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Abstract

We investigate the shape and strength of the magnetic fabrics (anisotropy of magnetic suscep-
tibility (AMS) data) of various massive granitic plutons from different parts of India, using the
eigenvalue method. The study aims to analyse eigenvalues and establish their relationship with
various deformational attributes. It involves: (1) calculating eigenvectors and their correspond-
ing eigenvalues from magnetic fabric datasets; (2) finding a link between the geometrical
appearance of eigenvectors and the mechanistic issues involved with a specific deformation sce-
nario; and (3) determining shape and strength parameters from the magnetic foliation data
distribution.

The statistical analysis for the unimodal magnetic fabric dataset of orthorhombic symmetry
class implies that the plane, consisting of intermediate (V2) and minimum (V3) eigenvectors
with pole V1, accurately traces the instantaneous stretching axis (ISAmax) of a particular
material flow system under a pure shear regime. Moreover, for the distributions of similar sym-
metry and modality, we infer that the rotational characteristics of eigenvectors with respect to a
fixed coordinate cause a distinct shift of such planes (V2–V3) from the ISAmax of a steady-state
flow system under simple shear, where a substantial amount of rotational strain is involved.
However, our findings also suggest that variation in symmetry and modality of magnetic fabric
data distribution of different studied granitoids can directly influence the relative disposition of
V2–V3with respect to the direction of ISAmax.We conclude that eigenvalue analysis of magnetic
fabrics is a powerful approach, which can be utilized while studying the salient deformational
aspects of any syntectonic massive granitic body.

1. Introduction

Shape fabric analysis is an important aspect to unravel the complex geological structures and
determine the state of strain in rocks (Woodcock, 1977; Cobbold & Gapais, 1979). Various
methods have been used to investigate shape fabrics, such as stereographic projection, eigen-
value calculations, and anisotropy of magnetic susceptibility (AMS) measurements (e.g.
Woodcock, 1977; Cobbold & Gapais, 1979; Launeau et al. 1990; Simpson & De Paor, 1993;
Tikoff & Fossen, 1995; Wallis, 1995; Launeau & Robin, 1996; Olivier et al. 1997; Grasemann
et al. 1999; Gomez-Rivas et al. 2007). Amongst these methods, the eigenvalue method is a
powerful tool which provides detailed information about the shape as well as the strength of
the fabrics. It also helps to quantify the degree of randomness, both arithmetically and graphi-
cally (Williams & Chapman, 1979; Woodcock & Naylor, 1983).

AMS is often measured to quantify the fabric of low-anisotropy rocks, i.e. rocks which do not
show any mesoscopic field foliation such as granite, quartzite etc. (Owens & Bamford, 1976;
Tarling & Hrouda, 1993; Borradaile & Henry, 1997; Bouchez 1997; Borradaile & Jackson,
2004; Mondal & Mamtani, 2013). AMS helps to understand the deformation and strain varia-
tion in a rock and establish the tectonic history of a region (Mamtani &Greiling, 2005; Almqvist
et al. 2014; Ferré et al. 2014; Mondal & Mamtani, 2014 and references therein). AMS involves
inducing a magnetic field in a sample in different directions and measurement of the induced
magnetization in each direction (Tarling & Hrouda, 1993). The orientation and magnitude of
the three principal axes of the AMS ellipsoid allow the magnetic planar and/or linear fabric to be
determined.

Although AMS provides information about the magnetic fabrics, it is challenging to relate it
to deformation in case of poly-deformed rocks. In superposed deformation, the early formed
magnetic foliation in rocks may be reoriented and become very weak. Thus, it is crucial to quan-
tify these fabrics in light of regional deformation. The eigenvalue method helps to analyse such
fabrics using few parameters. Collectively, most of the previous studies performed on the geo-
logical application of AMS methods show a lack of clear assessment of the correlation between
eigenvector analysis of AMS data and its connection with the mechanistic issues related to
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regional tectonics. Of a few studies that have addressed such topic,
Parés et al. (1999) used eigenvector analysis of AMS data to link
magnetic fabric development with the progressive deformation
in mud rocks. In this regard, Pueyo et al. (2004) also discussed
the utilization of normalized eigenvalues in order to analyse mag-
netic fabric statistics of paramagnetic granites.

In the present paper, we use published AMS data from five dif-
ferent granitoids of India and analyse them using the eigenvalue
method to quantify their degree of relative randomness. The
present investigation uses the following steps: (1) calculation of
eigenvalues and corresponding eigenvectors from the ‘orientation
tensor matrix’; and (2) determination of shape and strength
parameters from themagnetic foliation data. The study graphically
quantifies the degree of randomness of poles to magnetic foliation.

2. Shape fabric analysis using eigenvalue method – the
background

In geology, the characterization of directional data along with their
relative attitude, randomness and shape are crucial. For a large-
array dataset, overlap between data is common and their represen-
tation becomes challenging. Therefore, an approach consisting in
specifying directional features by a limited number of representa-
tive parameters should avoid this large-array problem. Shape fabric
analysis is very useful method in representing such a dataset.
Attributing these representative parameters can be solved using
a procedure that involves a tensor matrix determined from the
dataset, and from which eigenvectors and eigenvalues may be cal-
culated (Watson, 1966; Mark, 1973, 1974; Owens, 1973; Mark &
Andrews, 1975; Woodcock & Naylor, 1983).

