birth, per equation (3):

∑ β∑ γ δ δ ε+δ+ +
=−

Y α ∑=α β γ+ γ+Tβ ,jkY t l∑α β∑α ∑α ββkk j kT γγ+ γγ j k l
l

jt ktδδ jktkk+k l l j
2

3

(3)

where the subscripts j, k, and t denote state of birth, year of birth, and 
census year, respectively.

and year of birth from 1860 to 1960. The model also contains dummies 
for each cell of state of birth times census year ( jt ), and dummies for 
each cell of year of birth times census year ( kt 
capture omitted and unmeasured characteristics in state of birth, year of 
birth, and census year that might commonly affect those in a given cohort. 

We summarize the key results of the regression for equation (3) in 
y axis in each plot displays the estimated regression coef-

for the calendar year minus year of birth—thus, l or l ; the x axis in each 
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FIGURE 4

Notes
equation (3) in the text. Short-term weather variable is annual mean temperature or accumulated 

adult white males are drawn from U.S. censuses of 1880 and 1900–1990, which span the years 
of birth 1860–1960. The outcome variable is, at the cohort level, the occupational income score 
transformed into natural logarithms. The x-axis in each plot refers to the calendar year minus 
the year of birth. The y
interaction of the indicated weather variable (temperature or precipitation) and a dummy for the 

Sources: Authors’ calculations.
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plot denotes the calendar year minus the year of birth. The error bars 

in early life. Weather conditions before birth do not have meaningful 
-

cant effect on adult occupational income is one year after birth; the effect 
declines over the next two years. The effect of precipitation is most 

21

characteristics, the earlier estimation measures the effect of within-state 
across-year variation in weather conditions around birth. Although many 
studies suggest a negative effect of hot and wet weather in utero on birth 
outcomes, some studies have found a positive association between hot/
wet weather in early life and conditions at birth through improvement in 

origins hypothesis, the positive effect of temperature on birth outcomes 
can lead to a higher level of human capital accumulation and thus adult 
income (Maccini and Yang 2009; Barreca 2010). 

-
tions among weather, nutrition in utero, birth outcome, and later outcome 
are frequently found in studies of historical experiences and developing 
countries. This association might be attenuated in modern, developed 

changed across cohorts. 
We measure this long-term pattern by estimating equation (3) with a 

40-year-wide moving window. The sample for each regression includes 
cohorts born 20 years before and after the target year; the target years are 

words, one year after the year of birth for temperature and the year of 

21

sectional analysis in the previous subsection, which suggested a negative correlation between 
long-term weather conditions for cohorts born before 1900. The use of different weather variables 
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diminished across cohorts. The effect is generally positive among cohorts 
born in the second half of the nineteenth century, and its across-cohort 
variation is substantial. However, as the target year approaches 1910 

the effect attenuate. Weather in early life became less relevant to adult 
income. 

for 1890 suggests that a one-degree increase in annual mean temperature 
at age 1 (from its state average) resulted in a 2.4 percent increase in adult 
income (measured by occupational income score) during the 1870 to 
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FIGURE 5

Notes: We estimated equation (3) for a 40-year-wide moving window so that the sample for 
each regression includes white-male cohorts born 20 years before and after the target year. 

x-axis in each plot 
refers to the average year of birth for cohort samples used. The y-axis in each plot displays the 

Sources: Authors’ calculations.
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in annual mean temperature led to a 0.47 percent increase in adult income 

for 1890 suggests that a one-inch increase in annual accumulated precipi-
tation at the year of birth (from its state average) resulted in a 0.7 percent 
increase in adult income during the 1870 to 1910 period. That of 1930 
implies that a one-inch increase in precipitation led to a 0.12 percent 
increase in adult income during the 1910 to 1950 period, but the result is 

we observe in the cross-sectional analysis using long-term weather vari-
ables, although the role of weather in early life is estimated differently 
between the two analyses. Moreover, it is worthwhile to remind that the 
diminishing effect of weather was similarly found in the analysis of farm 

