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Abstract

According to our previous results, the conjugacy class of the involution induced by the
complex conjugation in the homology of a real non-singular cubic fourfold determines
the fourfold up to projective equivalence and deformation. Here, we show how to
eliminate the projective equivalence and obtain a pure deformation classification, that
is, how to respond to the chirality problem: which cubics are not deformation equivalent
to their image under a mirror reflection. We provide an arithmetical criterion of chirality,
in terms of the eigen-sublattices of the complex conjugation involution in homology, and
show how this criterion can be effectively applied taking as examples M -cubics (that is,
those for which the real locus has the richest topology) and (M − 1)-cubics (the next
case with respect to complexity of the real locus). It happens that there is one chiral
class of M -cubics and three chiral classes of (M − 1)-cubics, in contrast to two achiral
classes of M -cubics and three achiral classes of (M − 1)-cubics.

L’univers est un ensemble dissymétrique, et je suis
persuadé que la vie, telle qu’elle manifeste à nous,
est fonction de la dissymétrie de l’univers ou des
conséquences qu’elle entrâıne.

Louis Pasteur

Observations sur les forces dissymétriques,
C. R. Acad. Sci. Paris 78 (1874), 1515–1518

1. Introduction

Recall that the projective non-singular cubic fourfolds form the complement in a projective space
P4,3 = P (Sym3(C6)) of dimension

(
5+3

3

)
− 1 = 55 to the so-called discriminant hypersurface. The

discriminant hypersurface, which we denote by ∆4,3, is defined over reals and its real part
∆4,3(R) is represented by real singular cubics, so that the space under study is nothing but
P4,3(R) \∆4,3(R). (Such a notation specifies the dimension, n= 4, and the degree, d= 3, of the
hypersurfaces under consideration; we make use of it in § 8 for arbitrary n and d).

The space C = P4,3(C) \∆4,3(C) is connected, while CR = P4,3(R) \∆4,3(R) is not.
Understanding the nature of the connected components of the latter space is a natural and
classical task, it can be rephrased as a deformation classification of real projective non-singular
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cubic fourfolds. In our previous paper [FK08] we performed a classification with respect to a
weaker coarse deformation equivalence: we call two real projective non-singular hypersurfaces
coarse deformation equivalent if one hypersurface is deformation equivalent to a projective
transformation of the other.

The difference between these two equivalence relations shows up in the case of subvarieties
of real projective spaces of odd dimension. It is due to the orientability of real projective spaces of
odd dimension, which implies that the group PGL(n+ 2, R) of real projective transformations
of Pn+1 has two connected components if n is even. In our case, n= 4, so some of the coarse
deformation classes of real projective non-singular cubic fourfolds may a priori consist of
two deformation classes.

This leads us to a study of the following chirality phenomenon. We say that a real non-singular
cubic X ⊂ P 5 and its coarse deformation class are chiral if X and its mirror image X ′ (that is,
the image of X under a reflection in a hyperplane) belong to different connected components
of CR, and achiral if they belong to the same component (that is, if X and X ′ can be connected
by a continuous family of real non-singular cubics). Clearly, a coarse deformation class consists
of two deformation classes if and only if it is chiral.

In the present paper we reduce the chirality problem to a specific problem of the arithmetics of
lattices and use this reduction to show that certain real cubic fourfolds are chiral, while certain
other real cubic fourfolds are achiral. We pay a special attention to real cubic fourfolds with
extremal values of the sum of the Betti numbers. Namely, we consider in details the cases of M -
cubics, in which dimH∗(X(R); Z/2) = dimH∗(X(C); Z/2) (the maximal value), and the cases
of (M − 1)-cubics, in which dimH∗(X(R); Z/2) = dimH∗(X(C); Z/2)− 2 (the next value). As
shown in [FK08], the M -cubics form three and the (M − 1)-cubics form six coarse projective
classes. In the present paper we prove that one coarse class of M -cubics and three coarse classes
of (M − 1)-cubics are achiral, while the other coarse classes of M - and (M − 1)-cubics are chiral.

As a by-product, we give a new proof (in a sense, more natural and more direct) of the
homological quasi-simplicity of cubic fourfolds, where the latter means that two real non-singular
cubic hypersurfaces X1, X2 in P 5 are coarse deformation equivalent if and only if the involutions
induced by the complex conjugation on H4(Xi(C)), i= 1, 2, regarded as a lattice via the
intersection index form, are isomorphic (cf. [FK08, Theorem 1.1] and Theorem 4.1.2 below).

In our previous paper [FK08], we were using a relation between the nodal cubics in P 5 and
the complete intersections of bi-degree (2, 3) in P 4. Since these complete intersections are the
6-polarized K3-surfaces, it had allowed us to apply Nikulin’s coarse deformation classification
of real 6-polarized K3-surfaces in terms of involutions on the K3-lattice and his results on the
arithmetics of such involutions, see [Nik79, Nik08].

Such a roundabout approach was imposed by a lack of sufficiently complete understanding
of the moduli of cubic hypersurfaces, in contrast to that of K3-surfaces. In particular, in the
case of K3-surfaces one had in one’s hands the surjectivity of the period map, while for cubic
fourfolds the characterization of the image of the period map remained unknown. The situation
has changed recently, after Laza [Laz07] and Looijenga [Loo09] established a suitable surjectivity
statement for cubic fourfolds.

In our opinion, the two approaches are complementary and both deserve to be developed
further. Combined together they should give us a better understanding of the topology
of the moduli space of real cubic fourfolds on the one hand, and of the topology of
the discriminant of cubic fourfolds on the other hand. Note that we had already found not
only the coarse deformation classes but also their adjacencies in [FK08]. Now, via the period
map, the deformation classes become endowed with a certain polyhedral structure. This opens
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a way for a full understanding of some natural stratifications of the moduli and the coefficient
spaces of real cubic fourfolds.

The topological study of non-singular real cubic hypersurfaces has a long history, see [FK08]
for a brief account. In addition, we would like to add a reference to the recent investigation of
the moduli space of real cubic surfaces performed by Allcock et al. [ACT03].

Let us recall that according to Klein’s classification of real cubic surfaces, see [Kle73] (the
classification statement is reproduced in [FK08]), all of the real non-singular cubic surfaces are
achiral. It may be worth mentioning that Klein’s achirality argument in [Kle73] contained a
mistake, which was corrected by Klein in his collected papers, see [Kle21].

This paper is organized as follows. In § 2, we review some properties of the period map
for complex cubic fourfolds. In § 3, we introduce the real period spaces with the real period
map and derive the properties of the latter from the corresponding properties of the complex
period map. The results of § 3 are then applied in § 4 to reduce the chirality problem to some
arithmetics of hyperbolic integer lattices and their reflection groups. Section 5 collects necessary
information about Vinberg’s algorithm for finding the fundamental domains of the arithmetical
reflection groups. The technique developed in §§ 3–5 is applied in §§ 6 and 7 to treat the chirality
of M - and (M − 1)-cubic fourfolds. Section 8 is devoted to concluding remarks. We mention some
other cases which were studied using similar methods, and mention some other related results
and possible directions of their development. In particular, we discuss a notion of reversibility,
which is closely related to chirality.

Index of notation

M(X), M0(X), M, M0, D, D̂, Aut±(M0), C, C# § 2.1
Rv, V2, V6, Hv, H∆, H∞, ωp, E § 2.2
M±(c), M0

±(c), M±(X), M0
±(X) § 3.1

CcR, Cc#R § 3.2
D, DcR, D̂cR § 3.3

Υ±(c), Λ±(c), Λ#
±(c), perc#R , Dc#R § 3.4

H±(c), H#
±(c), PercR § 3.5
±P# § 4.2

discr , discr2, discr3, qL, δ, δ3, P±, P#
± , Aut(P±), Aut±(P±) § 4.4

Φ, Φ±, Φb,[v], [v]#, H±v , [Hv], [Hv]# § 5.1
ΓJ , GJ § 5.2
ei, e∗i § 6.1

2. Period map for complex cubic fourfolds

2.1 The period domain for marked cubic fourfolds
Consider a non-singular cubic fourfold X ⊂ P 5. It is well known that its non-zero Hodge numbers
in dimension four are h3,1 = h1,3 = 1 and h2,2 = 21. The lattice M(X) =H4(X) is odd with
signature (21, 2). The polarization class h(X) ∈M(X), that is, the square of the hyperplane
section, is a characteristic element of M(X) with h2 = 3, and so the primitive sublattice
M0(X) = {x ∈M(X) | xh= 0} is even and has discriminant group Z3. This implies that there is
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a lattice isomorphism between M(X) and M= 3I + 2U + 2E8, which sends h(X) to h=
(1, 1, 1) ∈ 3I, so that M0(X) is identified with M0 =A2 + 2U + 2E8. (The above transitivity
property of the lattice automorphism group action holds because both indices of the inertia,
21 and 2, are at least two, see [Wal62].) A particular choice of such an isomorphism φ :
(M(X), h(X))→ (M, h) will be called a marking of X. We restrict the choice of markings as
specified below.

The complex line φ(H3,1(X))⊂M0 ⊗ C is isotropic and has negative pairing with the
conjugate (and, thus, also isotropic) line φ(H1,3(X)) = φ(H3,1(X)), that is to say, w2 = 0 and
ww < 0 (and, thus, w2 = 0) for all w ∈ φ(H3,1(X)). Writing w = u+ iv, u, v ∈M0 ⊗ R, we can
reformulate it as u2 = v2 < 0 and uv = 0, which implies that the real plane 〈u, v〉 ⊂M0 ⊗ R
spanned by u and v is negative definite and bears a natural orientation given by u= Re w, v =
Im w. Note that the orientation determined similarly by the complex line φ(H1,3(X))⊂M0 ⊗ C
is the opposite orientation.