Before diving into main purpose of the current study, we would
like to briefly refer to some well-known previously proposed meth-
ods of shape fabric analysis. In order to depict the preferred orien-
tation of tectonically strained objects, Flinn (1965) established a
diagram, having the ‘maximum/intermediate’ and ‘intermediate/
minimum’ as its vertical and horizontal axes, respectively, which
has been of immense interest to structural geologists till today.
Subsequently,Woodcock (1977) introduced another spherical data
analysis method, termed as the ‘Flinn–Woodcock plot’, by inte-
grating the shape of ellipsoid with the distribution type (i.e. clus-
ter/great-circle girdle) of the orientational data. In addition to
these, other interestingmethods of analysing the fabric shapes were
proposed by Jelínek (1981), which not only described the type of
magnetic anisotropy, but also addressed some important issues
associated with the anisotropic concentration of orientational data.
Borradaile (2003) provided an in-depth review of several methods
of spherical-orientation data analysis, relating to sampled AMS
data distribution in time, space and orientation.

However, it may be noted that these studies were all restricted to
the fabric shapes originating from the single deformation event and
provided scope to further study the more complex, multi-modal
data distributions, which are the product of some specific regional
tectonics.

In this present study, we perform the eigenvalue analysis
method and analyse magnetic fabrics of different syntectonic
granitic plutons from different parts of India to comment on
the variation of magnetic shape fabric from a coaxially deformed
region to a non-coaxially deformed one. As Scheidegger (1965) and
Woodcock (1977) provide a detailed description of the theoretical
basis of this eigenvalue method, we present here only the salient

aspects of the principle involved in shape fabric analysis. The
eigenvalue method assumes that each orientation is represented
by a unit vector. Therefore, a 3 × 3 matrix, called an ‘orientation
tensor matrix’, is formed by taking the summation of the cross-
products of the direction cosines of unit vectors (Scheidegger,
1965).
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A normalized form of this matrix (A) is given below:

A ¼ a=N:

where, N is the number of data; l, m and n are the direction
cosines of a particular unit vector. Further, the eigenvectors (v1,
v2 and v3) and their corresponding eigenvalues (λ1, λ2 and λ3)
are determined from the above tensor matrix. The maximum
eigenvector v1 represents the direction along the minimum
‘moment of inertia’ of the distribution, while v3 indicates maxi-
mum ‘moment of inertia’ (Watson, 1966). The eigenvalues are
used mainly in their normalized form:

S1 þ S2 þ S3 ¼ 1; where Si ¼ �i=N:

These normalized eigenvalues are directly related to the shape
of the fabric, as the clusters and girdles in equal-area projection of a
distribution consist of S1 > S2 ~ S3 and S1 ~ S2 > S3, respectively
(Watson, 1966).

The last step of this analysis involves the calculation of two
parameters from the graphical presentations of S1, S2 and S3:
(i) The shape parameter (K), which can be obtained by plotting
the ln(S2/S3) vs ln(S1/S2), similar to the Flinn diagram (Flinn,
1962); and (ii) the strength parameter (C) defined by ln(S1/S3)
which quantifies the randomness of the distribution.

In the present paper, we use the above two parameters, and posi-
tion of the eigenvectors on the equal-area projection of the poles to
the magnetic foliations corresponding to the primary dataset com-
ing fromdifferent granitoids of India. The randomness is quantified,
and this is followed by an assessment of the shape of the distribution
data in the light of their regional tectonics. Figure 1 shows the step-
wise procedure of the above-described calculations applied to the
poles to magnetic foliations (K3) represented by their plunge (P)
and trend (T) coming from the Chakradharpur granite (India).

3. Available data

As already mentioned, we have used the AMS data from five gran-
ite bodies, namely Chakradharpur, Godhra, Malanjkhand, J. N.
Kote and Chitradurga, located in various parts of India (see
Fig. 2). Extensive AMS studies have been carried out in the above
regions. All the granites have been inferred to be syntectonic with
regional deformation and associated with regional-scale shear
zones in their respective vicinities. Below we provide available data
which are only salient for the present analysis.

3.a. Chakradharpur granitoid

The magnetic fabric in this Precambrian granitoid has developed
syntectonically along with the evolution of the Singhbhum Shear
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Zone (SSZ) that lies to its south (Mamtani et al. 2013). The
Chakradharpur granitoid lacks well-developed magmatic fabrics,
and the mean magnetic susceptibility (Km) varies from 67.6 to
659 μSI (Table 1). It has been inferred that biotite is the main para-
magnetic phase contributing to its AMS (Mamtani et al. 2013). The
mean magnetic foliation plane (K1K2) has an orientation of N54°E
(strike) with a steep to vertical dip (Fig. 2a). Mamtani (2014) has
performed a 2D vorticity analysis and concluded that the fabric of
this granite body is dominated by pure shear (kinematic vorticity
number Wk= 0.58) and associated with the evolution of nearby
shear zone.

3.b. Malanjkhand granitoid

AMS measurements have been performed in the ~2.48 Ga
Malanjkhand body (Fig. 2b) in order to evaluate the time relation-
ship between fabric development in the granite and the regional
tectonics (Majumder & Mamtani, 2009). The Central Indian
Suture (CIS) that defines the southern margin of the Central
Indian Tectonic Zone (CITZ) demarcates the NWboundary of this
granite body. The magnetic fabric trajectory that can be drawn in
the Malanjkhand granite is interpreted to be related to synmag-
matic deformation (Majumder & Mamtani, 2009). Mamtani
(2014), has previously identified two prominent sectors

Fig. 1. (Colour online) Stepwise procedure for eigenvector analysis (Woodcock & Naylor, 1983) from pole to magnetic foliation (K3) data (Mamtani et al. 2013).
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(domain-I and domain-II) in Malanjkhand granite based on their
spatial disposition with respect to the adjacent CITZ. The Km

shows a variation from 190.8 to 3490.5 μSI in domain-I.
However, for domain-II, this range is found from 268.47 to
5789.62 μSI (Table 1). It is also interpreted that domain-I and
domain-II are pure- (Wk= 0.98) and simple-shear (Wk= 0.34)
dominated, respectively.

