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Adiabatic limit of the eta invariant over cofinite

quotients of PSL(2, R)
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Abstract

The eta invariant of the Dirac operator over a non-compact cofinite quotient of PSL(2,R) is
defined through a regularized trace following Melrose. It reduces to the standard definition
in terms of eigenvalues in the case of a totally non-trivial spin structure. When the S1-
fibers are rescaled, the metric becomes of non-exact fibered-cusp type near the ends. We
completely describe the continuous spectrum of the Dirac operator with respect to the
rescaled metric and its dependence on the spin structure, and show that the adiabatic
limit of the eta invariant is essentially the volume of the base hyperbolic Riemann surface
with cusps, extending some of the results of Seade and Steer.

1. Introduction

The eta invariant was introduced by Atiyah–Patodi–Singer [APS75] as the boundary correction
term in their index formula. This non-local invariant turned out to be quite elusive, although its
variation is local. Motivated by physics, one successful approach to the study of the eta invariant is
the so-called adiabatic limit, in which the eta invariant on the total space of a fibration is investigated
when the fiber is collapsed. This was initiated by Witten [Wit85] and later rigorously treated by
Bismut and Freed [BF86a] and independently by Cheeger [Che87]. Expanding on the earlier work
of [BF86a, Che87, Wit85], Bismut and Cheeger [BC89], Mazzeo and Melrose [MM90] and then Dai
[Dai91] studied the adiabatic limit for general fibrations of compact manifolds.

The eta invariant of compact quotients of PSL(2,R) was studied by Seade and Steer [SS87]. In
this situation, the total space of the fibration is a circle bundle that fibers over a compact hyperbolic
Riemann surface. There has been much interest in more general spectral problems for the case when
the fibers are circles, for example, [AB98, Bec00, DZ95, Hit74, Nic98, Nic99, SS87, Zha94]. In all of
these papers the base manifold is compact. When the base is not compact, there are very few papers
on this subject except an unpublished paper of K. P. Wojciechowski [Woj] where he considered the
adiabatic limit of the eta invariant over the base manifold R.

Here we consider the spectral properties of the Dirac operator and the adiabatic limit of its eta
invariant on a cofinite quotient X in the case when the base Riemann surface has finite volume but
is not compact,

S1 �� X

��
Σg,κ.

(1.1)

We assume that the base of the fibration is a complete hyperbolic Riemann surface Σg,κ of genus g
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with κ cusps. One of our motivations is related to the index formula of a Dirac type operator over a
locally symmetric space [Ste89] where one has to deal with the adiabatic limit of the eta invariants
for the maximal faces, which have a fibration structure over a non-compact locally symmetric space.
Ours is the simplest possible example of a fibration over a non-compact locally symmetric space, yet
its spectral analysis turns out to be highly non-trivial.

We fix a spin structure and then replace the circle S1 in (1.1) with a circle of radius r. We denote
the corresponding Dirac operator by Dr. The first purpose of this paper is to study the spectral
properties of Dr. In particular, we analyze the dependence of the continuous spectrum of Dr on the
choice of spin structure. Every end of X is diffeomorphic to the trivial fibration with fiber S1 over
a corresponding end R+ × S1 of Σg,κ. We say that the spin structure is trivial on an end of X if it
induces the trivial (that is, non-bounding) spin structure on the circle from the base.

Theorem 1.1. Let X be a cofinite quotient of PSL(2,R). Fix a spin structure on X, and denote
by κt the number of ends on which the induced spin structure is trivial. Then for all r > 0, the
continuous spectrum of the Dirac operator Dr consists of κt-copies of countably many families of
half-lines (

−∞,−r
2
− |m|(1 + r−2)1/2

]
∪

[
−r

2
+ |m|(1 + r−2)1/2,+∞

)
indexed by odd integers m ∈ 1 + 2Z if the spin structure along the S1-fiber is trivial, or by even
integers m ∈ 2Z otherwise.

This theorem can be regarded as a generalization of the result of Bär in [Bar00] to the fibered
cusp case where the continuous spectrum of Dr depends on the spin structures of the S1-fibers and
of the S1 cross sections of the base manifold Σg,κ near the ends. Another novelty of this theorem is
that the Riemannian metric over the cusps are not the exact fibered cusp metrics which have been
extensively studied in, for example, [LM05, LMP07, Vai01]. It is because of the non-exactness of
the fibered cusp metric that the continuous spectrum of Dr is quite complicated.

