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Abstract. We show that the vanishing order of a non-zero vector ¢eld at a generic point of a
smooth Fano variety of Picard number 1 cannot exceed the dimension of the Fano variety.
Furthermore, if there exist only ¢nitelymany rational curves ofminimal degree through a generic
point of the Fano variety, we show that a non-zero vector ¢eld cannot vanish at a generic point of
the Fano variety.
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1. Introduction

The dimensions of the automorphism groups of projective varieties of dimension n
cannot be bounded in terms of n. For example, the dimension of the automorphism
group of the Hirzebruch surface P�O�m� � O�;m > 0; is m� 5.

In this paper, we will give a bound on the dimension of the automorphism group of
a smooth Fano variety X of Picard number 1 in terms of n � dim�X � by giving
a bound on the vanishing orders of vector ¢elds at a generic point of X . Here
the vanishing order of a vector ¢eld is de¢ned as follows. A non-zero vector
¢eld V on a smooth variety X has vanishing order kX 0 at x 2 X if
V 2 H0�X ;T �X � 
mk� but V 62 H0�X ;T �X � 
mk�1�, where T �X � is the tangent
bundle of X and m is the maximal ideal at x. Throughout the paper, we will work
over the complex numbers.

To state our results, we need the concept of standard rational curves. Let X be a
smooth uniruled projective variety of dimension n. By Mori's bend-and-break trick
([Ko] Ch.II), there exists a rational curve C � X , such that under the normalization
n : P1! C � X , n�T �X � � O�2� � �O�1��p �Oq; p� q� 1 � n. Such a rational curve
C will be called a standard rational curve. For example, choose a generic point x and
consider rational curves passing through x which has minimal degree with respect to
a ¢xed ample divisor. Then a generic choice of such a curve is a standard rational
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curve. A standard rational curve C needs not be smooth. But its normalization
n : P1! C � X is an immersion. For convenience, we will call the bundle
n�T �X �=T �P1� � �O�1��p �Oq on the normalization of C as the normal bundle of C.

Note that many Fano varieties have standard rational curves with p � 0. For
example, any Fano threefold of Picard number 1, except the projective space
and the hyperquadric, has standard rational curves with p � 0. In general, if there
exist only ¢nitely many rational curves of minimal degree through a generic point
of a smooth Fano variety, it is easy to see from the basic deformation theory (e.g.
[Ko]), that these rational curves are standard rational curves with p � 0. In this case,
we will prove the following.

THEOREM 1. Let X be a smooth Fano variety of Picard number 1 of dimension X 3
having standard rational curves with p � 0 and x 2 X be a generic point. Then there
exists no non-zero vector ¢eld on X which vanishes at x.

An immediate consequence is

COROLLARY 1. Let X be a smooth Fano variety of Picard number 1 of dimension n
having standard rational curves with p � 0. Then the dimension of the automorphism
group of X is W n.

Theorem 1 implies that if the dimension is n in Corollary 1, the variety must be
almost homogeneous. This is the case for Mukai^Umemura threefolds ([MU]),
which are SL�2;C�-almost homogeneous Fano threefolds satisfying the assumption
of Theorem 1. In this sense, Corollary 1 seems optimal.

For p > 0, we have the following result.

THEOREM 2. Let X be a smooth Fano variety of Picard number 1 of dimension nX 2
having standard rational curves with p > 0 and x 2 X be a generic point. Then there
exists a positive integer m and a nonnegative integer l satisfying l� �p� 1�mW n
such that the vanishing order at x of any non-zero vector ¢eld on X cannot exceed
l � 2m. In particular, the vanishing order at x cannot exceed n.

The idea of the proof of Theorem 2 can be best illustrated by proving it for
p � nÿ 1. Since m � 1 and l � 0 for p � nÿ 1, we have to show that the vanishing
order cannot exceed 2. Suppose the vanishing order at x of a vector ¢eld V is
X 3. Then the one-parameter group of automorphisms of X induced by V acts
trivially on the tangent space Tx�X �. We claim that this action preserves each stan-
dard rational curve through x. Otherwise, this action sends some standard rational
curve through x to a family of standard rational curves through x having the same
tangent vector at x. Then the in¢nitesimal deformation will give a section of the
normal bundle vanishing at x with multiplicity X 2. This is impossible from the
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splitting type of the normal bundle of a standard rational curve. Thus V is tangent to
each standard rational curve through x. Since the vanishing order of V at x is X 3
while c1�P1� � 2, V vanishes identically on each standard rational curve through
x. But from p � nÿ 1, standard rational curves passing through x cover a Zariski
dense open subset in X . This shows that V vanishes identically on X . The proof
of Theorem 2 is a re¢nement of this argument.