3.c. Godhra granitoid

The Godhra body (955 ± 20 Ma) is known to have developed its
fabric synchronously with Grenvillian-age tectonic rejuvenation
of the Central Indian Tectonic Zone (CITZ) that lies to its south
(Fig. 2c). AMS studies have revealed that the paramagnetic miner-
als, namely biotite and in some samples hornblende, and the ferro-
magnetic (sensu lato) magnetite are the important phases that

Fig. 2. (Colour online) Location map of
the various younger granites from
Indian continent. (a–d) Regional maps
of Chakradharpur (Mamtani et al.
2013) (a), Malanjkhand (Majumder &
Mamtani, 2009) (b), Godhra (after Sen
& Mamtani, 2006) (c) and J. N. Kote
(Mondal & Mamtani, 2014) (d) gran-
itoids. (e, f) Map of Chitradurga granites
(Mondal, 2018). Dashed boxes in (e) and
(f) are the northern and southern part of
the granite, respectively. Inset in (a)
shows the locations of these granitoids
in the map of India. The lower-hemi-
sphere equal-area projection in each
panel shows the pole (K3) to magnetic
foliation and their corresponding sym-
metry arguments. Planes of symmetry
(m) are shown as dashed red lines in
each of the stereonets. Software
StereoNet (Allmendinger et al. 2013;
Cardozo and Allmendinger, 2013) was
used for all lower-hemisphere equal-
area projection and contouring (http://
www.geo.cornell.edu/geology/faculty/
RWA/programs/stereonet.html). Dashed
black lines in (a), (b), (d), (e) and (f) show
the trend of regional shear zone.
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Table 1. Characterization of every granitic body

Granitic body Emplacement age Deformation age(s)
AMS
sites (N)

Info of Bulk K Mean K1 Mean K3

NRM
info

% of
sites

Kmean

(×10−-6

SI)

σK
(×10−-6

SI)
dec.
(°)

inc.
(°)

dec.
(°)

inc.
(°)

Chakradharpur granite Archaean: ~3100 Ma Synmagmatic, with the evolution of SSZ 38 ~88 67.6 39.01 40 63 144 1 NA

<12 659 124.5

Malanjkhand granite
(domain-I)

Palaeo-Protero –zoic:
~2480 Ma

Syn-magmatic. Fabric development, influenced by
Palaeo-Proterozoic CITZ

28 >92 190.08 65.89 238 85 275 10 NA

<8 3490.5 2729.5

Malanjkhand granite
(domain-II)

134 ~44 268.47 88.42 283 83 65 22 NA

~58 5789.62 5075.84

J.N.Kote Granite 2560–2507 Ma Same as Point no. 6, 7 (see below) 46 100 69.85 25.99 354 44 253 12 NA

– – –

Godhra granite 955 ± 20 Ma Synchronous with Grenvillian-age tectonic rejuvenation of CITZ 236 >58 169.07 91.4 322 24 165 19 NA

<42 5756 4142.8

Chitradurga granite
(South)

2614 ± 10 Ma Late Archaean ductile, transpressive, coaxial D1 and D2, followed
by late-stage brittle D3 event

66 ~58 138.42 79.67 250 78 47 04 NA

<42 1289.06 696.09

Chitradurga granite
(North)

52 >88 116.69 73.85 192 75 76 25 NA

<12 585.14 46.8

Km = mean susceptibility; σK = standard deviation of magnetic susceptibility; K1 = magnetic lineation; K3 = pole to magnetic foliation – shaded regions for each studied granite depict % of sample sites, having ferromagnetic character. References for
available data: Chakradharpur (Mamtani et al. 2013); Malanjkhand (Majumder & Mamtani, 2009); Godhra (Sen & Mamtani, 2006); J. N. Kote (Mondal & Mamtani, 2014); Chitradurga (South) and Chitradurga (North) (Mondal, 2018).

226
SS

Acharyya
and

TK
M
ondal

https://doi.org/10.1017/S0016756822000747 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0016756822000747


contribute to the AMS (Mamtani & Greiling, 2005). The magnetic
foliation in the Godhra granite body is dominantly ENE–WSW in
orientation (Fig. 2b), i.e. parallel to the CITZ (Sen & Mamtani,
2006). Km values vary widely from 169.07 to 5756 μSI. Recently,
Mamtani (2014) concluded that the late-stage fabric in this mag-
matic body was dominated by pure shear (Wk= 0).

3.d. J. N. Kote granitoid

This Archaean-age granite body (Fig. 2d) is located in the vicinity
of the Chitradurga granite (Fig. 2e) and was emplaced syntectoni-
cally during the evolution of the adjacent Chitradurga Shear Zone
(CSZ). AMSwas performed on this granite (Mondal, 2018) and the
magnetic fabric is found to be parallel to the CSZ. Their susceptibil-
ity (Km), being ~69.85 μSI, indicates a dominant contribution of
paramagnetic phases. The magnetic fabric of the J. N. Kote body
is interpreted to be dominantly due to simple shearing
(Wk= 0.80) that occurred during its emplacement along the gran-
ite–TTG contact (Mondal, 2018).