The second main result of this paper is the computation of the adiabatic limit of the eta invariant
of Dr as the fiber is collapsed (that is, r → 0). According to Theorem 1.1, the Dirac operator Dr

typically has non-empty continuous spectrum; moreover, the corresponding odd heat kernel of D2
r

is not of trace class. Therefore, the standard definition of the eta function using the eigenvalues
or the trace of the odd heat kernel is not valid unless the spin structure is non-trivial on every
end. This requires us to define a regularized eta function, which is reminiscent of the b-eta function
of Melrose [Mel93] and similar to the regularized eta function used by one of the present authors
[Par05] over hyperbolic manifolds with cusps. Denote by η(Dr, s) the eta function of Dr defined
through a regularized trace (see Definition in (4.6)); our main result is the following theorem.

Theorem 1.2. We assume that the spin structure along the S1-fiber is trivial.

(i) For a sufficiently small r > 0, η(Dr, s), defined for �(s) > 2, extends meromorphically to
C with a possible double pole at s = 1 and possible simple poles at {2, 0,−1,−2,−3, . . .}.
If the spin structure is non-trivial on each end, then η(Dr, s) may have only simple poles at
{2, 1, 0,−1,−2,−3, . . .}.

(ii) Define η(Dr) as the finite part at s = 0 of the meromorphic extension η(Dr, s). In the adiabatic
limit, the following identity holds:

lim
r→0

η(Dr) = − 1
12π

Vol(Σg,κ) =
1
6
(2 − 2g − κ). (1.2)

For the compact case and for the trivial spin structure, a result corresponding to the formula (1.2)
in Theorem 1.2 was proved by Seade and Steer [SS87], who also obtained the value of the eta invariant
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of the original fibration (when r = 1) by applying the Atiyah–Patodi–Singer index formula for a
manifold with smooth boundary. However, in our non-compact case, it would be very difficult to
prove an index formula for manifolds whose boundaries are manifolds with non-exact fibered cusp
ends. Another possible approach (suggested by the referee) is to use the variation formula as in
Bismut–Freed [BF86b]. This problem will be considered elsewhere.

This paper is organized as follows. In § 2 we develop the required background material, including
a discussion of spin structures and of the Dirac operator Dr. In § 3 we analyze the Dirac operator
in terms of the fibered cusp calculus of Mazzeo–Melrose [MM98] and we prove Theorem 1.1. In § 4
we define the regularized eta invariant and in §§ 5, 6, and 7 we analyze the geometric and spectral
sides of the Selberg trace formula in our context, which will be used to prove Theorem 1.2.

2. Dirac operator and Spin structure

In this section, we define the Dirac operator over a cofinite quotient of PSL(2,R) by a discrete
subgroup. Equivalently, we consider the Lie group G = SL(2,R) and a discrete subgroup Γ ⊂ G
containing {±1}; then the quotient Γ\G is the same as the quotient (Γ/{±1})\PSL(2,R).

For r ∈ (0,∞) we define a family of metrics gr over G such that the left translations of E :=
r−1C,A,H are orthonormal with respect to gr where C,A,H is a basis of g = sl(2,R) given by

C =
(

0 1
−1 0

)
, A =

(
0 1
1 0

)
, H =

(
1 0
0 −1

)
. (2.1)

Recall that the corresponding Levi-Civita connection ∇r is determined by the Koszul formula

2gr(∇r
UV,W ) = Ugr(V,W ) + V gr(W,U) −Wgr(U, V )

+ gr([U, V ],W ) − gr([U,W ], V ) − gr([V,W ], U)

where U, V,W denote vector fields over G.
Since G is topologically the same as S1 × H where H is the Poincaré upper half plane, there

are two spin structures on G. We choose the one determined by the left invariant trivialization.
Denoting the lifted connection to the spinor bundle by the same notation ∇r, we define the Dirac
operator by

D̂r := E.∇r
E +A.∇r

A +H.∇r
H

where U. denotes the Clifford action by U . By a straightforward computation as in [Hit74, SS87],
we obtain

D̂rψ =
(

2 − r2

2r2

)
C.A.H.ψ

for a basic spinor ψ.
We twist D̂r by multiplying with the volume element ω := E.A.H. to define D̃r, that is,

D̃r := E.A.H.D̂r,

which has the following simplified form,

D̃rψ =
(

2 − r2

2r

)
ψ

for a basic spinor ψ. The Clifford algebra generated by E,A,H has the Pauli matrix representation
given by

E �→
(
i 0
0 −i

)
, A �→

(
0 1
−1 0

)
, H �→

(
0 −i
−i 0

)
.
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Then we have

ωE �→ −i
(

1 0
0 −1

)
, ωA �→

(
0 1
−1 0

)
, ωH �→ i

(
0 1
1 0

)
.