-
tieth century, not only in the agricultural sector but also at the individual 

-
state the impact of climate and human capital. 

if they are estimated within a relatively narrow time window. An advan-
tage of the cross-sectional (in other words, hedonic) comparison method 

However, a weakness in this approach is that such adaptation is observ-
able only within the scope of currently available technology; this is 
clearly an incomplete account of adaptation. Stated otherwise, imagine 
being in 1910 and tasked with forecasting the effects of a warmer and 
wetter climate. A projection based on U.S. historical experience up to 
that point would vastly overstate the (negative) response by failing to 
account for the subsequent evolution of technology, which improved 
productivity in warm and wet areas. On the other hand, an advertised 

to the magnitude of the response to climate change. This argument rests 
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in the long run; thus, sensitivity to a change in weather should lessen at 
longer time periods. Nevertheless, the scope of adaptation has not been 

second half of the twentieth century.
The main contribution and novelty of this study is its extension of the 

time window to the past century-and-a-half, throughout which human-
kind has experienced substantial adaptation to the weather. This allows 
us to quantify the level of adaptation from various aspects (in other 

-
vidual productivity, and short-term and long-term adaptation). The main 

declined as the region became hotter and wetter in the late nineteenth 
century, but the adverse effects have been almost completely attenuated 
in recent decades. The lesson from U.S. history is that human efforts to 
enhance agricultural technologies and improve ecological environments 
have been effective in overcoming the adverse effects of hotter and wetter 

our study suggests that the consideration of possible technological adap-
tations and a longer-term perspective are crucial in the forecasting.22 At 
the very least, we note that today’s relationships between weather or 
climate and economic outcomes may be poor guides to the future forms 
of such relationships, inasmuch as these relationships have been unstable 
over historical time scales.

Appendix 1: Weather Variable

Raw Data from Weather Stations

Monthly mean temperature and accumulated precipitation are obtained from two 
historical sources: the records of the Nineteenth-Century U.S. Climate Data Set Project 
developed by the National Climate Data Center and the Long-Term Daily and Monthly 
Climate Records from the Stations across the Contiguous United States provided by the 

22 A question that emerges from this study is “How much change can we expect in the response 
of economic variables to weather climate going forward?” One could imagine using the across-
century differences in parameter estimates to calibrate this drift, but this is problematic in a 

realization and thus not useful for calibrating a distribution of parameter drift without strong 
prior information. Second, there may be little reason to believe that the instability of parameters 
over time is itself governed by a stable process. We hope to see a great deal of technical progress 

directed towards adapting to the climate in an expectation of its change.
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U.S. Historical Climatology Network. The former dataset covers from 1822 to 1900 and 
includes 4,056 individual weather stations with different names. However, not all the 
stations existed throughout the nineteenth century. The number of weather stations was 
under 100 prior to 1854 and increased to about 400 in the 1860s, and then to about 1,000 
after the 1880s. The later dataset has been utilized to obtain monthly weather informa-
tion covering 1901 to 2000. The number of weather stations in the dataset is 1,221. Each 
weather station existed over most years of the twentieth century, so that each year’s 
number of stations is over 1,000. Two datasets include information on weather stations’ 
latitude and longitude, which is used to locate them on the map.

Spatial Averaging (“Kriging”)

A Kriging technique is used to interpolate monthly weather variables for the coun-
ties whose weather records are not found in the two sources noted earlier. The method 
is based on a linear least squares estimation algorithm, which minimizes the variance 
of the prediction error. Thus, a Kriging estimator is a linear combination of the values 
at nearby locations; the distance between neighboring points is generally employed as 
weights. In this study, the maximum distance between points is set as 200 miles. A 

are required to obtain a reliable estimation result. The sizes of weather stations in the 

the analysis.
We tested whether the Kriging estimation is valid by comparing estimated weather 

of counties with weather stations between 1890 and 1899 (60 out of 1,200 counties). 
We conducted the Kriging method to estimate monthly temperature and precipitation 
variables across counties, dropping the variables of 60 randomly selected counties. In 