3.e. Chitradurga granitoid

The fabric in granite (~2.6 Ga) from the Chitradurga region
(Western Dharwar Craton, south India; Fig. 2e, f) is analysed using
AMS study (Mondal, 2018; Mondal et al. 2020). The microstruc-
tural investigation on the granite shows a progressive textural over-
print from magmatic, through high-T to low-T solid-state
deformation textures. The mean magnetic foliation in the rocks
of the region is dominantly NW–SE-striking. Km values range from
138.42 to 1289.06 μSI in the southern region, while in the northern
region they vary from 116.69 to 585.14 μSI. The vorticity analysis
from magnetic fabric in the southern region of the Chitradurga
granite reveals that the NW–SE-oriented fabric formed under pure
shear condition (Wk= 0.06; Mondal, 2018; dashed box in Fig. 2e).
However, the northern region of the granite is closed to the adja-
cent CSZ and is inferred to be controlled by simple shearing
(Wk= 88; dashed box in Fig. 2f).

Based on the available magnetic dataset, each granitic body is
characterized in Table 1 (see table caption for references) by its
emplacement as well as deformation age(s), number of AMS sta-
tions, mean bulk susceptibility (Km and the information on stan-
dard deviation), and declination and inclination of mean K1 and
K3. This characterization, inturn, embodies the basis for two initial
important assumptions made for this study which are discussed in
Section 4.

We also use themagnetic foliation data to quantify the degree of
randomness of the fabric under this study. The study also helps us
to understand the mode of shearing (simple/pure) responsible for
the development of the magnetic fabrics in the corresponding
areas. Details of this application of magnetic fabric using the eigen-
value method are presented in Section 5.

4. Initial assumptions made in the current analysis

Prior to discussing the application of the present study, we epito-
mize the twofold aspects of our assumptions in the following
subsections.

4.a. Behaviour of granitic bodies under respective regional
deformation

The granitoids analysed in this study are replete with structural
fabric which has developed during their syntectonic emplacement

on account of corresponding regional tectonics. These granitic
plutons show superimposition of low-temperature deformation
textures over high-temperature and that developed uniformly
when the granites cooled from high temperature to low
temperature.

In the case of Malanjkhand (Majumder & Mamtani, 2009) and
Godhra granite (Mamtani & Greiling, 2005), the magnetic folia-
tions (K3) not only fit well with the field fabric orientation of
the two granites, but also show similarities to that of the older
gneiss adjacent to their margin. The magnetic lineation (K1) is
found to be consistent and uniform even in a large domain (kilo-
metre-scale). Furthermore, the presence (having overall consis-
tency in stretching lineation at km scale) and absence of
mylonite, respectively, in domain-I and domain-II of the
Malanjkhand granite (shown in Fig. 2b) support the uniform
and unique behaviour of each, while responding to the syntectonic
cooling that succeeded their emplacement. A discussion on the
kinematics of Chakradharpur granite (Mamtani et al. 2013) reveals
that the granite preserves an oblique relationship between its mag-
netic and field foliation, interpreting the development of the for-
mer in the crystallization stage. Besides, the field foliation of the
granite has been found parallel to the adjacent shear zone (SSZ)
orientation located in its southernmargin, indicating that themag-
netic and field fabrics of this granite ‘froze’ as succeeding events
under the progressive deformation linked to its syntectonic crys-
tallization. According to Mondal (2018), the other three studied
granites i.e. Chitradurga (South), Chitradurga (North) and J. N.
Kote, also preserve micro- and mesoscale features that are similar
to the Malanjkhand and Godhra granite. This study confirms the
existence of parallelism between magnetic foliations in these and a
regional trend of the adjacent shear zone (CSZ) as well as field foli-
ations measured from adjacent metasedimentary rocks. Moreover,
shape preferred orientation (SPO) analysis, performed by the same
author on recrystallized sub-grains of stretched quartz, demon-
strates that their long-axis orientation exactly traces the magnetic
foliations, which are again found to be in good agreement with the
regional stress states associated with these three granites
(Mondal, 2018).

Bearing in mind the above-discussed information related to all
of our studied granites (or part, as in Malanjkhand pluton), we
assume that they behaved in a uniform and homogeneous way
in order to record an overall shear type (pure/simple) during their
corresponding regional deformation. Indeed, the pluton-scale esti-
mation of different kinematic vorticity numbers (see their values in
Section 3) from the granitoids or any domain of it is also found to
be in line with our assumption.

In this connection, considering the main characteristics of K3

data on the stereonet, such as well-defined girdles or strong
maxima (the latter in our case) at the pluton scale, we observe that
there exist threemutually orthogonal planes of symmetry for all the
analysed granites (Fig. 2 insets). As suggested by Paterson and
Weiss (1961), this feature of the stereonet pattern can be used
to interpret the overall orthorhombic symmetry (Bingham,
1974) of structural fabric at larger scale (pluton scale, here), even
if any deviation (monoclinic/triclinic/axial, etc.) may exist at the
metric or decametric site scale as a result of natural variability,
including local response to deformation. Likewise, extrapolation
of any small-scale symmetry pattern seems not to be always
rational when assessing the structural dataset over a comparatively
large scale.

Since no field observations have marked occurrences of signifi-
cant local stress-induced perturbations in any of the studied
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plutons, we trust in the mutual orthogonality of three symmetry
planes to infer the overall orthorhombicity of the magnetic foli-
ation dataset at the pluton scale for each granite.