It follows that for any spinor αψ1+βψ2 written in terms of basic spinors ψ1, ψ2 and smooth functions
α, β on G, we have the following representation of D̃r,

D̃r

(
α
β

)
=

(
2 − r2

2r

)(
α
β

)
+

( −iE A+ iH
−A+ iH iE

)(
α
β

)
. (2.2)

Now we let

Z := −iC , 2X+ := A− iH , 2X− := A+ iH .

(Our convention is slightly different from that in [SS87].) These vector fields satisfy

[Z,X+] = 2X+, [Z,X−] = −2X−, [X+,X−] = Z,

and we have

D̃r =
(

2 − r2

2r

)
+

(
r−1Z 2X−
−2X+ −r−1Z

)
acting on C∞(G) ⊕ C∞(G).

It is also easy to check that

D̃2
r =

(−(A2 +H2 + r−2C2) 0
0 −(A2 +H2 + r−2C2)

)
+ lower order terms, (2.3)

hence the Dirac Laplacian D̃2
r is a generalized Laplacian whose principal symbol is given by the

metric gr, as expected.
To define the Dirac operator over X = Γ\G, let us discuss the spin structures on X = Γ\G,

which will play a crucial role throughout this paper. First recall that there are |H1(X,Z2)|-number
of spin structures over X, since every orientable three-dimensional manifold is spin. This can be
understood from the following diagram,

S̃

��

�� S

��
X̃

π �� X

where S̃,S are Spin(3) bundles over the universal cover X̃ and over X, respectively. Since S̃ ∼=
X̃ × Spin(3) and S̃ ∼= π∗S, the possible Spin bundle S is given by a Z2-representation ρ of π1(X)
as follows:

Sρ = X̃ ×ρ Spin(3) (2.4)

with the obvious Z2-action on Spin(3). Therefore, each Z2-representation of π1(X) provides us with
an inequivalent spin structure on X. Recall that

π1(X) =
{
xi, yi, hj , k

∣∣∣∣ 1 � i � g, 1 � j � κ,

g∏
i=1

[xi, yi]
κ∏

j=1

hj = 1, [xi, k] = [yi, k] = [hj , k] = 1
}
,

where g, κ denote the genus and the number of cusps, respectively, of the base Riemann surface
Σg,κ of the fibration (1.1).

Among spin structures, there are spin structures which are determined by those Z2-representa-
tions ρ of π1(X) with ρ(hj) = −1 for some j. In [Bar00] such a spin structure over the Riemann
surface Σg,κ is called non-trivial along the cusp corresponding to j. Following [Bar00], we call such
a spin structure non-trivial along the cusp if ρ(hj) = −1 for the corresponding j, and a totally
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non-trivial spin structure if it is determined by a Z2-representation ρ with

ρ(hj) = −1 for all j = 1, . . . , κ. (2.5)

From the relations of the generators of π1(X), there exists an obstruction for this:
κ∏

j=1

ρ(hj) = 1.

Hence, for a spin structure to be totally non-trivial the number of cusps κ should be even. We also
distinguish two classes of spin structures according to the (non-)triviality of the spin structure along
the fiber S1/{±1}. We call the spin structure trivial along the fiber if the spin structure is trivial
along the fiber S1/{±1} (or, equivalently, if the representation ρ maps the generator k to 1), and
non-trivial along the fiber otherwise. Note that if the spin structure is trivial along the S1/{±1}-
fiber, this spin structure does not extend to a spin structure over the disc bundle over Σg,κ. From
the above discussion we have the following result.

Proposition 2.1. There are 22g+κ spin structures over X = Γ\G. There exist totally non-trivial
spin structures over X if and only if κ is even.

For the trivial representation of π1(X), the resulting Spin bundle denoted by S1 is topologically
trivial, and is determined by the left invariant trivialization over X = Γ\G. The associated spinor
bundle Σ1 = S1 ×Spin(3) Σ(3) (where Σ(3) ∼= C2 is the spinor representation of Spin(3) ∼= SU(2)) is
therefore also trivial and if Σρ denotes the spinor bundle associated to a representation ρ, that is,
Σρ = Sρ ×Spin(3) Σ(3), then

Σρ = Σ1 ⊗ Cρ,

where Cρ → X is the flat line bundle associated to ρ.