The line φ(H3,1(X))⊂M0 ⊗ C specifies a point Ω(X) ∈ P (M0 ⊗ C) (as usual, P stands for
the projectivization) called the period point of X. This period point belongs to the quadric
Q= {w2 = 0} ⊂ P (M0 ⊗ C), and more precisely, to its open subset, D̂ = {w ∈Q | ww < 0}. This
subset has two connected components, which are exchanged by the complex conjugation (this
reflects also switching from the given complex structure on X to the complex conjugate
structure).

The orthogonal projection of a negative-definite real plane in M0 ⊗ R to another is non-
degenerate. Thus, to select one of the two connected components of D̂ we fix an orientation of
negative definite real planes in M0 ⊗ R so that the orthogonal projection preserves it. We call it
the prescribed orientation and restrict the choice of markings to those for which the orientation
of φ(H3,1(X)) defined by the pairs u= Re w, v = Im w for w ∈ φ(H3,1(X)) is the prescribed
orientation. We denote this component by D and call it the period domain. By Aut+(M0) we
denote the group of those automorphisms of M0 which preserve the prescribed orientation (and,
thus, preserve D). We put Aut−(M0) = Aut(M0) \Aut+(M0). This complementary coset consists
of automorphisms exchanging the connected components of D̂.

The projective space P4,3 formed by all cubic fourfolds splits into the discriminant
hypersurface ∆4,3 formed by singular cubics and its complement, C. Let C] denote the space
of marked non-singular cubics. The natural projection C]→C is obviously a covering with the
deck transformation group Aut+(M0). The above conventions define the period map per : C]→D,
(X, φ) 7→ φ(H3,1(X)).

2.2 Principal properties of the period map

The global Torelli theorem for cubic fourfolds proved in [Voi86] claims injectivity of the period
map. We need the following version of this theorem.

Theorem 2.2.1 (Global Torelli theorem [Voi86]). Assume that (X, φ) and (X ′, φ′) are non-
singular marked cubic fourfolds such that per(X, φ) = per(X ′, φ′). Then there exists one and
only one isomorphism f :X ′→X such that φ′ ◦ f∗ = φ. 2

The existence statement is explicit in [Voi86]. The uniqueness statement is implicit there. It
follows easily from two well-known observations: first, each automorphism of a non-singular cubic
fourfold is induced by a projective transformation and, second, if a projective transformation
acts trivially in the cohomology then it is trivial.
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Theorem 2.2.2 (Construction of (anti-)isomorphisms). Let X and X ′ be non-singular cubic
fourfolds and F :H4(X; Z)→H4(X ′; Z) an isometry such that F (h(X)) = h(X ′).

(1) If F (H3,1(X)) =H3,1(X ′), then there exists one and only one isomorphism f :X ′→X such
that f∗ = F .

(2) If F (H1,3(X)) =H3,1(X ′), then there exists one and only one isomorphism f :X ′→X such
that f∗ = F .

Here and in what follows we denote by X the variety complex conjugate to X. If X ⊂ P 5 is
given by a polynomial, then X ⊂ P 5 can be seen as the variety given by the polynomial with the
complex conjugate coefficients.

Proof of Theorem 2.2.2. The first statement is nothing but an equivalent version of
Theorem 2.2.1. The second statement follows from the first or directly from Theorem 2.2.1
applied to (X ′, φ′) and (X, φ′ ◦ F ), where φ′ is any marking of X ′. 2

Consider the reflection Rv in M0 ⊗ C across the mirror-hyperplane Hv = {x ∈M0 ⊗ C |
xv = 0} defined as x 7→ x− 2(xv/v2)v, and note that it preserves the lattice M0 invariant if
v ∈M0 is such that v2 = 2, or such that v2 = 6 and xv is divisible by 3 for all x ∈M0. We
call these two types of lattice elements 2-roots and 6-roots, respectively, and denote their sets
by V2 and V6. Note that Rv ∈Aut+(M0) for any v ∈ V2 ∪ V6. If v ∈ V2, then the reflection Rv
extends (as a reflection) to M and h is preserved by this extension. In contrast, if v ∈ V6, then
the reflection Rv does not extend to a reflection in M and, moreover, the unique extension
of Rv to M maps h to −h (cf. Lemma 4.3.2 below). On the other hand, if v ∈ V6, then the anti-
reflection −Rv extends to an isometry of M preserving h. This extension is the anti-reflection
with respect to the 2-plane generated by h and v. In particular, it also represents an element of
Aut+(M0).

The union of the mirrors Hv for all v ∈ V2 gives after projectivization a union of hyperplanes
H∆ ⊂ P (M0 ⊗ C), and a similar union for all v ∈ V6 gives another union of hyperplanes, H∞ ⊂
P (M0 ⊗ C).

Theorem 2.2.3 (Surjectivity of the period map [Laz07, Loo09]). The image of the period map
per : C]→D is the complement of H∆ ∪H∞. 2

According to the Griffiths theory, for any non-singular cubic X ⊂ P 5 the line H3,1(X) is
spanned by the class [ωp] ∈H4(X; C) of the 4-form ωp = Res(E/p2). Here E stands for the Euler
5-form in C6, E =

∑5
i=0(−1)ixi dx0 ∧ · · · ∧ dx̂i ∧ · · · ∧ dx5, and p for a polynomial defining X

(as usual, a hat over xi means that this term is omitted). The ratio E/p2 is a well-defined
meromorphic 5-form in P 5, with a second-order pole along X. The residue ωp of this form is
a closed 4-form on X, which is a linear combination of (3, 1) and (4, 0)-forms. Its class [ωp] is
known to be non-trivial, thus, it spans H3,1(X).

3. Periods in the real setting

3.1 Geometric involutions
Consider a non-singular cubic fourfold X defined by a real polynomial p, and let conj :X →X
denote the complex conjugation map, which will also be called the real structure on X. The
latter map induces a lattice involution conj∗ :M(X)→M(X) such that conj∗(h) = h and, hence,
also induces a lattice involution in M0(X). Denote by M0

±(X) and M±(X) the eigen-sublattices
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{x ∈M0(X) | conj∗(x) =±x} and {x ∈M(X) | conj∗(x) =±x}, respectively. We obviously have
M− =M0

− and σ−(M+(X)) = σ−(M0
+(X)), where σ− denotes the negative index of inertia

(i.e. the number of negative squares in a diagonalization).

Lemma 3.1.1. One has σ−(M0
±(X)) = 1.

Proof. The map w 7→ conj∗ w gives an anti-linear involution in H3,1(X). Thus, there exist
non-zero elements w ∈H3,1(X) such that conj∗(w) = w. In terms of the real and imaginary
components of w = u+ + iu−, this identity means that u± ∈M±(X)⊗ R. These components
satisfy the relations u2

+ = u2
− = 1

2ww < 0. They belong to M0
±(X), since wh= 0. It remains to

note that the intersection form is positive definite on H2,2(X). 2

We call a lattice involution c :M→M geometric if c(h) = h and σ−(M0
±(c)) = 1, whereM0

±(c)
denotes the eigen-sublattices {x ∈M0 | c(x) =±x}. Let us note that all geometric involutions
preserve M0 and the involutions induced in M0 belong to Aut−(M0).

According to Lemma 3.1.1, all lattice involutions c :M→M isomorphic to an involution
conj∗ :M(X)→M(X) for a non-singular real cubic X are geometric. A pair (c :M→M, h ∈M)
isomorphic to (conj∗ :M(X)→M(X), h(X)) is called the homological type of X. By a real
c-marked cubic fourfold we mean a real non-singular cubic fourfold equipped with a marking φ
such that φ ◦ conj∗ = c ◦ φ.

Theorem 3.1.2. For any geometric involution c :M→M the pair (c, h) is the homological type
of some non-singular real cubic fourfold.

This theorem is one of the results obtained in [FK08]. After fixing some notation, we give
below (at the end of § 3.3) an independent proof based on the surjectivity of the period map and
the global Torelli theorem.

The number of isometry classes of geometric involutions is finite. Their list can be found
in [FK08] (see also Tables 8 and 9 in § 8).

Up to the end of this section we assume that c is a geometric involution.

3.2 Real parameter space CcR
We denote by CcR ⊂ CR the set of real cubic fourfolds of homological type c, and by Cc]R the set of
c-marked real cubic fourfolds. The former consists of some number of connected components
of CR. The latter can be seen as the real part of C] with respect to the involution conjc] : C]→C],
which send (X, φ) ∈ C] to (conj(X), c ◦ φ ◦ conj∗). The forgetful map (X, φ)→X defines a (multi-
component) covering Cc]R →CcR.

3.3 Real period domain DcR
Let us extend c to a complex linear involution on M⊗ C and denote also by c the induced
involutions on M0 ⊗ C, P = P (M0 ⊗ C), and D̂. Note that c permutes the two components D
and D of D̂ and, thus, c(D) =D, where c :M0 ⊗ C→M0 ⊗ C is the composition of c with the
complex conjugation in M0 ⊗ C.

Let D̂cR and DcR denote the fixed point set of c restricted to D̂ and D. The latter consists of the
lines generated by w = u+ + iu− such that u± ∈M0

±(c)⊗ R, u2
+ = u2

− < 0, and the orientation
u+, u− is the prescribed orientation. Since c is geometric, both DcR and its (trivial) double
covering D̂cR are non-empty.
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As it follows from definitions, the period of a c-marked real cubic fourfold belongs to
DcR = {x ∈ D | c(x) = x}. Therefore, we call DcR the real period domain of real c-marked cubic
fourfolds.

Proof of Theorem 3.1.2. Pick up a generic point [w] ∈ DcR (so that there is no vector v ∈
V2 ∪ V6 orthogonal to w) and apply Theorem 2.2.3. This gives a non-singular cubic fourfold X
and a marking φ such that per(X, φ) = [w]. The triple (X, X ′ =X, F = φ−1cφ) satisfies the
assumptions of Theorem 2.2.2, which gives an antiholomorphic involution conj :X →X such
that conj∗ = φ−1cφ. Clearly, (M, c) is the homological type of (X, conj), and it remains to
note that PicX = Z, X(R) is non-empty (as it is for any real hypersurface of odd degree),
and therefore any antiholomorphic involution of X is induced by the complex conjugation in
suitable projective coordinates of P 5 = P (OX(1)). 2

3.4 Refined real period map

Consider the quadratic cones Υ±(c) = {u ∈M0
±(c)⊗ R : u2 < 0} and the associated Lobachevsky

(one- and two-component, respectively) spaces Λ±(c) = Υ±(c)/R∗ and Λ]±(c) = Υ±(c)/R+, where
R∗ = R \ {0} and R+ = (0,∞).