4.b. AMS ellipsoid and its relation to the rock fabric

The relationship between AMS ellipsoid and rock fabric (or min-
eral preferred orientations) has long been an absorbing subject of
discussion, and provides the final basis of our assumptions in the
present study. Several research (Rochette, 1987; Bouchez, 1997),
that thematically targeted granitic bodies with regard to this par-
ticular issue, clearly revealed that this relationship can be granted
for case where paramagnetic minerals make a dominant contribu-
tion to the bulk magnetic susceptibility (K) of a granitic body.
Although the interpretation of ferromagnetic and paramagnetic
data may differ substantially (Trindade et al. 1999; Terrinha
et al. 2017). Especially when the contribution of iron-phyllosili-
cates (such as biotite, amphibole, etc.) defines the K of a granite,
their magneto-crystalline anisotropy gives rise to parallelism
between their magnetic axes and crystallographic axes (and there-
fore their shape axis) (Martín-Hernández and Hirt, 2003).
However, in comparison with such granites where AMS can
directly be utilized as a strain indicator, drawing similar correla-
tions is somewhat complicated for ferromagnetic-dominated
(magnetite-bearing) granites. This is due to the functioning of
other factors such as a strong control of magnetite content on K
(Benn et al. 1993) and the ‘interaction anisotropy’ (Grégoire
et al. 1995). In the present study, information on bulk mean-mag-
netic susceptibility (Km and its standard deviation) for different
granitoids is subcategorized in Table 1 according to the percentage
of their AMS sites whose samples show either a paramagnetic or
ferromagnetic character. Bouchez (1997) stated that granites with
Km< 500 μSI can be interpreted as paramagnetic granites whereas
the others (Km> 500 μSI) are referred to as ferromagnetic. Based
on this, Chakradharpur, Malanjkhand (domain-I), J. N. Kote and
Chitradurga (North) granites (column 1 of Table 1) show that sam-
ples from ~90% of these sites are paramagnetic, whereas very few
(~8–12 %) appear to be ferromagnetic, so they behave as overall
paramagnetic-dominated granites. However, for the rest of the
granites (such as Malanjkhand (domain-II), Godhra and
Chitradurga granite (South)), ferromagnetic samples are observed
in a substantial percentage (~58 %) of sites, with paramagnetic
ones in <42–44 % of sites. It has also been previously established
for all granites that the iron-phyllosilicate such as biotite (and
hornblende in a few samples) was the main paramagnetic phase
in contributing to the development of magnetic susceptibility,
whilst magnetite (sensu lato) acted as an important ferromagnetic
contributor to the AMS (see individual references for each granite
in Table 1 caption). Taking account of the probable influence of
magnetite content on the magnetic fabric, we observe that mag-
netic anisotropy (Km vs P’; after Jelínek, 1981) scatterings for ferro-
magnetic samples do not provide any one-to-one relationships for
Malanjkhand (domain-II), Godhra and Chitradurga (South) gran-
ite (Supplementary figure 1, available online at https://doi.org/10.
1017/S0016756822000747). Furthermore, lower-hemisphere
equal-area projections of K3 orientations for all ferromagnetic
samples confirm their resemblance with respect to that in para-
magnetic samples (Supplementary figure 2, available online
athttps://doi.org/10.1017/S0016756822000747). This information
therefore allows us to conclude that so far as the orientations of
magnetic foliation are considered, the magnetite content of these

granites does not remarkably create noise in the contribution of
paramagnetic phases to the AMS.

In addition, ore petrography of the paramagnetic samples
clearly revealed that the opaque phases present in all the studied
granites are goethite, pyrite and hematite, excluding magnetite.
These studies also concluded that magnetite (for all the granites)
displays ‘Verwey Transition’ (Tarling & Hrouda, 1993) in the
cooling experiments, indicating their Multidomain (MD) charac-
teristics. This finally helps us to eliminate the possibility of inverse
fabric development in the studied granitoids. Based on the above
discussions, we have preferably assumed that the magnetic fabric
dataset used in the current study records mineral (or shape) pre-
ferred orientation and hence provides the strain information
directly for each of the studied plutons.

5. Results

The published magnetic data (poles to magnetic foliation) from
Chakradharpur, Malanjkhand (domain-I and -II), Godhra, J. N.
Kote, northern and southern Chitradurga granite are analysed
using the eigenvalue method. In Fig. 2 (insets), the positional indi-
viduality of characteristic eigenvectors, calculated (arithmetically)
from orientation tensor matrices (see Fig. 1, third and fourth steps)
using the available dataset, is depicted on the contoured lower-
hemisphere equal-area projection of poles to magnetic foliation
for each granitoid, separately.

It may be noted that all the granitoids show orthorhombic fab-
ric symmetry classes, where the position of the maximum eigen-
vector (V1), for each granitoid exhibits their tendency to overall
trace the densest area of data distribution on stereonets
(Fig. 2, inset).

In Fig. 3, the attitude of the plane containing the intermediate
and minimum eigenvector (i.e. the V2–V3 plane) is separately por-
trayed to determine its relative disposition with respect to mean
magnetic foliation (MF) and shear zone, for individual granitoid.
It is clearly evident from Fig. 3b1 and e that the strike of the V2–V3