(1899) and decadal (1890–1899) weather variables for the 60 counties. Scatter plots 
are located around 45-degree lines. We also tested a null hypothesis that actual and 
estimated variables are statistically the same. The p-value for the test is reported in the 

Estimation of Weather Variables by County

To estimate the county-level monthly mean temperature and accumulated precipita-
tion from 1860 to 2000, the geographical center of each county was used as the target 
location in the Kriging estimation, and the actual weather information of weather 
stations within a 200-mile buffer around the target location was utilized. The county-
level decadal (long-term) or annual (short-term) average temperature is calculated by 

-
tion is the average value of annual accumulated precipitation for the 10 years prior to 
each census year; the annual precipitation is calculated by summing up monthly precipi-
tation over the year. Appendix Table 1 presents the mean and standard error of the esti-
mated long- and short-term weather variables throughout the sample periods.
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Appendix 2: County-Level Agricultural, Economic, 
Demographic, and Environmental Data

Farm Productivity

Two variables are used to measure U.S. farm productivity: farm value per farm-

housing, and outbuildings within the farm at the time of census enumeration; this can 
be interpreted as land price because the value of land on the farm accounts for a large 

of all farm products, such as crop and livestock products, within the year prior to the 
enumeration day. Both variables are generally obtained from Historical, Demographic, 
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APPENDIX FIGURE 1

Notes
We estimated their annual and decadal weather variables and compared with actual values. 

between estimated and actual values are 0.9699 (left) and 0.9683 (right) for the upper panel, and 
0.9284 (left) and 0.9791 (right) on the lower panel.
Sources: Authors’ calculations.
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Census Year Year for Weather

Mean Temperature (o Accumulated Precipitation (Inches)

S.E. Short-Term S.E. S.E. Short-Term S.E.

1870 1869 54.2 5.7 54.2 6.9 41.8  6.6 44.3 10.1
1880 1879 55.4 7.1 56.2 7.3 41.4 10.5 38.9 11.4
1890 1889 54.7 7.3 55.4 7.2 41.8 10.4 39.5 11.9
1900 1899 55.4 7.3 55.3 7.2 39.8 10.2 38.0 10.4
1910 1909 55.3 7.2 55.6 7.6 41.4 10.0 42.5 11.2
1920 1919 55.5 7.3 56.3 7.2 40.5 10.5 44.8 13.7
1930 1929 56.0 7.5 55.1 7.8 41.8 11.2 45.8 16.0
1940 1939 56.8 7.2 57.2 7.2 39.3 10.6 38.6 12.8
1950 1949 56.1 7.1 56.9 7.1 42.1 10.9 43.0 13.3
1960 1959 56.1 7.2 56.0 7.0 40.6 10.5 43.2 12.0
1970 1969 55.0 7.0 54.6 6.9 39.9 11.0 41.4 10.5
1980 1978 55.2 6.9 55.5 6.9 43.1 11.3 43.0 11.7
1990 1987 55.1 6.9 56.4 6.1 42.6 10.0 39.1 10.2
2000 1997 55.2 7.1 54.7 7.1 43.4 11.6 43.0 13.3