As in § 3.3, we associate with a point in DcR represented by w = u+ + iu− (where u± ∈
M0
±(c)⊗ R, u2

+ = u2
− < 0, and the orientation u+, u− is the prescribed orientation) the point in

Λ+(c)× Λ−(c) represented by the pair (u+, u−). This gives a well-defined analytic isomorphism
DcR = Λ+(c)× Λ−(c). The ambiguity in the choice of representatives gives rise to a refined real
period domain Dc]R ⊂ Λ]+(c)× Λ]−(c), Dc]R = {(u+R+, u−R+) ∈ Λ]+(c)× Λ]−(c) | the orientation
u+, u− is the prescribed orientation}.

To define perc]R (X, φ) ∈ Dc]R for a non-singular real c-marked cubic (X, φ) ∈ Cc]R , we pick up a
real polynomial p defining X and consider w = φ([ωp]) (see the end of § 2). As we have seen
already, the latter splits as w = u+ + iu−, where u± ∈M0

±(c), the pair (u+, u−) is defined
uniquely by X up to a positive factor, and this pair spans a negative-definite plane with
the prescribed orientation. Thus, we obtain a uniquely defined real period perc]R (X, φ) ∈ Dc]R
and a well-defined map perc]R : Cc]R →D

c]
R . The above components u±R+ ∈ Λ]±(c) of perc]R (X, φ)

are denoted by u]±(X, φ).

3.5 Polyhedral period cells

Denote by H±(c)⊂ Λ±(c) and H]±(c)⊂ Λ]±(c) the union of hyperplanes orthogonal to vectors
from (V2 ∪ V6) ∩M0

±(c). The connected components of the complement Λ±(c) \ H±(c) will be
called the cells of Λ±(c) and the hyperplanes fromH±(c) the walls. As is known, these hyperplanes
form a locally finite arrangement (the group generated by reflections in these hyperplanes is
discrete) so that the above cells are (locally finite) polyhedra. Put

PercR =Dc]R ∩ ((Λ]+(c) \ H]+(c))× (Λ]−(c) \ H]−(c)))

and call c-cells the connected components of PercR. Note that the orientation restriction involved
in the definition of Dc]R establishes a one-to-one correspondence between the halves of Λ]+(c) and
the halves of Λ]−(c), and this correspondence commutes with multiplication by −1. Therefore,
PercR spits into a union of pairs of opposite c-cells. The natural projection PercR→ Λ+(c)× Λ−(c)
establishes a one-to-one correspondence between the set of pairs of opposite c-cells and the set
of products of the cells of Λ±(c).
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Given a continuous family of real c-marked cubics (Xt, φt), t ∈ [0, 1], they can be defined by a
continuous family of polynomials pt, and hence their real periods u]±(Xt, φt) belong to the same
cells of Λ]±(c). The converse is also true.

Lemma 3.5.1. Assume that (Xi, φi), i= 0, 1 is a pair of real c-marked cubic fourfolds defined
by real polynomials pi. Then, Xi can be connected by a continuous family Xt of real c-marked
cubic fourfolds if and only if their periods u]±(Xi, φi) belong to the same cells of Λ]±(c) (or in
other words, if and only if the periods perR(Xi, φi) belong to the same component of PercR).

Proof. The lemma follows from the description of the periods of cubic fourfolds (and the local
Torelli theorem over the reals), because the vectors v ∈ (V2 ∪ V6) which are not from M0

+ ∪M0
−

define hyperplanes Hv which have intersection with M0
± ⊗ R of codimension less than one. 2

4. Deformations and chirality

4.1 The mirror pairs of markings

Given a real hypersurface X ⊂ P 5, we can consider its mirror image, X ′ =R(X), obtained
from X by a reflection R : P 5→ P 5 with respect to some real hyperplane H ⊂ Pn. According
to our definitions, X is chiral if X and X ′ belong to different connected components of CR, and
achiral if they belong to the same component.

Assume that (X, φ) is a marked non-singular cubic fourfold. Then the isomorphism R∗ :
M(X ′)→M(X) induced by R respects the Hodge structure and the polarization classes of X
and X ′, and thus yields a marking φ ◦R∗ of X ′. We say that the markings φ and φ′ = φ ◦R∗ are
mirror images of each other, or a mirror pair of markings.

Lemma 4.1.1. Assume that a non-singular real cubic fourfold X is defined by a real polynomial p
and its mirror image, X ′, by a polynomial q. Then the period vectors φ[ωp] and φ′[ωq] are
oppositely directed if X and X ′ are endowed with the mirror pair of markings: φ and φ′ = φ ◦R∗.

Proof. The form E/q2 representing [ωq] (see the end of § 2) changes the direction under the action
of R, because R∗(E) =−E and q ◦R differs from p by a real factor. 2

As an immediate corollary of Lemmas 4.1.1 and 3.5.1 we obtain a new proof of the following
theorem from [FK08].

Theorem 4.1.2 (Coarse deformation classification). One real non-singular cubic fourfold is
deformation equivalent to a projective transformation of another real non-singular cubic fourfold
if and only if they are of the same homological type.

Proof. Given a c-marking, we can compose it with lattice reflections Rv, v ∈ V2 ∩M0
±(c), and

anti-reflections −Rv, v ∈ V6 ∩M0
±(c), to move the period into any pair of opposite cells of PerR(c)

given in advance. When necessary, we can apply Lemma 4.1.1 and move the period into any of
these opposite cells. According to Lemma 3.5.1 this means that the real non-singular cubics
of homological type c are coarse deformation equivalent to each other. The ‘only if’ part is
trivial. 2
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4.2 Basic criterion of chirality for cubic fourfolds

Let us fix a geometric involution c. Given a non-singular c-marked real cubic fourfold (X, φ),
denote by P ](X)⊂ PercR the c-cell which contains perc]R (X, φ) (in other words, the c-cell which
contains w = φ[ωp] where, as usual, p is a real polynomial defining X).

Lemma 4.2.1. The underlying non-singular real cubic fourfold X of a real c-marked cubic
fourfold (X, φ) is achiral if and only if there exists a lattice isometry of M which:

(1) commutes with c;

(2) preserves the polarization class h;

(3) induces an automorphism of M0 which preserves the prescribed orientation; and

(4) sends the c-cell P ](X) to the opposite c-cell, −P ](X).

Proof. Let X ′ denote the mirror image of X with the mirror image marking φ′. By Lemma 4.1.1,
its period w′ = φ′[ωq] belongs to −P ](X). On the other hand, any continuous family of real
non-singular cubic fourfolds connecting X with X ′ gives another marking of X ′, say φ′, and
according to Lemma 3.5.1 the period φ′[ωq] belongs to P ](X). Comparing the two markings
of X ′ we obtain a lattice isometry of M=M(X ′) which transforms P ](X) into −P ](X); being a
difference between two markings, it also preserves the polarization h, induces an automorphism
of M0 which preserves the prescribed orientation, and commutes with c. Conversely, given such a
lattice isometry, we can change the mirror image marking of X ′ and then apply Lemma 3.5.1 to
deduce that X and X ′ both belong to the same component of CR. 2

4.3 Some lattice gluing lemmas

To simplify the above criterion and to reduce it to a study of AutM0
+(c) we need the

following results involving a technique of discriminant groups. Recall that for any non-degenerate
lattice L of finite rank the discriminant group discr L= L/L∗ is a finite group and that, if the
lattice L is even, this group carries a canonical finite quadratic form qL : discr L→Q/2Z defined
via qL(x+ L) = x2 mod 2Z. Note that any isometry, f ∈AutL, induces an automorphism of
discr L, which preserves qL if L is even. This induced automorphism is denoted by δ(f).

Theorem 4.3.1 (Nikulin’s theorem [Nik79]). Assume that L is an even lattice of signature
(n, 1), n > 0, whose discriminant group discr(L) is 2-periodic. Then any isometry δ : discr(L)→
discr(L) is induced by some isometry f : L→ L. 2

In the present paper we deal with the three lattices: M−(c), M0
+(c), and the rank-one

lattice 〈h〉 ⊂M generated by h. The first two lattices are even, and the latter is odd. The
discriminant group discrM−(c) is 2-periodic, the discriminant group discr〈h〉 is a cyclic group of
order three, and the discriminant group discrM0

+(c) is canonically isomorphic to the direct sum
discrM−(c) + discr〈h〉, so that discrM−(c) is identified with the 2-primary part discr2 M0

+(c)
of discrM0

+(c), and discr〈h〉 with its 3-primary part discr3 M0
+(c). The canonical isomorphism

discr2 M0
+(c)→ discrM−(c) is an anti-isometry, that is, it transforms −qM−(c) into qM0

+(c)

restricted to discr2 M0
+(c). (In fact, the lattice discr〈h〉, as any non-degenerate finite rank lattice

with a fixed characteristic element, can be also equipped with a quadratic form, and with
respect to this quadratic form the canonical isomorphism discr3 M0

+(c)→ discr〈h〉 is also an
anti-isometry.)

1285

https://doi.org/10.1112/S0010437X09004126 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004126


S. Finashin and V. Kharlamov

The following lattice gluing lemmas are well known and their proofs are straightforward, see,
e.g., [Nik79].

Lemma 4.3.2. Any automorphism f0
+ ∈Aut(M0

+(c)) can be uniquely extended to M+(c). This
extension sends the polarization class h to itself if and only if the 3-primary component δ3(f0

+)
of δ(f0

+) is trivial, that is δ3(f0
+) = id. 2

Lemma 4.3.3. A pair of automorphisms f± ∈Aut(M±(c)) are induced from f ∈Aut(M, c) if
and only if δ(f+) = δ(f−). 2

Automorphisms f± satisfying the conditions of Lemma 4.3.3 will be called compatible.