planes for the pure-shear-dominated regions, such asMalanjkhand
domain-II and southern Chitradurga, exactly mimics the strike of
MF planes. Conversely, in the simple-shear-dominated regions
such as Malanjkhand domain-I, J. N. Kote and northern
Chiradurga, the relationship between V2–V3 andMF does not hold
with the aforementioned observation, as a distinct shift of the strike
of the V2–V3 planes from that of the MFs may be noted in
Figure. 3b2, c and f, respectively. The angular difference between
the strikes of V2–V3 andMF in these three granitoids is found to be
10°, 5° and 9°, respectively. Interestingly, however, the other two
studied granitoids i.e. Chakradharpur and Godhra (the shaded
region in the Fig. 3), exhibit an eccentric relationship between their
V2–V3 and MF directions, contrary to our observations both in
Figure 3b1 and e and in Figure 3b2, c and f. Despite being a
pure-shear-dominated region, the V2–V3 plane of Godhra granite
shows a marked angular variation (6°) from its MF plane’s strike.
Also, Chakradharpur, which is a general-shear-dominated region,
reflects greater angular variation (~11°) between the strikes of its
V2–V3 and MF than what we previously observed in other simple-
shear-dominated regions. Figure 3 (inset), where the angular rela-
tionships (between V2–V3 and MF) of all granitoids are plotted
against their vorticity numbers, also clearly reflects such eccen-
tricities observed in the two granitoids (see the shaded elliptical
region in Fig. 3 in-set). For the other granitoids, the angular shift
of the V2–V3 plane fromMF’s orientation linearly increases with a
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general increase in their vorticity number, i.e. the stronger the
component of simple shear under which a particular region
deforms, the greater is the angular shift of the V2–V3 plane from
its MF plane’s strike.

Seeking an explanation of this eccentricity observed in the
above-mentioned two granitoids (Chakradharpur and Godhra),
we analyse the modality of their data (K3) distributions in
Fig. 4. The histogram plots in Fig. 4 reveal that the declinations
of K3 appear to have been bimodal for Chakradharpur and
Godhra (Fig. 4a, d), while an overall unimodality is prevalent
for the other granitoids. In the next section, we elaborate on the
role of the varying modality of data distributions to explain the
connection between the orientations of V2–V3 and MF for the
studied granitoids in light of their different deformation regimes.

Figure 5 depicts the Cartesian plot (in ln space) of S2/S3 vs S1/S2.
The shape parameter (K) is equal to ln(S1/S2)/ln(S2/S3). By analogy
to the Flinn diagram, each plot in Figure 5 is divided into two
regions by the line K = 1. The region K> 1 depicts the cluster
shape of the distribution, while K< 1 denotes the girdle shape.
It is envisaged that the K values of all the granitoids show the clus-
ter shape of the distribution, except for the J. N. Kote granite. The K
values for Chakradharpur and Chitrdurga are found to be compa-
rable and lie close to a uniaxial clustering. The K value for the
Godhra granite tends toward 1 and suggests a feeble clustering

of the K3. Figure 6a presents a ternary diagram based on three indi-
ces, P (Point or Cluster), G (Girdle) and R (Random), that
represent the three end members of fabric distribution patterns
obtained from the normalized eigenvalues (S1, S2 and S3). To mea-
sure their relative values, we use the following relationships
(Vollmer, 1990):

P ¼ S1 � S2ð Þ

G ¼ 2 S2 � S3ð Þ

R ¼ 3S3

The above indices range from 0 to 1 with PþGþ R = 1. All the
studied granitoids show a K3 distribution pattern of less girdle
(<50 %). The granitoid from Chitradurga North shows the most
random K3 distribution, while the Chakradharpur granitoid dis-
plays the least random distribution. The strength parameter (C)
of K3 is presented in Figure 6b. Any point in each solid line in this
figure represents an equal strength value that increases away from
the origin. A dataset having a perfectly uniform distribution will lie
on the origin. Figure 6b shows that the J. N. Kote and Godhra
bodies have the highest and lowest C values, respectively, thus indi-
cating a maximum and minimum strength of their K3 distribution.

Fig. 3. (Colour online) Superimposition of V2–V3 planes and best-fit great circles (see legends) on lower-hemisphere equal-area projections of pole to magnetic foliation (K3) for
each individual granitoid, depicting their relations with the corresponding mean magnetic foliation planes (MF) and the flow apophyses directions of extension (Ae = shear zone).
The positional uniqueness of eigenvectors amid the K3 data distributions is also exhibited in each panel. (a), (b1), (b2) (c), (d), (e) and (f) denote Chakradharpur, Malanjkhand
(domain-II), Malanjkhand (domain-I), J.N.Kote, Godhra, Chitradurga southern and northern granite, respectively. The eigen parameters are achieved by writing algorithms in
MATLAB interface.
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Fig. 4. (Colour online) (a), (b1), (b2), (c), (d), (e) and (f) are the histograms of declinations of magnetic foliation of Chakradharpur, Malanjkhand domain-II and -I, J. N. Kote,
Godhra, Chitradurga southern and northern granite, respectively. (a) and (d) clearly show the bimodal distributions, while the rest remain overall unimodal.
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The detailed discussion and conclusions from the above results are
presented in Sections 6 and 7, respectively

6. Discussion

6.a. Estimating eigenvectors of magnetic fabric: a geometric
approach coupled with mechanistic issues

Considering an individual magnetic foliation as a unit vector and
following Scheidegger (1965), we primarily construct the 3× 3 ‘ori-
entation tensor matrix’ (see also the discussion in Section 2) to
compute three eigenvectors (V1, V2, V3) and the normalized eigen-
values (S1, S2, S3) associated with them. The abovemethod has been
applied for all the study areas, and therefore we obtain a different
set of characteristic eigenvectors for each granitoid. Accordingly,
assuming the individual datum of each distribution as a single
point of unit mass within a sphere, an ellipsoid can be constructed.
The three axes of the ellipsoid thus represent the direction of maxi-
mum, intermediate and minimum ‘moment of inertia’ of the
assumed dissemination of masses. In such a scenario, Watson
(1966) proposed that the direction of themaximum (V1) andmini-
mum (V3) eigenvectors derived from an ‘orientation tensor matrix’
should follow the directions at which the ‘moment of inertia’ of the
scattered masses is minimized and maximized, respectively.