All 55.4 7.1 55.7 7.2 41.4 10.5 41.8 12.4
Notes: Year for weather variable refers to the year when short-term weather variables were estimated, and which the years of long-term weather variables end in. 
County-level monthly weather mean temperature and accumulated precipitation were estimated by Kriging interpolation methods as discussed in the text. This 
table presents sample means and standard errors across counties for the given census year or for all the years considered in this study. The long-term weather 
variables are calculated by the 10-year average of annual mean temperature and annual accumulated precipitation prior to each census year; the short-term 
weather variables are measured by the annual mean temperature and accumulated precipitation in each census year. The number of counties in each census 
year is 2,108.
Sources: Authors’ calculations from the Kriging results that are estimated using the records of the Nineteenth-Century U.S. Climate Data Set Project developed 
by the National Climate Data Center and the Long-Term Daily and Monthly Climate Records from the Stations across the Contiguous United States provided 
by the U.S. Historical Climatology Network.
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Economic, and Social Data: The United States, 1790–2002
which digitized the key variables in the U.S. federal population and agricultural censuses 
from 1850 to 1930 and U.S. county data books from 1940 to 2000. We tried to construct 
the variables for the 14 decades from 1870 to 2000, but the variables of county-level 

Controls

The long-period analysis substantially limits the use of various controls that might 
account for historical changes in the relationship between climate and farm produc-
tivity. We constructed a panel of four variables at the county level from 1870 to 2000: 
population density, the ratio of the white population to the total county population, the 
ratio of farmland to the total available county area, and the estimated number of farmers 

subsample, and applied the ratio to the actual population per farmland acre. Sample 
means of each farm-productivity measure and controls by census year are reported in 
Appendix Table 2.

Boundaries of Consistent Counties

problematic. We thus adjusted all the county variables from 1880 to 2000 on the 1870 
county boundary by tracking the overlap of county boundaries across decades and 
using the (overlapped) area-weighted average method. Appendix 3 shows that the use 

effects models.

Appendix 3: Supplementary Analyses

Fixed-Effects Analysis Using Data with the County Boundary Adjustment

Throughout this study, we use county boundary-adjusted data in estimating county 

-
action terms between each weather variable and each year dummy, and their standard 

(2) and (4), we conduct the same regressions but use data without the county boundary 
adjustment. No substantial difference is found between the estimation results with and 
without the adjustment.
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Census Year

Productivity Measures
(in 2000 $) Controls

 
Population Density Population

 
Total County Acres

1870  271.4  82.3 0.0297 0.8338 0.5425 0.0169
1880  327.6  75.2 0.0372 0.8293 0.6639 0.0157
1890  461.2  87.9 0.0434 0.8350 0.6809 0.0108
1900  480.4 111.2 0.0508 0.8368 0.7481 0.0170
1910  698.5 0.0573 0.8444 0.7433 0.0188
1920  748.5 0.0633 0.8561 0.7236 0.0168
1930  605.6 0.0702 0.8548 0.6814 0.0173
1940  709.7 125.3 0.0752 0.8693 0.6961 0.0132
1950  642.2 184.2 0.0847 0.8772 0.7040 0.0305
1960  931.5 219.5 0.1000 0.8799 0.6338 0.0204
1970 1276.6 270.4 0.1140 0.8879 0.5736 0.0399
1980 2482.5 402.1 0.1268 0.8823 0.5327 0.0115
1990 1653.8 338.0 0.1406 0.8606 0.4987 0.0094
2000 2878.4 412.8 0.1564 0.8533 0.4780 0.0115
Notes: This table presents each census year’s sample mean of farm productivity variables and standard control variables. The source of each variable is 

is measured by the number of populations per square miles divided by 1,000.
Sources: Authors’ calculations based on two historical records: Historical, Demographic, Economic, and Social Data: The United States, 1790–2002 (Haines 
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APPENDIX TABLE 3

Dependent Variable: ln(county average farm value per acre)

Key Control Variables

Weather = Decadal Average of Annual Mean Temperature Weather = Decadal Average of Annual Accumulated Precipitation
(1)

Using County-Boundary-
Adjusted Data

(2) 

Using Data without Adjustment

(3)
Using County-Boundary-

Adjusted Data

(4) 