4.4 Lattice characterization of chirality
The reflection group W+ generated in Aut(M0

+(c)) by reflections Rv, v ∈ (V2 ∪ V6) ∩M0
+(c) acts

transitively on the set of cells of Λ+(c). If v ∈ V6, then Rv does not extends to M+, but anti-
reflection −Rv does. So, we consider also the group W#

+ ⊂ Aut(M0
+(c)) generated by reflections

Rv, v ∈ V2 ∩M0
+(c), and anti-reflections −Rv, v ∈ V6 ∩M0

+(c) (the two groups are isomorphic and
induce the same action on Λ+). Any of the cells P+ ⊂ Λ+(c) being fixed, the group Aut(M0

+(c))
splits into a semi-direct product W+ oAut(P+), where Aut(P+) = {g ∈Aut(M0

+(c)) | g(P+) =
P+} is the stabilizer of P+.

With M−(c) the situation is even simpler: since its discriminant group is of period 2
the intersection V6 ∩M−(c) is empty. Thus, in this case we consider simply the reflection
group W− ⊂Aut(M−(c)) generated by reflections Rv, v ∈ V2 ∩M0

−(c). This reflection group acts
transitively on the set of cells of Λ−(c) and, therefore, Aut(M−(c)) splits into a semi-direct
product W− oAut(P−), where Aut(P−) = {g ∈Aut(M−(c))|g(P−) = P−} is the stabilizer of a
cell P− of Λ−(c).

The preimage of P± in Λ#
± splits into two connected components: a pair of opposite c-cells

P#
± and −P#

± . Each g ∈Aut(P±) either permutes this pair of cells, and then we say that it is
P±-reversing, or it preserves both P#

± and −P#
± , and then we call it P±-direct. The subgroup

of Aut(P±) formed by P±-direct elements will be denoted by Aut+(P±), while the coset of
P±-reversing elements will be denoted by Aut−(P±). The crucial observation for our study
of chirality is that an automorphism f ∈Aut(M) preserving each of P± belongs to Aut+(M) if and
only if its components f+ = f |M0

+
, f− = f |M− are both of the same type: either simultaneously

f± ∈Aut+(P±) or simultaneously f± ∈Aut−(P±).
In the case of lattices M0

+, an additional characteristic of g ∈Aut(M0
+) is its 3-primary

component, δ3(g), which may be trivial or not. In a slightly more general setting, we consider
a hyperbolic lattice L whose discriminant splits as discr(L) = discr2(L) + discr3(L), where
discr2(L) is 2-periodic and discr3(L) = Z/3. We say that g ∈Aut(L) is Z/3-direct if δ3(g) = id,
and Z/3-reversing if δ3(g) 6= id (certainly, in the latter case δ3(g) =−id).

Theorem 4.4.1. A non-singular real cubic fourfold X of homological type c is achiral if and
only if the lattice M0

+(c) admits an automorphism g ∈Aut−(P+) which is Z/3-direct.

Proof. The ‘only if’ part is a straightforward consequence of the ‘only if’ part of Lemma 4.2.1.
To prove the ‘if’ part, let us pick up a c-marking φ :M(X)→M and choose f0

+ ∈
Aut−(P+(X)) which is Z/3-direct. From Lemma 4.3.2 it follows that f0

+ extends to f+ ∈AutM+

preserving h. Lemma 4.3.3 and Theorem 4.3.1 imply that we can find f− ∈Aut(M−) compatible
with f+ and f ∈Aut(M) defined by (f+, f−). By composing f− (and f) with a suitable w− ∈W−,
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the component f− can be chosen in Aut(P−)⊂Aut(M−). If f ∈Aut(M) defined by (f+, f−)
restricts to an automorphism of M0 belonging to Aut+(M0) (in other words, if f belongs to
Aut+(M)), then f transforms P ](X) into −P ](X) since it preserves the prescribed orientation
and f+ ∈Aut−(P+). Therefore, in this case due to Lemma 4.2.1 we are done. If f restricts to an
automorphism of M0 belonging to Aut+(M0) (in other words, if f ∈Aut−(M)), then we replace
f− by −f−, observe that the pair (f+,−f−) defines an automorphism f ◦ c which restricts to an
automorphism of M0 belonging to Aut+(M0), and argue as before. 2

5. Auxiliary arithmetics

5.1 Root systems and chirality of special hyperbolic lattices

In this section L is a lattice of signature (n, 1), n > 1. Throughout this section we make
two additional assumptions on L which are satisfied in the cases of L=M0

+(c) that we are
concerned about. The first assumption is that the discriminant discr(L) splits as Z/3 + discr2(L),
where the summand discr2(L) is a 2-periodic group. Let Φ = V2 ∪ V6, where Vk = {v ∈ L | v2 =
k, 2(vw/v2) ∈ Z, ∀w ∈ L} (note that for k = 2 the condition 2(vw/v2) ∈ Z is always satisfied).
Our second assumption is that the rank of Φ is equal to the rank of L (that is, maximal possible)
and, thus, Φ is a root system in L. This holds for L=M0

+(c) for all geometric involution c except
one rather special case M0

+(c) = U(2) + E6(2) in which Φ =∅ (the complete list of L=M0
+(c) is

given in Tables 8 and 9, in § 8, and the stated property can be easily checked on a case-by-case
basis). Vectors v ∈ Vk will be called k-roots.

We let LR = L⊗ R, and as before, consider Υ = {v ∈ LR | v2 < 0}, and the hyperbolic spaces
Λ = Υ/R∗, along with Λ# = Υ/R+. In this context we use notation Hv for the hyperplane
{w ∈ LR | vw = 0} and H±v for the half-spaces {w ∈ LR | ±vw > 0}. For v ∈Υ, Hv, and so on,
we denote by [v] ∈ Λ, [Hv]⊂ Λ, [v]# ∈ Λ#, [Hv]# ⊂ Λ#, and so on, the corresponding object
after projectivization.

We distinguish the reflection group W ⊂Aut(L) generated by the reflections Rv ∈
Aut(L), x 7→ x− 2(vx/v2)v, v ∈ V2 ∪ V6, and the group W# ⊂Aut(L) generated by the
reflections Rv, v ∈ V2, and the anti-reflections −Rv, v ∈ V6. Hyperplanes [Hv] (respectively,
[Hv]#), v ∈ Φ, cut Λ (respectively, Λ#) into open polyhedra, whose closures are called the cells.
The cells in Λ are the fundamental chambers of W , and the pairs of opposite cells in Λ# are the
fundamental chambers of W#.

Let us pick up a cell P ⊂ Λ and fix a covering c-cell P# ⊂ Λ#. Choosing any vector p ∈Υ so
that [p]# lies in the interior of P#, we let Φ± = {v ∈ Φ | ±vp > 0}. The minimal subset Φb ⊂ Φ−

such that P# =
⋂
v∈Φb [H−v ]# is called the basis of Φ defined by P#. The hyperplanes [Hv], v ∈ Φb,

support n-dimensional faces of P and will be called the walls of P . Note that any v ∈ Φ− is a
linear combination of the roots in Φb with non-negative coefficients.

Theorem 4.4.1 motivates the following definition: L is called achiral if it admits a Z/3-
direct automorphism g ∈Aut−(P ), for some cell P . Obviously, if L is achiral, then a Z/3-direct
automorphism g ∈Aut−(P ) exists for any cell P . It is also obvious that the existence of a Z/3-
direct g ∈Aut−(P ) is equivalent to the existence of Z/3-reversing h ∈Aut+(P ), since these two
kinds of automorphisms just differ by sign.

5.2 Coxeter’s graphs and their symmetry

The Coxeter graph Γ has Φb as the vertex set. The vertices are colored: 2-roots are white and
6-roots are black. The edges are weighted: the weight of an edge connecting vertices v, w ∈ Φb
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is mvw = 4((vw)2/v2w2), and mvw = 0 means the absence of an edge. These weights are non-
negative integers, because 2(vw/v2), 2(vw/w2) ∈ Z, and v2, w2 > 0 for any v, w ∈ Φb. In the case
of mvw = 1, the angle between Hv and Hw is π/3, and v2 = w2; such edges are not labelled. The
case of mvw = 2 (which corresponds to an angle π/4) cannot happen, since v2, w2 ∈ {2, 6}. An
edge of weight mvw = 3 always connects a 2-root with a 6-root; it corresponds to an angle π/6,
and will be labelled by ‘6’. The case of mvw = 4 corresponds to parallel hyperplanes in Λ, and
we sketch a thick edge between v and w. If mvw > 4, then the corresponding hyperplanes in Λ
are ultra-parallel (diverging), and we sketch a dotted edge.

For a subset J ⊂ Φb we may consider also the subgraph ΓJ which is formed by the vertex
set J and all of the edges of Γ connecting these vertices. We say that ΓJ is the Coxeter graph
of J . If J is finite and ordered, J = {v1, . . . , v|J |}, then we consider also the Gram matrix, GJ ,
whose (ij)-entry is vivj .

A permutation σ : J → J will be called a symmetry of ΓJ if it preserves the weight of edges
and the length of the roots, that is, (σ(v))2 = v2 and mσ(v)σ(w) =mvw for all v, w ∈ J .

Theorem 5.2.1 (Existence of symmetries). Assume that a subset J ⊂ Φb spans L over Z. Then
any symmetry σ : J → J of ΓJ is induced by an automorphism of the lattice L which preserves
the cell P# invariant.