For the magnetic fabric distributions in Malanjkhand (domain-
II) and Chitradurga (south), the computed maximum eigenvectors
(V1) show consistency in tracing the direction of the mean pole to
K3, which leads to the coincidence between the strikes of V2–V3

and MF in these regions. Besides, the minimum eigenvectors
(V3) define the poles to their best-fit great circles (Fig. 3).
Hence, the characteristics of the fabric eigenvectors obtained from
these two granites conform very well to Watson’s (1966) findings.
However, in the rest of the cases, strikes of the V2–V3 planes show
distinct angular variations with respect to the MF, thus not only
contradicting our previous observations as well as Watson’s
(1966) propositions, but also instantly drawing additional atten-
tion to the mechanistic issues associated with the origin of their
magnetic fabrics. Earlier AMS studies suggested that orientation
of the mean magnetic foliation (MF) can be treated as an
Instantaneous Stretching Axis (ISAmax) for syntectonic granitoids,
that deformed under a steady-state material flow system (Mamtani
et al. 2013; Mamtani, 2014; Mondal, 2018). Considering the ana-
lytical determination of the 2D vorticity of flow (Xypolias, 2010),
these investigations also estimated vorticity numbers in the studied

granites, using (1) the angle between strikes of different planes (mag-
netic and field fabrics) on a horizontal plane, and (2) the parallelism
between the direction of the shear zone and the extensional apophy-
sis (Ae) of flow. It has been recorded that material flow in the
Malanjkhand (domain-II), Chitradurga (south) and Godhra granit-
oid was close to the pure shear deformation, while simple shear
was the dominant mechanism in the Malanjkhand (domain-I),
J. N. Kote and Chitradurga (North) regions. Chakradharpur was
the only granitoid that experienced general shear.

When correlating the above information with the obtained
results, it can be physically accepted that the orientation of V2–
V3, having been an estimation of the direction at which ‘moment
of inertia’ of the distribution is maximized, should mimic the
ISAmax of a particular steady-state flow under pure shear regime
and retain its orientation throughout the all stages of progressive
deformation. This is why the strikes of V2–V3 planes exactly
coincide with that of MFs in Figure 3b1 and e. Contrasting this sce-
nario, when the non-coaxial progressive deformations are consid-
ered, the rotational component of shear seems plausible to rotate
the maximum eigenvector (V1) from the direction of minimized
‘moment of inertia’. Therefore, the rotational characteristics of
eigenvectors with respect to a fixed coordinate on the stereonet
physically explains the shift of V2–V3 orientation from MF
(=ISAmax) in the simple-shear-dominated granitoids (e.g.
Fig. 3b2, c and f). However, the results obtained from the
Chakradharpur and Godhra granitoids (shaded region in Fig. 3)
do not fit well with the above explanation as their V2–V3 planes
also depict recognizable angular variations from ISAmax orienta-
tions in spite of their flows’ being under general and pure shear
regime, respectively. We would like to state that such discrepancies
are attributed to the unique bimodal scattering (see Fig. 4a, d) pat-
tern of their magnetic fabric distributions in comparison with rest
of the granitoids. It may be noted that both the bimodality and the
substantial amount of rotational strain contributed to shifting the
V2–V3 from MF (or ISAmax) for Chakradharpur granitoid, while
the former was considered to be the sole reason behind the noted
strike mismatch of V2–V3 and MF in Godhra. We elaborate on
these deficiencies of using the eigenvalue approach, which are
related to the scattering pattern and symmetry classes of fabric data
distribution, further in the next subsection (6.3).

It also seems important to mention here that the position of the
V2–V3 plane may conveniently be used in the 2D vorticity analysis
of any flow under pure shear deformation, as it stays the same
along with the direction of ISAmax and does not rotate with respect
to flow apophyses of extension (Ae = shear zone) throughout the
entire history of progressive deformation. Nevertheless, the rota-
tional tendency of the V2–V3 plane with respect to ISAmax as well
as Ae during the progressive stages of deformation under any sub-
simple/simple shear confirms their inadequacy when performing
vorticity analysis from them. Therefore, we conclude that estima-
tion of fabric eigenvectors as well as determination of their connec-
tion with respect to the direction of ISAmax (=MF plane), at least
after checking the mode and symmetry of any fabric distribution
over the stereonet, can be utilized as a powerful tool to determine
the type of shear mechanism (i.e. pure or simple) associated with
the steady-state material flow of any particular region.

6.b. Normalized eigenvalue ratios: an indicator of the
strength of a deformation event

The strength parameter diagram (Fig. 6b) shows that none of the C
values of the granitoids lie at the origin, which confirms that no

Fig. 5. (Colour online) The eigenvalue ratio graphs show the shape of magnetic foli-
ation (K3) data for all the granitoids. K denotes the shape parameter. The graph reads
exactly same conventions of legends for different granites as is shown in Fig. 6.
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granitoid has magnetic foliation with a perfect uniform distribu-
tion. The arithmetical procedure used in the present paper to
evaluate the strength parameters certainly shows its limitation
when approaching with a structural dataset from poly-deformed
regions. Since all the studied granitoids are known to have experi-
enced more than one deformational event, we have consciously
tried to incorporate the magnetic foliation data, as they manifest
the late-stage deformation event only. It is evident from the figure
that CJ.N.Kote > CChitradurga(north) > CChitradurga(south) >
CChakradharpur > CMalanjkhand > CGodhra. This represents the
sequence of the strength of K3 data of all granitoid bodies.