Using Data without Adjustment
Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Weather –0.0465 0.0110 –0.0446 0.0107 –0.0168 0.0067 –0.0138 0.0058
Weather*D1880 0.0284 0.0072 0.0263 0.0073 0.0111 0.0056 0.0100 0.0054
Weather*D1890 0.0341 0.0083 0.0325 0.0085 0.0109 0.0062 0.0092 0.0057
Weather*D1900 0.0407 0.0089 0.0384 0.0090 0.0135 0.0069 0.0121 0.0062
Weather*D1910 0.0484 0.0094 0.0482 0.0095 0.0073 0.0070 0.0060 0.0062
Weather*D1920 0.0435 0.0097 0.0423 0.0096 0.0052 0.0071 0.0032 0.0060
Weather*D1930 0.0557 0.0099 0.0540 0.0096 0.0098 0.0073 0.0061 0.0058
Weather*D1940 0.0530 0.0096 0.0525 0.0093 0.0164 0.0072 0.0122 0.0057
Weather*D1950 0.0649 0.0099 0.0643 0.0098 0.0138 0.0072 0.0104 0.0060
Weather*D1960 0.0740 0.0099 0.0763 0.0098 0.0191 0.0073 0.0162 0.0062
Weather*D1970 0.0750 0.0099 0.0740 0.0098 0.0283 0.0073 0.0254 0.0061
Weather*D1980 0.0757 0.0097 0.0725 0.0096 0.0254 0.0069 0.0223 0.0060
Weather*D1990 0.0711 0.0097 0.0703 0.0096 0.0266 0.0071 0.0227 0.0061
Weather*D2000 0.0721 0.0096 0.0717 0.0093 0.0269 0.0073 0.0218 0.0059

2 0.947 0.946 0.947 0.945
Notes

Weather above) 
and its interaction with year dummies (Dyear

Sources: Authors’ calculations.
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Effect of County Boundary Change

The county boundary change adjustment may miss the fact that the sample area and 
data can change much over the period of this study, with different types of climate in 

a balanced panel including counties whose boundaries have not changed from 1870 to 
2000. By analyzing the change of county boundaries on GIS, we found 654 counties out 
of 2,323 in 1870 that satisfy the condition and constructed a balanced panel. We report the 
estimation result of using the balance panel in column (2) of Appendix Table 4. The result 
shows that the adaptation has occurred more substantially but that the magnitude of adap-
tation is estimated as somewhat smaller than that of the baseline estimation in column 
(1), particularly in the effect on farm output value. This may be because a small number 
of southern counties are contained in the balanced panel (only 24 out of 654 counties). 

In fact, the earlier result is very similar to that in column (3) of Appendix Table 4, 
where we run the same regression only with non-southern counties from the baseline 

APPENDIX TABLE 4

Key Variable

(1) (2) (3)

Baseline
Using only Counties  

without Boundary Changes
Non-Southern Counties 
from Baseline Sample

Panel A: Y T = Decadal Temperature
T × D19 –0.0470*** –0.0213*** –0.0273***

(0.0056) (0.0076) (0.0065)
Panel B: Y P = Decadal Precipitation
P × D19 –0.0162*** –0.0156*** –0.0164***

(0.0030) (0.0046) (0.0036)
Panel C: Y T = Annual Temperature
T × D19 –0.0416*** –0.0035 –0.0153

(0.0086) (0.0092) (0.0098)
Panel D: Y P = Annual Precipitation
P × D19 –0.0114*** –0.0052* –0.0049

(0.0031) (0.0027) (0.0044)
Observations 16,864 5,232 8,656 
* 
**  
***  
Notes: We estimate the level of agricultural adaptation to weather, which we examined in 

of columns. Panels A and B estimate the relationship between county farm value and decadal 
weather variables, and Panels C and D regard that between county farm output value and annual 

A or B in Tables 1 and 2, where we adopted the baseline results in column (1). We report only the 

are clustered on county.
Sources: Authors’ calculations.
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sample (in other words, boundary-adjusted sample). This implies that the change of 
county boundaries does not critically affect the level of agricultural adaptation or the 
implications of this article.
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