Proof. Such a symmetry preserves the Gram matrix of the vectors from J . Therefore, it is induced
by an isometry of L⊗Q. Since the vectors from J span L over Z, this isometry maps L to L.
Assuming that it maps P# to another cell, we observe that these two cells have J as a common
set of face normal vectors. Pick up a wall separating the two cells and note that each of the
normal root vectors ±v 6= 0 of such a wall has non-negative product with the vectors from J ,
which is a contradiction, since the vectors from J generate the whole space. 2

To recognize Z/3-reversing symmetries of Γ, one can use the following observation.
Considering some direct sum decomposition of L, we notice that one of the direct summands, L1,
has discr3(L1) = Z/3, while the other direct summands have 2-periodic discriminants (because
discr(L) obtains an induced direct sum decomposition). For any vertex w of Γ viewed as a vector
in L, we can consider its L1-component. Our simple observation is that σ is Z/3-direct if for
all black vertices, v ∈ V6, of Γ the L1-components of v and σ(v) are congruent modulo 3L1, and
Z/3-reversing if for some v ∈ V6 we have v − σ(v) /∈ 3L.

5.3 Vinberg’s algorithm
Vinberg’s method [Vin75] of calculation of the Coxeter graph of Φ is to pick up a vector p ∈Υ so
that [p]# ∈ P#, and then to determine a sequence of roots vi ∈ Φb, i= 1, 2, . . . , ordered so that
the hyperbolic distance from p to the walls Hi =Hvi of P is increasing. Such a distance can be
characterized by the (non-negative) value 2(pvi)2/v2

i , which will be called the level of root vi with
respect to p (the coefficient 2 here is chosen to make it an integer in the further considerations).

The level-zero vectors in Vinberg’s sequence form a root basis in the root system {v ∈
Φ|vp= 0}. Since choosing [p] at a vertex of [P ] (rather than in its interior) simplifies calculations,
we always try to start with such a choice of p so that the system of the level-zero roots would
be of the maximal rank, namely dim L− 1.

If Vinberg’s sequence, v1, . . . , vm, is found up to level r, then the vectors v ∈ Φ of higher levels
should satisfy the conditions: pv < 0 and vvi 6 0 for all vi, 1 6 i 6m. If vectors v respecting these
conditions do exist, then the next segment of Vinberg’s sequence is constituted by all such vectors
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of the minimal level. Note that the order of Vinberg’s roots within the same level is not well
defined (and is inessential).

This process terminates and gives the basis Φb if the latter is finite, otherwise the process
enumerates vectors of Φb in an infinite sequence. If we found Vinberg’s vectors v1, . . . , vm up
to some level r, then we can use one of Vinberg’s sufficient criteria below for detecting the
termination of the process.

5.4 Vinberg’s termination criteria

The Gram matrix GJ and the Coxeter graph ΓJ are called elliptic (of rank r) if GJ is positive
definite (of rank r). As is observed in [Vin75], the elliptic subgraphs of Γ of rank n− k are in
one-to-one correspondence with the k-dimensional faces of [P ]. Namely, an elliptic subgraph ΓJ
corresponds to the face supported by the projectivization of the linear space HJ =

⋂
v∈J Hv.

The connected components of an elliptic graph GJ must belong to the list of the classical
elliptic graphs of the root systems (see, for example, [Bou68]). In our case (since mvw = 2 do not
appear), an elliptic graph cannot be anything other than Ar, Dr, E6, E7, E8, and G2.

A connected subgraph ΓJ and its Gram matrix GJ are called parabolic if GJ is a positive-
semi-definite matrix of rank |J | − 1. In our case, a parabolic connected subgraph should be one
of the graphs Ãr (recall that Ã1 is just a thick edge), D̃r, Ẽ6, Ẽ7, Ẽ8, and G̃2, where the subscript
always equals the rank of the parabolic graph, |J | − 1. A disconnected subgraph ΓJ and its Gram
matrix are called parabolic if all of the connected components of ΓJ are parabolic. The rank
of such ΓJ is by definition the sum of the ranks of its components. As is observed in [Vin75],
a subgraph ΓJ is parabolic of maximal possible rank, n− 1, if and only if the intersection HJ

defines a vertex of [P ] at infinity (on the absolute).

A matrix GJ (and its Coxeter graph ΓJ) is called critical, if it is not elliptic, but any
submatrix GJ ′ , J ′  J , is elliptic. Such GJ is parabolic if degenerate. If a critical matrix GJ
is non-degenerate, its graph GJ is called Lannér’s diagrams. The list of Lannér’s diagrams can
be found, for example, in [Vin75, Vin85]. Note that the only Lannér’s diagram possible under
the assumptions of this section is a dotted edge (the other Lannér’s diagrams all contain a pair
of roots which have the ratio of length different from one and three).

Theorem 5.4.1 (Finite volume criterion [Vin75]). Vinberg’s sequence terminates at J =
{v1, . . . , vm} if the polyhedron PJ bounded in ΛL by the hyperplanes dual to v ∈ J has a finite
hyperbolic volume. 2

To determine the finiteness of the volume, Vinberg gives several criteria. One of them [Vin85,
Proposition 4.2(1)] can be formulated (in the form of [Dol08, Proposition 2.4]) as follows.

Theorem 5.4.2 (Criterion of the finiteness of the volume). The polyhedron PJ has a finite
volume if and only if the following two conditions are satisfied:

(1) ΓJ contains an elliptic subdiagram of rank n− 1 where n= dim L− 1;

(2) any elliptic subdiagram of rank n− 1 of ΓJ can be extended to an elliptic subdiagram of
rank n, or to a parabolic subdiagram of rank n− 1; and there exist precisely two such
extensions. 2

Remark. The second condition in Theorem 5.4.2 just means that any edge is adjacent to two
vertices: finite or at infinity.
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Figure 1. Coxeter graph E8 and the vectors e∗i .

There is another (simpler, but only sufficient) criterion which can be used if ΓJ does not
contain Lannér’s schemes (that is, dotted edges in our setting).

Theorem 5.4.3 (Sufficient criterion of finiteness of the volume [Vin75]). The volume of PJ is
finite if the following conditions are satisfied:

(1) J has rank dim L= n+ 1;

(2) the Coxeter graph, ΓJ , does not contain Lannér’s diagrams as subgraphs;

(3) every connected parabolic subgraph in ΓJ is a connected component of some parabolic
subgraph of rank n− 1 in Γ.

6. Chirality of M-cubics

6.1 Preliminaries and the main statement
A particular, characteristic, feature of M -cubics is that the lattice M splits into a direct sum
of the eigen-lattices M+ and M−. Thus, the eigen-lattices are unimodular in the case of M -
cubics, and only in this case. As it follows from the classification in [FK08] (or can be easily
deduced directly from Theorem 4.1.2, Lemma 3.1.1, and the classification of unimodular lattices),
there exists precisely three coarse deformation classes (equivalently, three homological types) of
M -cubics. The corresponding three lattices M+ are U + 3I =−I + 4I, U + 3I + E8 =−I + 12I,
and U + 3I + 2E8 =−I + 20I. The polarization class h ∈M+ is characteristic, of square
three, and can be identified with (1, 1, 1) ∈ 3I. So, the primitive lattices M0

+ are even and
isomorphic to U +A2, U +A2 + E8, and U +A2 + 2E8, respectively. The corresponding lattices
M− are also even and isomorphic to U + 2E8, U + E8, and U , respectively.

Theorem 6.1.1. Non-singular real cubic fourfolds of types M0
+(c) = U +A2 and M0

+(c) =
U +A2 + E8 are chiral; in particular, the cubic fourfolds of each of these two types form two
deformation classes. Non-singular real cubic fourfolds of type M0

+(c) = U +A2 + 2E8 are achiral;
these cubic fourfolds form one deformation class.

The rest of this section is devoted to a case-by-case proof of this theorem.
We fix a basis u1, u2 in U and a basis a1, a2 in A2, so that u2

i = 0 (i= 1, 2), u1u2 = 1, a2
i = 2

(i= 1, 2), and a1a2 =−1. The basis e1, . . . , e8 in E8 is chosen as is shown on the Coxeter graph
of E8, see Figure 1 (we use the usual convention: e2

i = 2 for i= 1, . . . , 8 and ei ◦ ej =−δij). This
figure also presents the dual vectors e∗i , i= 1, . . . , 8, which are also elements of E8, because
the lattice E8 is unimodular; for example, e∗8 = 2e8 + 3e7 + 4e6 + 5e5 + 6e4 + 4e3 + 3e2 + 2e1.
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Table 1. Vinberg’s vectors for M0
+(c) = U +A2.

U A2

p 1, −1 0, 0
level 0
v1 1, 1 0, 0
v2 0, 0 0, 1
v3 0, 0 1, −1

level 1
v4 0, −1 −1, −1

6

v1v4v2v3

Figure 2. Coxeter’s graph for U +A2.

In the case of U +A2 + 2E8, the basic vectors of the additional E8-summand will be denoted by
e′i and their duals by (e′i)

∗, i= 1, . . . , 8.
In all of these three M -cases, to apply Vinberg’s algorithm (see § 5.3) we pick p= u1 − u2.

Then we choose as the set of level-zero vectors the standard bases in each of E8-components of
M0

+(c) and complete them by two square-two vectors v1 = u1 + u2 and v2 = a2, and one square-
six vector v3 = a1 − a2. This choice determines uniquely a cell P+ in Λ+(c). The vectors of
higher levels in Vinberg’s sequence must have components x1u1 + x2u2 + y1a1 + y2a2 in U +A2

satisfying the following relations:

x2 < x1, x1 + x2 6 0, 2y2 6 y1, y1 6 y2.

Note that the vector v4 =−(u2 + a1 + a2) satisfies these relation and, thus, appears in the list
as a vector of level one in each of the three M -cases.

Certainly, the basic vectors of the E8-summands also impose restrictions on the vectors of
higher levels. Namely, their components in the first (respectively, second) E8-summand should be
linear combinations of e∗1, . . . , e

∗
8 (respectively, (e′1)∗, . . . , (e′8)∗) with non-positive coefficients.