If Dr denotes the induced Dirac operator from D̃r pushed down to X, then from the definition
of D̃r over G and the equality (2.4), we can see that

Dr =
(

2 − r2

2r

)
+

(
r−1Z 2X−
−2X+ −r−1Z

)
acting on C∞

0 (Γ\G,χ), (2.6)

where C∞
0 (Γ\G,χ) (χ = ρ ⊕ ρ) consists of the smooth functions with co-compact supports such

that f(γx) = χ(γ)f(x) for γ ∈ π1(X), x ∈ G. We also denote the L2-closure of Dr (with respect to
a certain metric explained in (4.1)) by Dr, that is,

Dr : L2(Γ\G,χ) −→ L2(Γ\G,χ). (2.7)

3. Analysis of fibered cusp operators

In this section we show that the metrics gr are of conformal fibered cusp type. Consequently, we
show that the Dirac operators Dr belong to the class of weighted fibered cusp operators introduced
by Mazzeo and Melrose [MM98], and we prove Theorem 1.1.

First we introduce some subgroups of G = SL(2,R),

N0 =
{(

1 x
0 1

)}
, A0 =

{(
eu/2 0
0 e−u/2

)}
, K =

{(
cos θ sin θ
−sin θ cos θ

)}
, (3.1)

where x, u, θ ∈ R. Then the standard parabolic subgroup P0 is given by N0A0Z where Z = {±1} ⊂
K and any parabolic subgroup P of G is conjugate to P0 by an element kP in K. A parabolic
subgroup P has a decomposition P = NPAZ where NP is the derived group of P and A is any
conjugate of A0 in P , to be called a Cartan subgroup. It is clear that A0 is the unique Cartan
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subgroup P0 with Lie algebra orthogonal to that of K. Therefore, P has a unique Cartan subgroup
with the same property. From now on, we assume that the pair (P,A) satisfies this condition. For
such a pair (P,A) with N = NP , we have the Iwasawa decomposition G = NAK .

For a given Γ ⊂ G, a parabolic subgroup P of G is called Γ-cuspidal if N = NP contains a non-
trivial element of Γ. It is well known that the finitely many ends of X = Γ\G are parametrized by
Γ-conjugacy classes {P}Γ = {γPγ−1 | γ ∈ Γ/ΓP } where ΓP := Γ∩P . We refer to [Bor97, ch. 3] for
an explanation concerning this fact. Let P be a Γ-cuspidal parabolic subgroup of G corresponding
to one end of X = Γ\G. This subgroup determines a cusp cP , an incomplete manifold which is
identified with a neighborhood of the cuspidal end of the quotient ΓP\G.

Assume first that P = P0 is the standard parabolic subgroup of G. The manifold ΓP \G has
two commuting free S1 actions: the action of K to the right and that of ΓN0\N0 to the left where
ΓN0 := Γ ∩ N0. The first S1 action, in fact, exists globally on X = Γ\G, while the second one
exists only on the cusp. Let γl :=

(
1 l
0 1

)
be the generator of ΓN0. Then ΓP\G is identified with

R/lZ × R × R/2πR by the map

(x, u, θ) �→
(

1 x
0 1

)(
eu/2 0
0 e−u/2

)(
cos θ sin θ
−sin θ cos θ

)
. (3.2)

By projection on the last two terms, we view this as the total space of a fibration with fiber S1.
Note that this fibration makes sense only near the end and is not the fibration in (1.1) where the
roles of the two S1 are reversed.

As seen above, the spinor bundle corresponding to the representation ρ is the spinor bundle
for the trivial representation, twisted by the flat line bundle Cρ defined by ρ. The Dirac operator
on G has been computed in (2.6) with respect to the orthonormal vector fields E = r−1C, A, H
defined in (2.1) and the representation χ. The same expression holds on the spinor bundle on the
cusp ΓP \G, where the vector fields E, A, H now act on Σρ. There is no ambiguity about the action
of these vector fields since the twisting bundle Cρ is flat.

Introduce the function ν := e−u on the cusp and glue the ‘boundary at infinity’ R/lZ × {ν =
0}×R/2πR to the cusp, thus obtaining a manifold with boundary ΓP \G. The S1-fibration structures
extend to the boundary. We show that for each fixed r, the metric gr on X is conformal to a fibered
cusp metric (with respect to the fibration of the boundary induced from the ΓN0\N0 action). In the
coordinates (x, ν = e−u, θ) of ΓP\G, the coefficients of a matrix

(
a b
c d

)
are given by the inverse of

the map (3.2):

x =
ac + bd
c2 + d2

, ν = c2 + d2, θ = −arctan
(
c

d

)
.