Since the dimension of the vector space of polynomial vector ¢elds in n variables
with coef¢cients of degree W n is

n� n� n
nÿ 1

� �
� n� n� 1

nÿ 1

� �
� � � � � n� 2nÿ 1

nÿ 1

� �
� n� 2n

n

� �
;

Theorem 2 gives the following bound on the dimensions of automorphism groups of
Fano varieties.

COROLLARY 2. Let X be a smooth Fano variety of Picard number 1 of dimension n.

Then the dimension of the automorphism group of X is less than or equal to n� 2n
n

ÿ �
.

It should be mentioned that it is possible to get a bound on the dimension of the
automorphism group of a smooth Fano variety of Picard number 1 by known results.
In fact, by the results on Fujita's conjecture, e.g. [Si], we have a bound on the integer
m for which jmKÿ1j is very ample for all smooth Fano varieties of dimension n with
Picard number 1. Then Alan Nadel's proof of the boundedness of degree of Fano
varieties of Picard number 1 of a ¢xed dimension gives a bound N on the dimension
of jmKÿ1j ([Na]). So the dimensions of automorphism groups will be bounded
by the dimension of PGL�N � 1�. But this bound is quite huge because the known
bounds on m and the dimension of jmKÿ1j are huge, and usually there is a big dif-
ference between the automorphism group of a Fano variety X and
PGL�jmKÿ1X j�. For example, even assuming Kÿ1 is very ample, i.e. m � 1, the bound

one can get by this method is the square of n2�2n
n

� �
, which is much larger than ours.

Moreover, it is unclear that such a bound on the dimensions of automorphism
groups gives a bound on the vanishing orders of vector ¢elds at generic points.

We expect that the bound in Theorem 2 is far from being optimal. In this regard,
we would like to raise the following questions.

QUESTION 1. Let X be a smooth Fano variety of Picard number 1 and x 2 X be a
generic point. Is the vanishing order at x of any non-zero vector ¢eld on X less than
or equal to 2?

QUESTION 2. Is the dimension of the automorphism group of an n-dimensional
smooth Fano variety of Picard number 1 bounded by that of Pn?
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2. Proof of Theorem 1

Given a smooth uniruled projective varietyX , choose an irreducible componentK of
the Chow scheme of curves on X so that a generic point of K corresponds to a stan-
dard rational curve. By taking normalization, we can construct universal family
morphisms c : F ! K and f : F ! X (e.g. [Ko] Ch.II) so that for a point k 2 K
corresponding to a standard rational curve, the ¢ber cÿ1�k� is P1 and fjcÿ1�k� is
an immersion of P1. The ¢ber of f over a point in f�cÿ1�k�� has dimension p, where
p is the number of O�1�-factors in the splitting of T �X � over the normalization
of the standard rational curve f�cÿ1�k��.

Proof of Theorem 1. Choose K as above with p � 0 and the universal family
morphisms c : F ! K and f : F ! X . From p � 0, f is generically ¢nite and a stan-
dard rational curve is an immersed P1 with trivial normal bundle. Thus f is
unrami¢ed at every point on a generic ¢ber of c. Replacing F by its
desingularization, we assume that F is smooth. f remains to be generically ¢nite
and unrami¢ed at every point on a generic ¢ber of c.

Let R � F be the rami¢cation loci of f. A generic ¢ber F of c is disjoint from the
rami¢cation loci R and f is biholomorphic in an analytic neighborhood U � F
of F .

We claim that f is not birational. Otherwise, we may assume that fÿ1�f�U�� � U.
Shrinking U if necessary, we can choose a general hypersurfaceH � K disjoint from
c�U�. Then f�cÿ1�H�� is a hypersurface on X disjoint from C � f�F �. This is a con-
tradiction to the assumption that X has Picard number 1. Thus f is not birational.

Let B � X be the codimension 1 loci of f�R�, which is nonempty since f is not
birational and X is simply connected. From the triviality of the normal bundle,
we may assume that the generic curve C is disjoint from the codimension 2 set
f�R� n B. We claim that fÿ1�C� contains an irreducible component C0 such that
f : C 0 ! C is not birational. In fact, since C intersects B from the Picard number
of X , some component C0 intersects R. If f : C0 ! C is birational, deformations
of C0 induce deformations of C by the genericity of C. It follows that both C
and C 0 have trivial normal bundles. This is a contradiction to KF � f�KX � R.