6.2 The case M0
+(c) = U + A2

Here, Vinberg’s sequence starts from vectors v1, v2, v3, v4 given in Table 1. The Coxeter graph of
the vector system {v1, v2, v3, v4} is shown on Figure 2. The only parabolic subgraph is G̃2 (the
subgraph generated by v2 and v3), and it has rank 2 = dim Λ+ − 1. By Vinberg’s finite volume
criterion, it implies that Vinberg’s sequence terminates at {v1, v2, v3, v4}, and so the polyhedron
P+ is found. Since the Coxeter graph admits no symmetries, −id is the only element of Aut−(P+).
Thus, applying Theorem 4.4.1 we conclude that the studied cubic fourfolds are chiral.

6.3 The case M0
+(c) = U + A2 + E8

Here, the level-zero vectors are e1, . . . , e8, v1, v2, and v3. The level-one vectors are v4 and
v5 =−u2 − e∗8 (see Table 2). This gives the Coxeter graph shown in Figure 3. This graph has only
two parabolic subgraphs: G̃2 and Ẽ8. Vinberg’s finite volume criterion is satisfied because these
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Table 2. Vinberg’s vectors for M0
+(c) = U +A2 + E8.

U A2 E8

p 1, −1 0, 0 0
level 0
v1 1, 1 0, 0 0
v2 0, 0 0, 1 0
v3 0, 0 1, −1 0

level 1
v4 0, −1 −1, −1 0
v5 0, −1 0, 0 −e∗8

e4e5v5v1v4v2v3 e6e7e8 e3 e1

e2

6

Figure 3. Coxeter’s graph for U +A2 + E8.

subgraphs are disjoint and the sum of their ranks is 2 + 8 = dim ΛM0
+
− 1. The graph has no

symmetries and arguing in a similar manner to § 6.2 we conclude that the studied cubic fourfolds
are chiral.

6.4 The case M0
+(c)=U + A2 + 2E8

Here, the level-zero vectors are e1, . . . , e8, e
′
1, . . . , e

′
8, v1, v2, and v3. The level-one consists

of three 2-roots v4, v5, and v′5 =−u2 − (e′8)∗. On the next level, 16, there is one 2-root
v6 = 2(u1 − u2)− (a1 + a2)− e∗1 − (e′1)∗. Then, on the level 36 there is a pair of 2-roots:

v7 = 3(u1 − u2)− (2a1 + a2)− e∗7 − (e′2)∗,
v′7 = 3(u1 − u2)− (2a1 + a2)− e∗2 − (e′7)∗.

Our list of Vinberg’s vectors given in Table 3 also includes a pair of 6-roots of level 48,

v8 = 6(u1 − u2)− (4a1 + 2a2)− 3e∗8 − 3(e′1)∗,
v′8 = 6(u1 − u2)− (4a1 + 2a2)− 3e∗1 − 3(e′8)∗.

The above list contains three 6-roots: v3, v8, and v′8. If we drop them and consider the Coxeter
subgraph formed only by the 2-roots, we obtain the hexagonal diagram shown in Figure 4. This
diagram has a lot of symmetries. Consider the involution which fixes the vertices e7, e

′
4, v6, e

′
7 and

permutes the vertices v1, e4. Since the set of vectors corresponding to the vertices of the diagram
generate the lattice M0

+(c), this involution is induced by a lattice involution f :M0
+(c)→M0

+(c)
(see Theorem 5.2.1). Since in the whole Coxeter diagram the 6-root v3 is connected with the
2-roots v2, v7, v

′
7 and the 6-root v′8 is connected with the 2-roots e1, v7, e

′
8, the automorphism f

transforms v3 into v′8. The A2-components of v3 and v′8 are (1,−1) and (−4,−2), which are not
congruent modulo three. This implies that f is Z/3-reversing. By Theorem 5.2.1, f is P+-direct,
so applying Theorem 4.4.1 we conclude that this homological type is achiral.
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Table 3. Vinberg’s vectors for M0
+(c) = U +A2 + 2E8.

vi U A2 E8 E8

p 1, −1 0, 0 0 0
level 0
v1 1, 1 0, 0 0 0
v2 0, 0 0, 1 0 0
v3 0, 0 1, −1 0 0

level 1
v4 0, −1 −1, −1 0 0
v5 0, −1 0, 0 −e∗8 0
v′5 0, −1 0, 0 0 −(e′8)∗

level 16
v6 2, −2 −1, −1 −e∗1 −(e′1)∗

level 36
v7 3, −3 −2, −1 −e∗7 −(e′2)∗

v′7 3, −3 −2, −1 −e∗2 −(e′7)∗

level 48
v8 6, −6 −4, −2 −3e∗8 −3(e′1)∗

v′8 6, −6 −4, −2 −3e∗1 −3(e′8)∗

e7 e6 e5 e4

e'5e'6e'7

e3

e1e2

v6

e8

v5

v1 v4 v2

v7

e'2
e'1

e'3

e'4

e'8

v'5 v'7

v'7

v'8

v7

v7
v3

v2

e'8

e1

Figure 4. Hexagonal Coxeter’s subgraph for U +A2 + 2E8.

Remark. This lattice, its fundamental chamber, and the complete Coxeter graph had appeared
already in Vinberg’s paper [Vin83] on maximally algebraic K3-surfaces. Note that our list
contains the full set of 2-roots, and the missing 6-roots can be obtained from the 6-roots in
the list by applying the symmetries of the hexagonal subgraph. The same construction is given
in [Loo09].

7. Chirality of (M − 1)-cubics

7.1 Preliminaries and the main statement
Following M -cubics, the next by their topological complexity are (M − 1)-cubics. The
deformation components of the latter, as follows from [FK08], are adjacent to the deformation
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components of M -cubics. The lattice, M, of an (M − 1)-cubic contains the direct sum of
the eigen-lattices M+ and M− as a sublattice of index two, and this condition characterizes
(M − 1)-cubics among all non-singular real cubic fourfolds. In the other words, the characteristic
feature of (M − 1)-cubics is that M± have discriminant Z/2. Using the general properties of
lattices M± (namely, that lattice M+ is odd with a characteristic element h ∈M+ of square
h2 = 3, that lattice M− is even, and that the both lattices are of index σ− = 1), one can deduce
that the (M − 1)-cubics form precisely six homological types, see [FK08]. As usual, these types
can be distinguished by sublattices M+, as well as by sublattices M−. The corresponding six
lattices M0

+ are U +A2 +A1 + kE8 and −A1 +A2 + kE8, k = 0, 1, 2.

Theorem 7.1.1. Non-singular real cubic fourfolds of types M0
+(c) =−A1 +A2, U +A2 +A1,

and −A1 +A2 + E8, are chiral; in particular, the cubic fourfolds of each of these three types
form two deformation classes. Non-singular real cubic fourfolds of types M0

+(c) = U +A2 + E8 +
A1,−A1 +A2 + 2E8, and U +A2 + 2E8 +A1 are achiral; the cubic fourfolds of each of these
three types form one deformation class.

7.2 The case M0
+(c) =−A1 + A2

Here, Vinberg’s sequence starts from vectors {v1, v2, v3} given in Table 4. The Coxeter graph of
this sequence of three vectors is shown in Figure 5. It contains a unique parabolic subgraph Ã1

(a thick edge connecting v2 and v3). Vinberg’s criteria 5.4.3 and 5.4.1 can be applied to conclude
termination, since the rank of Ã1 is 1 = dimM0

+(c)− 2. The Coxeter graph admits no symmetries.
Hence, applying Theorem 4.4.1 we deduce that the studied cubic fourfolds are chiral.

Table 4. Vinberg’s vectors for M0
+(c) =−A1 +A2.

−A1 A2

p 1 0, 0
level 0
v1 0 0, 1
v2 0 1, −1

level 12
v3 3 −4, −2

v1v2v3

6

Figure 5. Coxeter’s graph for −A1 +A2.

7.3 The case M0
+(c) = U + A2 + A1

Here, Vinberg’s sequence starts from four level-zero vectors {v1, v2, v3, v4} and two level-one
vectors {v5, v6} given in Table 5. The Coxeter graph of this sequence of six vectors is shown
in Figure 6. It contains precisely two parabolic subgraphs, G̃2 (vertices v3, v2, v5) and Ã1

(v4, v6). Vinberg’s criterion is satisfied, since the rank of their union is 2 + 1 = dimM0
+(c)− 2.

The Coxeter graph admits no symmetries. Hence, applying Theorem 4.4.1 we conclude that the
studied cubic fourfolds are chiral.
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Table 5. Vinberg’s vectors for M0
+(c) = U +A2 +A1.

U A2 A1

p 1,−1 0, 0 0
level 0
v1 1, 1 0, 0 0
v2 0, 0 0, 1 0
v3 0, 0 1, −1 0
v4 0, 0 0, 0 1

level 1
v5 0, −1 −1, −1 0
v6 0, −1 0, 0 −1

6
v3 v2 v5 v1 v6 v4

Figure 6. Coxeter’s graph for U +A2 +A1.

7.4 The case M0
+(c) =−A1 + A2 + E8

Here, the level-zero vectors of Vinberg’s sequence are e1, . . . , e8, v1, and v2. They are followed
by two vectors of level 4 and one vector of level 12, see Table 6. The Coxeter graph, Γ, of this
sequence of 13 vectors is shown in Figure 7.

Lemma 7.4.1. Vinberg’s criterion 5.4.2 is satisfied for the Coxeter graph Γ on Figure 7.