We then compute

E = r−1∂θ,

A = −cos 2θ∂θ + 2ν−1 cos 2θ∂x − 2ν sin 2θ∂ν , (3.3)

H = sin 2θ∂θ − 2ν−1 sin 2θ∂x − 2ν cos 2θ∂ν .

These equalities also can be found in [GGP69, p. 52] or [Lan75, p. 115]. It follows that in the
coordinates (x, ν, θ) the metric gr is given by

1
4ν2

dν2 +
ν2

4
dx2 + r2

(
dθ +

ν

2
dx

)2

,

thus

gΦ :=
4
ν2
gr =

(
dν

ν2

)2

+ r2
(

2 dθ
ν

+ dx

)2

+ dx2.
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This is what is called a fibered cusp metric, or a smooth metric on the fibered cusp tangent bundle.
To define this bundle, consider the subalgebra ΦV of the Lie algebra V of smooth vector fields on
the manifold with boundary ΓP \G, spanned over C∞(ΓP \G) by the vector fields

Vν := ν2∂ν , Vθ := ν∂θ, Vx := ∂x.

This sub-algebra is by definition a free C∞(ΓP \G)-module so it is the space of sections of a smooth
vector bundle over C∞(ΓP \G). This vector bundle is denoted by ΦTΓP\G and it comes equipped
with a bundle morphism to the usual tangent bundle TΓP\G, induced from the inclusion of the
spaces of sections ΦV ↪→ V, which is an isomorphism over ΓP \G.

Since ΦV is a Lie algebra and the metric gΦ defined above is non-degenerate and smooth on
fibered cusp vector fields, it follows immediately from the Cartan formula that the Levi-Civita
connection on ΓP\G with respect to the metric gΦ extends to the boundary in the sense that for
every Vi, Vj , Vk ∈ ΦV, we have

〈∇ViVj , Vk〉 ∈ C∞(ΓP \G).
The spinor bundle Σρ extends over the boundary, such that the Clifford multiplication by Vi is a
smooth map. Now take the orthonormal frame

V1 := Vν , V2 := Vx − Vθ/2, V3 :=
1
2r
Vθ.

Its relationship to the global frame (E,A,H) is deduced from (3.3):

V1 = −ν
2
(sin 2θA+ cos 2θH),

V2 =
ν

2
(cos 2θA− sin 2θH),

V3 =
ν

2
E.

(3.4)

Denote by V a local lift to the spinor bundle of the orthonormal frame (V1, V3, V2). Let σ :
ΓP\G → Σ(3) be a smooth map into the 3-spinor representation space. It follows from the local
formula

DΦ[V, σ] =
3∑

i=1

c(Vi)
(

[V, Vi(σ)] +
1
2

∑
j<k

c(Vj)c(Vk)〈∇ViVj, Vk〉[V, σ]
)

=
(
c(V1)

(
ν2∂ν−ν2

)
+ c(V2)∂θ

ν

2r
+ c(V3)

(
∂x − ν∂θ

2

)
+ r

ν

4

)
[V, σ] (3.5)

that the Dirac operator with respect to gΦ (defined first on compactly supported spinors over ΓP \G)
extends to smooth spinors up to the boundary. Such an operator, a combination of fibered cusp
vector fields and of smooth bundle endomorphisms down to the boundary {ν = 0}, is called a fibered
cusp differential operator. Thus,

DΦ ∈ Diff1
Φ(ΓP \G,Σρ).

The Dirac operator changes very nicely with respect to conformal changes of the metric. We
simply have

Dr = 2ν−2 ◦DΦ ◦ ν
so for r > 0, the Dirac operator Dr is a differential operator in ν−1Diff1

Φ(ΓP \G,Σρ).
The normal operator N (DΦ)(θ, ξ, τ) of DΦ (see [MM98]) is obtained by formally replacing

Vν �→ iξ, Vθ �→ iτ

and then restricting to ν = 0. The result is a family of differential operators on the fibers of the
boundary fibration (the x-circles) with coefficients in the spinor bundle, with parameters θ ∈ S1,
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(ξ, τ) ∈ R2:

N (DΦ)(θ, ξ, τ) = c(V1)iξ + c(V2)
(
∂x − iτ

2

)
+ c(V3)

iτ

2r
.

Definition 3.1. The operator DΦ is called fully elliptic if N (DΦ)(θ, ξ, τ) is invertible for all
(θ, ξ, τ) ∈ S1 × R2.

If DΦ is fully elliptic, then by the results of [MM98] it has a parametrix inside the calculus of
fibered cusp pseudodifferential operators Ψ−1

Φ (X) modulo compact operators.