Although there exists a prominent variation of sample numbers
(n) in K3 datasets for different granitoids, we assert that this would
not anyway influence the reliability of obtained ‘C’ values in deter-
mining the strength parameters of magnetic fabrics. In accordance
with Section 2 (‘methodology’ part), it may be noted that ‘C’ values
are not computed directly from the eigenvalues (i.e. λi) but from
their ‘normalized’ values (i.e. Si), where Si= −λi/n. Therefore, taking
the summation over ‘n’ numbers of normalized direction cosines’
product (i.e. components of the ‘orientation tensor matrix’) ulti-
mately gives rise to S1þ S2þ S3= 1. In the current study, calculated
values of Si for all the granitoids truly satisfy this relation. This is why
we infer that the variation of sample number (n) does not at all affect
the calculated C values [=(ln(S1/S3)] as well as our interpretation
regarding the comparison of randomness for different granitoids.

6.c. Deficiencies of using eigenvalue approach in magnetic
fabric analysis

The inconsistencies (associated with Fig. 3a, d) discussed in
Subsection 6.1 clearly demand an overall realization of the limita-
tions of using the eigenvaluemethod when analysing any structural
fabric data that are relevant to coaxial or non-coaxial flows. In the
present paper, all the analysis so far deals with the fabrics, which
exhibit clusters with mainly orthorhombic symmetry. That the
possibility of differences in modality may exist with individual
clusters further leads us to plot the histograms of declinations of

K3 in Fig. 4, separately for each granitoid. It may be noted that not-
withstanding the rest of the granitoids, which more-or-less show
unimodality, Chakradharpur and Godhra exhibit (Fig. 4a, d) a
clear bimodal data distribution. This observation is found to be
compatible with the observation made by Woodcock (1977) that
for the bimodal or multimodal distributions, maximum eigenvec-
tor may not tend to exactly match the direction of the minimized
‘moment of inertia’. We consider this to be one of the reasons
behind the mismatch of strike orientation between the V2–V3

plane and ISAmax in these two granitoids (Fig. 3a, d). Apart from
the modality of the data distributions, we would like to add that the
other important factor which can induce such a mismatch is the
symmetry of the fabric distributions. As stated before, all the gran-
itoids exhibit overall orthorhombic symmetry, which is another
essential condition (in addition to unimodality and coaxiality of
deformation) behind the observed coincidence of V2–V3 with
the direction of maximized ‘moment of inertia’ (=ISAmax/MF)
in pure-shear-dominated regions (Fig. 3b1, e). Considering other
fabric symmetries such as axial, spherical, monoclinic and triclinic
(Turner & Weiss, 1963, pp. 43–4), the eigenvalue approach would
be useful in identifying the ISAmax in only the first two cases as
previous investigations confirmed the coaxiality between V1 and
the minimum ‘moment of inertia’ in such symmetries
(Woodcock & Naylor, 1983). However, since the eigenvector
analysis imposes an orthorhombic symmetry on the analysed data
even if the distribution has a different kind of symmetry, extra
attention should be paid when approaching with the monoclinic
and triclinic data distribution. Therefore, although the examples
of atypical granitoids, i.e. Chakradharpur and Godhra, serve the
purpose of studying significant deficiencies of using the eigenvalue
method in any structural fabric data analysis, we insist that, for any
unimodal distribution of orthorhombic symmetry, estimation of
fabric eigenvectors can be used to directly assess the style of defor-
mation mechanism (pure/general/simple), whilst their corre-
sponding eigenvalues provide some important aspects to
decipher the fabric shape as well as strength of that deformation.
In addition, considering the inadequacies of the eigenvalue

Fig. 6. (Colour online) (a) Ternary diagram, based on the indexes P (Point or Cluster), G (Girdle), R (Random) for all the granites. OriginLab (a data analysis and graphing software)
was used to construct the ternary diagram. (b) The ln(S1/S2) vs ln(S2/S3) plot. C denotes the strength parameter. Note that Godhra and J. N. Kote granite show lowest and highest C
values, respectively.
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approach in the above-mentioned complexities, we must not deny
the necessity of future research in this realm, which would quantify
the shift of the maximum eigenvector from the minimized
‘moment of inertia’ and their relationship with the mechanistic
issues involved in such cases.

7. Conclusions

In the current study, we have used the eigenvalue method to deter-
mine the shape and strength of the magnetic foliations in various
granitoids from India. The study also highlights the relationship
between the positions of the eigenvectors and the mode of shearing
that are responsible for the development of the magnetic fabric.

Below we summarize the major findings of the present study:

1) The positional uniqueness of characteristic eigenvectors (V1, V2

and V3) of magnetic fabrics can be concluded to be an impor-
tant geometrical aspect, which directly indicates the mode of
shearing (coaxial/general/non-coaxial)-related mechanistic
issues associated with any particular deformed region. In the
case of an orthorhombic unimodal fabric distribution of a syn-
tectonic granitoid deformed under pure shear regime, the ori-
entation of the V2–V3 plane exactly mimics that of the
instantaneous stretching axis (ISAmax) of the steady-state
material flow system associated with that deformation.

2) In contrast to the pure-shear-dominated granitoids, the V2––V3

plane shows its rotating tendency with respect to ISAmax and
flow apophysis of extension (=shear zone) in the case of sim-
ple-shear-dominated granitoids.

3) The P, G and R ternary diagram is a representation which
can simultaneously quantify and compare the randomness of
the magnetic fabric distributions of different syntectonic
granitoids.

4) K and C are two parameters which can be used to classify sev-
eral datasets according to their shape and strength. These are
also two representatives of the uniformity of any dataset.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756822000747
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