Proof. For S = {a1, . . . , an} ⊂ Φb, let FS = Fa1,...,an ⊂ P denote the face of the cell P supported
in the intersection of the walls [Hv], where v ∈ Φb \ S. Note that P has two vertices at infinity,
Fv5,e8 and Fv1,v3 (because the sets Φb \ S span parabolic subgraphs of maximal possible rank
dim(M0

+)− 2 = 9). The other vertices of P are Fa,b,c such that Φb \ {a, b, c} spans an elliptic
subgraph. This subgraph cannot contain the dotted edge connecting v3 with v5, so the set
S = {a, b, c} should contain either v3 or v5 (or the both). This set should also contain at least
one vertex-root from each of the parabolic subgraphs Ẽ7, Ẽ8, G̃2, Ã1 of Γ. If the both v3 and v5 are
included in S = {a, b, c}, then FS is a vertex of P only for S = {v3, v4, v5}. If a= v5 and v3 /∈ S,
then b and c should be chosen from the two disjoint parabolic subgraphs G̃2 and Ẽ7, which
gives 21 other vertices Fv5,b,c, where b ∈ {v2, v1, v4} and c ∈ {e1, . . . , e7}. Similarly, if a= v3 and
v5 /∈ S, then b, c should be chosen from the two disjoint parabolic subgraphs Ã1 and Ẽ8, so
b= v2 and c ∈ {e1, . . . , e8, v4}, which gives nine new vertices Fa,b,c. In total, Γ contains 31 finite
vertices and two vertices at infinity.

The edges of P can be expressed as FS , S = {a, b, c, d}, where Φb \ S spans an elliptic
subgraph. Thus, as above, S should contain at least one of v3 and v5. In the edges Fv3,v5,v4,d, one
of the endpoints is Fv3,v5,v4 . In the cases d ∈ {e1, . . . , e7}, the other endpoint is Fv5,v4,d. In the
cases d= v1, d= v2, and d= e8, the other endpoint is Fv1,v3 , Fv3,v4,v2 , and Fv5,e8 , respectively.
The edges Fv3,v5,e8,d must have d ∈ {v1, v2} and are incident to Fv5,e8 . Another endpoint is Fv3,v1
for d= v1, and Fv3,e8,v2 for d= v2. Each of the edges Fv3,v5,c,d, c ∈ {v1, v2}, d ∈ {e1, . . . , e7}
has Fv5,c,d as one of the endpoints. The other endpoint is Fv3,v2,d if c= v2 and Fv3,v1 if c= v1.
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Table 6. Vinberg’s vectors for M0
+(c) =−A1 +A2 + E8.

−A1 A2 E8

p 1 0, 0 0
level 0
v1 0 0, 1 0
v2 0 1, −1 0

level 4
v3 1 0, 0 −e∗1
v4 1 −1, −1 −e∗8

level 12
v5 3 −4, −2 0

6 e8

v3

v5 v2 v1 v4

e7e6e5e4e3e1

e2

Figure 7. Coxeter’s graph for −A1 +A2 + E8.

The other edges Fa,b,c,d have a ∈ {v3, v5} and b, c, d /∈ {v3, v5}. If a= v3, then another
vertex should be chosen from the subgraph Ã1, and we may assume that b= v2 (since the
case b= v5 was already considered). This gives edges Fv3,v2,c,d with c ∈ {e1, . . . , e8, v4} and
d ∈ {e1, . . . , e8, v4, v1}. If d 6= v1, then the endpoints are Fv3,v2,c and Fv3,v2,d. The endpoints of
Fv3,v2,c,v1 are Fv3,v2,c and Fv3,v1 . Finally, if a= v5, then one of b, c, d should be chosen from G̃2, say,
b ∈ {v2, v1, v4} and another from Ẽ7, say, c ∈ {e1, . . . , e7}. Then Fv5,b,c,d has one endpoint Fv5,b,c.
Another endpoint is Fv5,c,d if d ∈ {v2, v1, v4}, and Fv5,b,d if d ∈ {e1, . . . , e7}. In the remaining case
d= e8, the second endpoint is Fv5,e8 . 2

The Coxeter graph admits no symmetries. Hence, applying Theorem 4.4.1 we conclude that
the studied cubic fourfolds are chiral.

7.5 The case M0
+(c) = U + A2 + A1 + E8

Here, the level-zero Vinberg’s vectors are e1, . . . , e8 plus v1, . . . , v4 listed in Table 7. Then there
follow three vectors v5, v6, v7 of level 1 and the vector v8 of level 48 (again see Table 7).

Consider the Coxeter subgraph formed by Vinberg’s vectors e1, . . . , e8, v1, v2, v5, v6, v7. This
subgraph is shown in Figure 8. It has an evident non-trivial involution (which fixes the vertex
v7 and permutes the vertices v2, e1). Since the vectors e1, . . . , e8, v1, v2, v5, v6, v7 generating this
subgraph span the lattice M0

+(c), this involution is induced by a P+-direct lattice involution
f :M0

+(c)→M0
+(c) (see Theorem 5.2.1). In particular, f transforms Vinberg’s vector v3 =

−v5 − 2v2 + v7 + e∗8, into another Vinberg’s vector v′3 =−e3 − 2e1 + e5 + (2e6 + 3e7 + 4e8 +
5v7 + 6v1 + 4v5 + 3v6 + 2v2). The A2-component of v′3 is 4(−1,−1) + 2(0, 1) = (−4,−2), while
the A2-component of v3 is (1,−1). Hence, f is Z/3-reversing and applying Theorem 4.4.1 we
conclude that the type considered is achiral.
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Table 7. Vinberg’s vectors for M0
+(c) = U +A2 +A1 + E8.

U A2 A1 E8

p 1, −1 0, 0 0 0
level 0
v1 1, 1 0, 0 0 0
v2 0, 0 0, 1 0 0
v3 0, 0 1, −1 0 0
v4 0, 0 0, 0 1 0

level 1
v5 0, −1 −1, −1 0 0
v6 0, −1 0, 0 −1 0
v7 0, −1 0, 0 0 −e∗8

level 48
v8 6, −6 −4, −2 −3 −3(e1)∗

e8 e7 e6 e5

v2 v5 v1 v6

v7

e2 e4 e3 e1

Figure 8. A symmetric fragment of Coxeter’s graph for U +A2 +A1 + E8.

7.6 The case M0
+(c) =−A1 + A2 + 2E8

Let us start with a bit more general setting. Namely, assume that L is a lattice as in § 5 (for
example, some of the lattices M0

+(c)), P ⊂ Λ(L) is a cell, and f ∈Aut+(P ) is an automorphism
of L induced by some symmetry of the Coxeter graph, Γ, of L. Suppose that a 2-root v is a
vertex of Γ preserved by this symmetry, that is, f(v) = v. Then the sublattice Lv = {x ∈ L |
xv = 0} is f -invariant and we may consider an induced automorphism fv ∈Aut(Lv).

Lemma 7.6.1. If f is Z/3-reversing, then fv is also Z/3-reversing, and Pv-direct for some cell Pv
of Lv.

Proof. Since discr3(Lv) = discr3(L) = Z/3, the automorphisms f and fv are both Z/3-direct or
Z/3-reversing. Furthermore, f preserves the facet P ∩ [Hv] of P , since it preserves both P and v.
Owing to discr3(Lv) = discr3(L), each wall in Λ(Lv) is an intersection of [Hv] with a wall Λ(L),
and thus, the facet P ∩ [Hv] is a part of some cell, Pv, of Λ(Lv). Such a Pv also has to be
invariant. 2

Corollary 7.6.2. Lattice −A1 +A2 + 2E8 is achiral.

Proof. Let L= U +A2 + 2E8, then for v = v1 (following the notation of § 6.4) we have Lv =
−A1 +A2 + 2E8. An involution of the hexagonal diagram (Figure 4) in § 6.4 is conjugate to some
involution, f ∈Aut+(P ), preserving v1. Since f is Z/3-reversing, we can apply Lemma 7.6.1. 2

Applying Theorem 4.4.1 we can now conclude that the fourfolds with M0
+(c) =−A1 +A2 +

2E8 are achiral.
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7.7 The case M0
+(c) = U + A2 + 2E8 + A1

Let L and Lv be as in § 7.6. Our aim now is to obtain a criterion which is in some sense ‘converse’
to that in Lemma 7.6.1. Recall that lattice L either splits into a direct sum of Lv with a sublattice
A1 = Zv, or contains this direct sum as an index-two sublattice. We show that, in the former
case, achirality of Lv implies achirality of L.

Lemma 7.7.1. Assume that L= Lv +A1, where A1 = Zv, and Lv is achiral. Then L is also
achiral. In fact, any Z/3-reversing automorphism fv ∈Aut+(Pv) for some cell Pv ⊂ Λ(Lv) can be
extended to a Z/3-reversing automorphism f ∈Aut+(P ) for some cell P ⊂ Λ(L).

Proof. Letting f(v) = v, we obtain an extension of fv to L which is obviously Z/3-reversing
if fv is.

As in Lemma 7.6.1, by the same evident reasons, Pv contains the facet P ∩ [Hv] of some cell P
in Λ(L). However, now the relation is stronger: P ∩ [Hv] = Pv. In fact, the walls of P different
from [Hv] are either orthogonal to [Hv] or do not intersect it. To see it, consider any wall [Hw],
w ∈ V2 ∪ V6. Splitting L= Lv + Zv gives a decomposition w = wv + kv, where wv ∈ Lv, k ∈ Z. If
k = 0, then [Hw] is orthogonal to [Hv], whereas wv = 0 implies w = v. Otherwise we observe that
w2
v = w2 − k2v2 6 0, because v2 = 2, and w2 is either two or six, but in the latter case k is divisible

by three. Thus, vectors perpendicular to wv cannot have negative square, which contradicts to
P ∩ [Hv] 6=∅.

The relation P ∩ [Hv] = Pv implies that the isometry f = fv ⊕ id : L→ L is P -direct. 2

Corollary 7.7.2. Lattice U +A2 + 2E8 +A1 is achiral.

Proof. According to § 6.4, the lattice Lv = U +A2 + 2E8 is achiral. It remains to apply
Lemma 7.7.1. 2

Applying Theorem 4.4.1 we can now conclude that the cubic fourfolds with M0
+(c) =

U +A2 + 2E8 +A1 are achiral.

8. Concluding remarks

8.1 Further results

The cases of M -varieties and (M − 1)-varieties are usually the most interesting and difficult,
which explains our special interest in them in the context of the chirality problem of the
cubic fourfolds. However, our methods are also applicable to the other cases. Our observations
concerning the problem of chirality can be summarized as follows.