Proof of Theorem 1.1. According to the decomposition principle (see, for example, [Bar00, Propo-
sition 1]), the essential spectrum of Dr can be computed outside a compact subset of X, thus it is
a superposition of the essential spectra of any self-adjoint extension of Dr over each cuspidal end
cP defined by νP < εP . We must make sure that such an extension exists (the Dirac operator on a
manifold with boundary may not admit self-adjoint extensions, for example, on R+). We may take,
for instance, the Atiyah–Patodi–Singer boundary condition at the torus boundary {νP = εP }. Spe-
cial care is needed for the nullspace of the Dirac operator along the torus, we only allow harmonic
spinors of the form (u, c(V3)u) in the domain where u is in the i-eigenspace of c(V1).

Since any Γ-parabolic subgroup P is conjugated by an element in the maximal compact subgroup
K to the standard parabolic subgroup P0, we see that the cusp corresponding to P is isometric to
the ‘canonical’ cusp P0\G. Thus, without loss of generality we work with the canonical parabolic
subgroup P0.

We have seen above that Dr belongs to ν−1Diff1
Φ(ΓP \G,Σρ) near the cuspidal end.

Lemma 3.2. The fibered cusp operator DΦ is fully elliptic on the cusp cP if and only if the spin
structure is non-trivial along cP .

Proof. We have computed above the normal operator N := N (DΦ)(θ, ξ, τ). Clearly, N is an elliptic
self-adjoint operator on the circle in the variable x. Therefore, N is invertible if and only if N 2 is.
Now by the anti-commutation of the Clifford variables,

N 2 = ξ2 +
τ2

4r2
+

(
i∂x − τ

2

)2

.

This family of operators is independent of θ; it is strictly positive (hence, invertible) for (ξ, τ) �=
0 ∈ R2. For ξ = τ = 0, N = −∂2

x, so ker(N ) is made of those spinors which are constant in x in the
trivialization V of the spinor bundle. For fixed θ, such spinors exist globally on the x-circle if and
only if the local lift V satisfies Vx=l = Vx=0. Now the frame (V1, V2, V3) is obtained from (E,A,H)
by the transformation (3.4) which is constant in x; thus, the lift V exists globally around the cusp
if and only if the lift of (E,A,H) exists globally around the cusp, which is by definition equivalent
to the triviality of the spin structure around the cusp cP .

If DΦ is fully elliptic, it follows from the above lemma and from the general theory of fibered
cups operators that Dr = 2ν−2DΦν has a parametrix Q ∈ νΨ−1

Φ over the cusp cP , modulo compact
operators. However, Q itself is compact due to the decaying weight ν; hence, the self-adjoint operator
Dr has pure-point spectrum over the cusp.

Conversely, assume that the spin structure is trivial along the cusp. The operator Dr = 2ν−2DΦν
computed in (3.5) has constant coefficients in x, thus it preserves the orthogonal decomposition into
zero modes and high-energy modes

L2(ΓP \G ∩ {νP < εP },Σρ) =: H0 ⊕H′,
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where H0 is the space of spinors constant in x in the trivialization V (we have seen above that
V exists globally around the cusp if the spin structure is trivial along cP ) and H′ its orthogonal
complement. Over H′, by the same argument as above, there exists a compact parametrix of Dr

inside the fibered cusp calculus. Thus, the essential spectrum of Dr over the cusp cP only arises
from the zero modes, that is, it is the essential spectrum of the operator

2ν−1

(
c(V1)

(
ν∂ν−1

2

)
− c(V2)

∂θ

2
+ c(V3)

∂θ

2r
−r

4

)
ν

acting in L2([0, ε)×S1,Σρ, dν dθ) with any boundary condition at ε which makes it self-adjoint. We
conjugate this operator through the Hilbert space isometry

L2(dν dθ) → L2

(
dν

ν
dθ

)
, φ �→ ν

1
2φ.

We obtain the operator

Ar = 2c(V1)ν∂ν +
(
c(V3)
r

− c(V2)
)
∂θ − r

2
.

This can be again decomposed according to the frequencies in the θ variable. Note that although
the local lift V may not exist globally, the ambiguity is locally constant so that the operator i∂θ is
well defined; moreover, it clearly commutes with Ar.

From (3.4), the frame (V1, V2, V3) is obtained (after rescaling) from the frame (E,A,H) by a
complete rotation around the E axis in time π. Such a rotation is a generator of π1(SO(3)) = Z/2Z.
Hence, V exists globally around the θ circle if and only if the lift of (E,A,H) does not, that is, if
the spin structure is non-trivial along the fiber S1/{±1}. Otherwise, if the spin structure is trivial
along the fiber S1/{±1}, then after time π the lift V changes sign.