Let ~f : ~C 0 ! ~C be the induced morphism on the normalizations. Then ~f has at
least two distinct branch points on ~C. Otherwise, we have a ¢nite unrami¢ed cover-
ing of C, a contradiction. We conclude that nÿ1�B� has at least two distinct points,
where n : ~C ! X is the normalization of C

Now let x 2 X be a generic point and suppose there exists a vector ¢eld V on X
vanishing at x. Then the one-parameter group of automorphisms of X induced
by V ¢xes the ¢nitely many curves C1; . . . ;Cm through x belonging to the family
K. Thus V must be tangent to each Ci. Let ni : ~Ci ! Ci be the normalization. Since
the divisor B is determined by K, B is invariant under V . So V vanishes at the points
Ci \ B. But from the above discussion, the lifted vector ¢eld ~V on ~Ci vanishes at least
at three distinct points nÿ1i �B� and nÿ1i �x�. It follows that V vanishes identically onCi.
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Arguing at a generic point on Ci in place of x, we see that V vanishes on points which
can be joined to x by the union of two intersecting rational curves belonging to the
family K. Repeating the same argument, V vanishes on points which can be joined
to x by the connected chain of ¢nitely many curves belonging to the family K. Since
the Picard number of X is 1, this means that V vanishes on generic points of X
(e.g. [Ko] IV.4) and V � 0. &

3. Proof of Theorem 2

We start with a discussion on how the vanishing orders of a vector ¢eld change along
standard rational curves.

PROPOSITION 1. Let X be a smooth uniruled projective variety. Let V be a vector
¢eld on X with vanishing order kX 1 at x 2 X. Suppose there exists a standard
rational curve C through x at a generic point of which the vanishing order of V is
k. Assume that the vanishing order of V is lX k at some point y 2 C. Then

(i) l ÿ kW 2;
(ii) if l ÿ k � 2, then the k-jet of V at x regarded as an element of Tx�X � 
 SymkT�x �X �

lies in the subspace Tx�C� 
 SymkT�x �X �.
In the statement of (ii), the standard rational curve C is an immersed P1 and may

have several branches at x. But the proof of Proposition 1 shows that all the branches
must have the same tangent direction at x, which we denote by Tx�C�.

Proof. Let JmT �X � be the mth order jet bundle of T �X �. We may pull-back the
exact sequence of vector bundles

0ÿ!T �X � 
 SymkT��X � ÿ! JkT �X � ÿ! Jkÿ1T �X � ÿ! 0

by the normalization of C, and regard all bundles to be de¢ned on P1. Let my be the
ideal sheaf on P1 corresponding to the point y. Since V vanishes to the order k along
C and to the order l at y 2 C, it de¢nes a non-zero section t of
H0�P1;T �X � 
 SymkT��X � 
mlÿk

y �. From the splitting type

T �X �
 SymkT��X �jP1
� �O�2� � �O�1��p �Oq� 
 Symk�O�ÿ2���O�ÿ1��p�Oq�;

we see (i) immediately. Furthermore if l ÿ k � 2, then t must be a section of
O�2� 
 Symk�Oq� vanishing to the order 2 at y. Since the O�2�-factor of T �X �jP1

cor-
responds to Tx�C�, (ii) follows. &

PROPOSITION 2. Let X be a smooth uniruled projective variety and
Ct; t 2 D :� fjtj < 1g be a family of distinct standard rational curves sharing a com-
mon point x 2 X. Suppose there exists a vector ¢eld V on X such that the vanishing
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order of V is kX 0 at x and at generic points of Ct for each t 2 D. If the vanishing order
is lX 2 at some point yt 2 Ct for each t 2 D, then lW k� 1.

Proof. First we show that k > 0, namely, V vanishes on Ct for all t 2 D. Since the
one-parameter group of automorphisms of X induced by V acts trivially on the
tangent space of X at yt, this action moves Ct with its tangent vector at yt ¢xed.
But standard rational curves cannot be deformed with a tangent vector at a point
¢xed because the in¢nitesimal deformation gives a section of the normal bundle
of the curve vanishing to order 2 at that point. It follows that the action preserves
Ct for each t 2 D and ¢xes the point x. In other words,V is tangent toCt and vanishes
at x. So V jCt

has at least three zeroes, a double zero at yt and a single zero at x,
showing that V vanishes on Ct.