Let ρ denote the rank of the lattice M0
+, let r = 22− ρ denote the rank of M−, and let d be

the discriminant rank, rk(discr2(M0
+)) = rk(discr(M−)). In all of the cases studied, if ρ+ d > 14,

then M0
+ is achiral. In addition, the list of achiral lattices contains M0

+ = U(2) +A2 +D4 and
M0

+ =−A1 + 〈6〉+ kA1 with k = 2, 3, and 4. The other lattices that we have analyzed are chiral.
(In a few cases remaining for analysis, the discriminant form is even and ρ+ d > 14. We expect
that the corresponding lattices are achiral.)

The lattices M0
+(c) of cubic fourfolds can be naturally divided into the principal series,

which contains most of the lattices and is presented in Table 8, and several additional lattices
as presented in Table 9 (see [FK08] for more details).
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Table 8. The principal series of lattices M0
+.

−A1 +〈6〉 +t A1, 0 6 t 6 9
−A1 +A2 +t A1, 0 6 t 6 9
U +A2 +t A1, 0 6 t 6 9
U +A2+D4 +t A1, 0 6 t 6 6
−A1 +〈6〉+E8 +t A1, 0 6 t 6 5
−A1 +A2+E8 +t A1, 0 6 t 6 5
U +A2+E8 +t A1, 0 6 t 6 5
U +A2+D4+E8 +t A1, 0 6 t 6 2
−A1 +〈6〉+2E8 +t A1, 0 6 t 6 1
−A1 +A2+2E8 +t A1, 0 6 t 6 1
U +A2+2E8 +t A1, 0 6 t 6 1

Table 9. Additional lattices M0
+.

U(2)+E6(2)
U(2)+A2

U+E6(2)
U(2)+A2+D4

U(2)+A2+2D4

U+A2+2D4

U(2)+A2+E8

U(2)+A2+D4+E8

U(2)+A2+2E8

U+A2+E8(2)
U(2)+A2+E8(2)

Table 10 describes the chirality of the principal series of cubic fourfolds in terms of the ranks r
and d.

8.2 Chirality of singular cubic fourfolds

Chirality of cubic fourfolds having a nodal singularity is an interesting related problem. It is
trivial to observe that any perturbation of an achiral nodal cubic provides an achiral non-singular
cubic. The non-trivial part of the problem is the converse: if perturbations give only achiral
cubics, can we conclude that a nodal cubic is achiral itself? To solve this, one can use the same
approach as in the non-singular case, just taking into account the vanishing cycles. On the other
hand, the central projective correspondence discussed in [FK08] relates chirality of nodal cubic
fourfolds to a certain question about 6-polarized K3-surfaces. This relation can be used in the
both directions.

A somewhat different kind of observation is chirality of the discriminant cubic,

det

x0 x1 x2

x1 x3 x4

x2 x4 x5

= 0,
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Table 10. Chirality of cubic fourfolds: the principal series.

d
11 a
10 a a
9 a a a
8 a a a a
7 a a a a a
6 a a a a a a
5 a a a a a c a
4 a a a a a c c a
3 a a a a a c c c c
2 a a a a a c c c c c
1 a a a c c c
0 a c c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 r

The symbol ‘c’ stands for the chiral deformation classes, and symbol ‘a’ for the achiral
deformation classes.

which parameterizes the space of singular conics in the plane. The key observation is chirality of
the singular locus of the discriminant cubic (this locus is the image of the Veronese map).

8.3 Explicit equations
It would be interesting to find explicit (natural) equations for representatives of each of the
deformation classes. It can be helpful not only for proving achirality statements, but also for
better understanding of the topology of the cubic hypersurfaces. As an example, let us consider
the equations of the following type:( 6∑

1

xα

)3

−
6∑
1

cαx
3
α = 0;

these equations were proposed in the late 1970s by D. Fucks (private communication to the
second author) for searching the precise range of the values of the Euler characteristic of
real cubic hypersurfaces in each given even dimension (a problem which, to the best of the
authors’ knowledge, remains open in its whole generality). Similar equations were used earlier
by Klein [Kle73], and his student Rodenberg [Rod79], to find and to study explicit representatives
for each of the five classes of real non-singular cubic surfaces. In fact, it is by means of these
equations that Klein proved in [Kle21] the achirality of all real non-singular cubic surfaces
(cf. the remark at the end of this section).

One can easily check that for cα having all of the same value c, the topology of the hypersurface
is changing at c= 0, 4, 16, and 36. For c < 0 and c > 36 the real part of the hypersurface is
diffeomorphic to the real four-dimensional projective space, RP4. When c= 36, there appears
a solitary double point, so that for 16< c < 36 we observe S4 t RP4. When c= 16, our
hypersurfaces acquire six double points of Morse index (1, 4) with respect to growing c (the
first, respectively second, component of the index is the number of positive, respectively

1300

https://doi.org/10.1112/S0010437X09004126 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004126


On the deformation chirality of real cubic fourfolds

negative, squares) and, therefore, for 4< c < 16 the real part of the hypersurface is diffeomorphic
to the real four-dimensional projective space with five S1 × S3-handles, that is, RP4#5(S1 × S3).
Finally, when c= 4, one finds that there are 15 double points of the Morse index (2, 3), which
implies that the Euler characteristic of our hypersurfaces becomes equal to 21. According to the
classification of cubics (see [FK08]), there is only one coarse deformation class with this value
of Euler characteristic (in fact, it is the class studied above in § 7.7), and for the cubics of this
class the real part has the homological type of RP4#10(S2 × S2). (One can also give a direct
proof based on the Lefschetz trace formula and the Smith theory, which allow us to reconstruct
the Betti numbers from the action of the complex conjugation in homology.)

Since for cα having all of the same value the equation is invariant under transposition of the
variables, all of these hypersurfaces represent achiral classes. In the same manner, one can show
that the whole left-hand slanted border of the diagram shown in Table 10 consists exclusively of
achiral classes.

8.4 Chirality in lower dimensions: quartic surfaces
When discussing the real non-singular hypersurfaces X of dimension n and degree d, it is
easy to see their achirality in the trivial cases n= 0 (for any d), and d 6 2 (for any n). As
was pointed out in the introduction, X is also achiral if n is odd. Achirality of cubic surfaces
was observed by Klein, as we mentioned in § 8.3. The next case of quartic surfaces was analyzed
in [Kha84, Kha88] using a technique similar to the technique we used in this paper. It turned
out that a real non-singular quartic X with a non-contractible (in P 3(R)) real locus X(R) is
chiral if and only if X(R) has at least four spherical components, and a quartic with contractible
real locus is chiral if and only if the real locus has at least three spherical components and, in
addition, a component with at least three handles (see Table 11, where r is the rank of the +1-
eigen-lattice L+ = {x ∈H2(X) | conj∗ x= x}, d is the discriminant rank of L+, and symbols a,
or c stand as in Table 10 for achiral or, respectively, chiral deformation classes).

8.5 Reversibility
In connection with chirality, it may be worth mentioning a different but somewhat related notion
of reversibility, which plays a non-trivial role for instance for odd-dimensional hypersurfaces.
Namely, to each deformation class of real non-singular hypersurfaces X ⊂ Pn+1 of degree d, that
is, a connected component C of Cn,d = Pn,d(R) \∆n,d(R), we can associate its pull back C̃ into the
sphere P̃n,d(R) which covers Pn,d(R). This pull back is either connected, or splits into a pair of
opposite components. We say that C and the corresponding hypersurfaces X ∈ C are reversible
in the first case, and irreversible in the second case. In other words, X is reversible if its defining
homogeneous polynomial, f , can be continuously changed into −f without creating singularities
in the process of deformation. One can extend the notion of reversibility to singular varieties
replacing non-singular continuous families of equations by equisingular families.

If the degree d is even, then the region in Pn+1(R) where f > 0 defines a coorientation of X(R)
and reversibility obviously means possibility to reverse this coorientation by a deformation.
If n is odd, then such reversibility for non-singular hypersurfaces is impossible, because the
regions where f > 0 and f < 0 are homologically different: they are distinguished by the highest
dimension in which the inclusion homomorphism is non-zero. If n is even, then reversibility
is possible: for example, a quadric is reversible if the signature of its equation vanishes and
irreversible otherwise. Furthermore, it is not difficult to show that a real non-singular quartic
surface X is irreversible if X(R) has more than one connected components, as well as if it
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Table 11. Chirality of quartic surfaces.

d
10 a
9 a a
8 a a a
7 a a a a
6 a a a a c
5 a a a a c c
4 a a a a c c c
3 a a a a c c c c
2 a a a a c c c c c
1 a a c c c c
0 a c c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 r

Non-contractible case

d
11 a
10 a a
9 a a a
8 a a a a
7 a a a a a
6 a a a a a a
5 a a a c a a a
4 a a a c c a a a
3 a a a c c c a a a
2 a a a c c c c a a a
1 a a c c a a
0 a c a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 r

Contractible case

has a single component which is contractible in P 3(R). Conversely, if X(R) is connected and
non-contractible, then the quartic is reversible, at least if the genus of X(R) is less than 10
(the extremal case, g = 10, remains unknown to the authors). Thus, we obtain nine reversible
cases, more than 100 irreversible cases, and a unique unresolved case.

If the degree d is odd and n is even, then X is reversible for a trivial reason, because −id and id
belong to the same connected component of GL(n+ 2, R), and f(−x) =−x. If both d and n are
odd, then f determines an orientation of X(R) and reversibility obviously means the possibility
to alternate this orientation. If X(R) is symmetric with respect to a mirror reflection, then such
an alternation is realizable by a projective transformation, which is one of the manifestations
of the similarity between the notions of reversibility and achirality. The existence of symmetric
models proves, in particular, the reversibility of curves of degree at most five.
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In the case of non-singular cubic threefolds the problem of reversibility is already non-trivial.
The deformation classification of such cubics obtained in [Kra06] gives nine classes. Our analysis
has shown that just one of these classes is irreversible, namely, the class denoted by B(1)′I
in [Kra06].
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