A spinor [V, σ] is in the m-eigenspace of i∂θ if and only if

σ(t+ θ) = e−imθσ(t). (3.6)

The resulting spinor should be π-periodic (since we work on PSL(2,R), we have assumed that
−1 ∈ Γ). We distinguish between two cases.

(i) The spin structure is non-trivial along the S1/{±1} fiber. Then V (π) = V (0) so we want
σ(π) = σ(0). The eigenspinor equation (3.6) gives m ∈ 2Z.

(ii) The spin structure is trivial along the S1/{±1} fiber. Then V (π) = −V (0) so we want σ(π) =
−σ(0). The eigenspinor equation (3.6) gives m ∈ 1 + 2Z.

In both cases, the m-eigenspaces are two-dimensional representation spaces for c(Vj), j = 1, 2, 3.
Denote by Ar,m the action of Ar on the m-eigenspace of i∂θ. We obtain a b-operator Ar,m (in

the sense of Melrose) in L2([0, ε),C2, ν−1 dν)

Ar,m = 2c(V1)ν∂ν − c

(
V3

r
− V2

)
im − r

2
.

The b-normal operator of Ar,m is obtained by replacing ν∂ν with is where s is a complex param-
eter. One knows from the general theory of b-operators [Mel93] that the following statements are
equivalent:

• λ does not belong to the essential spectrum of Ar,m, that is, Ar,m − λ is Fredholm;
• N (Ar,m)(s) − λ is invertible for all s ∈ R.

We use now the representation

c(V1) =
[
i 0
0 −i

]
, c

(
V3

r
− V2

)
=

[
0 1 + r−2

−1 0

]
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so that

N (Ar,k)(s) =
[−2s −im(1 + r−2)

im 2s

]
− r

2
.

An easy computation shows that N (Ar,k)(s) − λ is invertible for all s ∈ R exactly for

λ ∈
(
−r

2
− |m|(1 + r2)

1
2 r−1,−r

2
+ |m|(1 + r2)

1
2 r−1

)
.

Thus, the essential spectrum of Dr is the superposition of the complements of these intervals for
each k and for each cusp cP with trivial spin structure.

4. Regularized trace and Geometric side

In this section, we study the relation of certain regularized trace of the odd heat operator of Dr

with the geometric side of the Selberg trace formula.

To use harmonic analysis over G, we need to fix the Haar measures over G and its subgroups.
First, the parametrizations in (3.1) for A0, N0 carry the Lebesgue measure du, dn from R to A0, N0.
Now we fix Haar measures on K by vol(K/Z) = 1 and on G by∫

G
f(g) dg =

∫
N0

∫
A0

∫
K
f(nauk)e−u dn du dk (4.1)

for f0 ∈ C0(G) and au = diag(eu/2, e−u/2). For aP,u := k−1
P aukP ∈ A = k−1

P A0kP , we put

HP (g) = u for g ∈ NaP,uK.

The Iwasawa decomposition H ∼= G/K ∼= NA provides a parametrization of the geodesics
nA · i ⊂ H to infinity. The parameter value is given by the function HP whose potential curves are
N -orbits (horocycles) on H. However, this parametrization is not adapted to Γ. To rectify this, we
replace kP by gP = auP

kP where e−uP = vol(ΓN\N) where ΓN := Γ ∩N . For the new parameter

HP (g) + uP = HP0(gP g),

then the value 0 of this new parameter corresponds to the horocycle whose projection on Γ\H has
length 1.

For φ ∈ H := L2(Z\K) = 〈eimθ | m ∈ 2Z〉 and s ∈ C, we extend φ to G by

φs(nauk) = esuφ(k) for n ∈ N0, k ∈ K.

These functions constitute the Hilbert space Hs
∼= H in which the representation πs induced from

the parabolic subgroup P0 = N0A0Z acts as

(πs(g)φs)(x) = φs(xg).

From now on, we assume that P = {P1, . . . , Pκ} is a set of representatives for Γ-conjugacy classes
of the cuspidal parabolic subgroups and that the spin structure over cPi for 1 � i � κt is trivial.
We also assume that the representation ρ maps the generator k ∈ π1(X) to the identity 1, thus
we consider only spin structures which are trivial along the S1/{±1}-fiber. For the representation
space V ∼= C2 of χ = ρ⊕ ρ, we let V P be the invariant subspace of V under the action χ|ΓP

. Then

V Pi =

{
V if 1 � i � κt,

{0} if κt + 1 � i � κ.