Now we can apply Proposition 1 to each Ct. Suppose l � k� 2. From Proposition
1 (ii), the k-jet ofV at x lies in Tx�Ct� 
 SymkT�x �X � � Tx�X � 
 SymkT�x �X �. Thus the
the tangent direction of Ct at x is independent of t 2 D and Ct's give a family of
standard rational curves with the tangent vector at x ¢xed, a contradiction. &

Now we assume that X is a smooth Fano variety of Picard number 1. Fix an
irreducible component K of the Chow scheme of curves on X so that a generic point
of K corresponds to a standard rational curve on X . We say that an irreducible
subvariety A � X is saturated if for any standard rational curve C belonging to
K, either C � A or C \ A � ;.

LEMMA 1. Let X be a smooth Fano variety of Picard number 1. There exists a
countable union of proper subvarieties of X, so that the only saturated subvariety
of X containing a point outside this countable union is X itself.

Proof. Otherwise the union of saturated subvarieties of dimension < n � dim�X �
cover a Zariski-open subset of X . Thus there exists an irreducible subvariety H
of the Hilbert scheme of X whose generic point corresponds to a saturated proper
subvariety of X so that the members ofH cover the whole X . By choosing a suitable
subvariety of H, we get a hypersurface H � X which is the closure of the union of
some collection of saturated proper subvarieties of X . Choose a standard rational
curve C1 belonging to K which is not contained in H. From the condition on
the Picard number, C1 intersects H. Thus small deformations of C1 intersect generic
points of H. This gives standard rational curves not contained in H but intersects
saturated subvarieties lying in H, a contradiction to the de¢nition of saturated
subvarieties. &

If A � X is not saturated and A 6� X , then we can ¢nd a standard rational curve C
belonging to K which is not contained in A but contains a point of A. Small
deformations of standard rational curves are standard rational curves, and the union
of all such deformations contain an open neighborhood of C. Thus given a generic
point a 2 A, there exists a standard rational curve belonging to K which is not con-
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tained in A but contains a. Let c:F ! K and f:F ! X be the universal
family morphisms, as explained in Section 2. Given A � X as above,
f � cÿ1 � c � fÿ1�A� contains an irreducible component A0 which contains A prop-
erly so that given a generic point a 2 A0 there exists a standard K-curve C containing
a with C \ A 6� ;. There may be many possibilities for A0. We choose one such A0

with maximal dimension and say that A0 is obtained from A by attaching standard
rational curves.

PROPOSITION 3. Given an irreducible subvariety A � X which is not saturated, let
A0 be an irreducible subvariety obtained from A by attaching standard rational curves.
Then either dim�A0�X dim�A� � p� 1, or for a generic point a 2 A0, there exists a
family Ct; t 2 D of distinct standard rational curves belonging to K such that
a 2 Ct and Ct \ A 6� ; for all t 2 D.

Proof. Note that f has a generic ¢ber of dimension p. Thus a component Â of
cÿ1 � c � fÿ1�A� with f�Â� � A0 has dimension X dim�A� � p� 1. If f is generi-
cally ¢nite on this component, we have dim�A0�X dim�A� � p� 1. Otherwise,
for each generic a 2 A0, c�fjÿ1

Â
�a�� will give the required family of standard rational

curves. &

We are ready to ¢nish the proof of Theorem 2.

Proof of Theorem 2. If the bound on the vanishing order holds for some point on
X , it will hold for generic points of X . Thus we may prove it for some x 2 X .

Choose a point x 2 X so that any proper irreducible subvariety of X containing x
is not saturated (Lemma 1). Choose a sequence of irreducible subvarieties
A0 � A1 � � � � � ANÿ1 � AN � X so that A0 � x and Ai is obtained from Aiÿ1 by
attaching standard rational curves. Let m be the number of inclusions Aiÿ1 � Ai

with dim�Ai�X dim�Aiÿ1� � p� 1. Note that there does not exist a non-trivial family
of standard rational curves sharing two distinct points, from the splitting type
of their normal bundles. Thus dim�A1�X dim�A0� � p� 1 and mX 1. Let
l � N ÿm. Then �p� 1�m� lW n.

Let V be a vector ¢eld on X which has order ki at generic points of Ai. If kiÿ1 X 3,
thenV vanishes onAi as in the proof of Proposition 2, and applying Proposition 1 (i),
we see that kiÿ1 ÿ ki W 2. If kiÿ1 X 2 and dim�Ai� < dim�Aiÿ1� � p� 1, we have
kiÿ1 ÿ ki W 1 by Proposition 2 and Proposition 3. Combining these, if
k0 > l � 2m, then kN > 0 and V vanishes on AN � X identically. Thus
k0 W l � 2m. &
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