For a cuspidal parabolic subgroup P , s ∈ C with �(s) > 1 and φ ∈ H ⊗ V P , the Eisenstein series
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E(P, φ, s) is defined by

E(P, φ, s)(g) :=
∑

γ∈Γ/ΓP

χ(γ)φs(gP γ
−1g).

We refer to [Hof94, § 5] for more about the Eisenstein series where the Hecke operator action is also
involved. Note that there is no Eisenstein series attached to Pi if κt + 1 � i � κ. The Eisenstein
series E(P, φ, s) converges absolutely and locally uniformly for �(s) > 1 and has the meromorphic
extension over C. In particular, E(P, φ, s) is an automorphic form, that is,

E(P, φ, s)(γg) = χ(γ)E(P, φ, s)(g) for γ ∈ Γ, g ∈ G.

For φ ∈ H ⊗ V cst with V cst :=
⊕

P∈P V
P , we define

E(φ, s) =
∑
P∈P

E(P,prPφ, s) (4.2)

where prP denotes the orthogonal projection onto V P , and

Ecst(φ, s)(g) = (EP (φ, s)(g−1
P g))P∈P.

Here, the constant term of EP (φ, s) is defined by

EP (φ, s)(g) := vol(ΓN\N)−1

∫
ΓN\N

prPE(φ, s)(ng) dn

for N = NP . Then we have

Ecst(φ, s) = φs + (C(s)φ)1−s

where C(s) is the scattering operator acting on H ⊗ V cst.

Now let us describe the spectral decomposition of L2(Γ\G,χ),

L2(Γ\G,χ) = L2(Γ\G,χ)cus ⊕ L2(Γ\G,χ)res ⊕ L2(Γ\G,χ)ct.

Here L2(Γ\G,χ)cus is the space of the cusp forms in L2(Γ\G,χ), and decomposes into a Hilbert
direct sum of closed irreducible G-invariant subspaces with finite multiplicities. The residual part
L2(Γ\G,χ)res is the direct sum of the constants and of finitely many copies of the complemen-
tary series representation of G such that some Eisenstein series has a pole at s ∈ (1

2 , 1]. These
two spaces constitute the discrete part L2(Γ\G,χ)dis. The continuous part L2(Γ\G,χ)ct is
isometric to{

Φ ∈ L2

(
1
2

+ iR,
dτ

4π

)
⊗̂H ⊗ V cst

∣∣∣∣ Φ
(

1
2
− iτ

)
= C

(
1
2

+ iτ

)
Φ

(
1
2

+ iτ

)}
by

IctΦ =
1
4π

∫ ∞

−∞
E

(
Φ,

1
2

+ iτ

)
dτ, (4.3)

where E(Φ, 1
2 + iτ) is defined as in (4.2) with φ = Φ and s = 1

2 + iτ . For f ∈ L1(G), we define a
representation on L2(Γ\G,χ) by

π(f) :=
∫

G
f(g)π(g) dg,

where π is the right translation action given by (π(g)φ)(x) = φ(xg) for φ ∈ L2(Γ\G,χ). We put
πdis(f) = prdis ◦ π(f), πct(f) = prct ◦ π(f) where prdis,prct denote the orthogonal projections
onto L2(Γ\G,χ)dis, L

2(Γ\G,χ)ct, respectively. In particular, πct(f) intertwines with πcst
1
2
+iτ

(f) :=

π 1
2
+iτ (f) ⊗ IdV cst by Ict given in (4.3).
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Since D̃r is a left invariant differential operator, there is a function f̂t,r ∈ C∞(G,M(2,C)) such
that

f̂t,r(x−1y) = (D̃re
−tD̃2

r )(x, y) for x, y ∈ G.
By the heat kernel estimates in [Don79], which also holds for the generalized Laplacian D̃2

r with
the form in (2.3), we have

‖di
td

j
xd

k
y f̂t,r(x−1y)‖ � Ct−

5
2
−i−j−k exp

(
−d

2
G(x, y)

4t

)
, (4.4)

where C is a positive constant and dG is the metric over G. (Note that we apply the method in
[Don79] to a certain co-compact discrete subgroup Γ′ in G to obtain the above estimate.) Put
ft,r := tr(f̂t,r) where ‘tr’ denotes the local trace over M(2,C). Then the estimate (4.4) implies that
ft,r lies in the Harish-Chandra L1-Schwartz space C1(G)(⊂ L1(G)) defined by

C1(G) = {f ∈ C∞(G) | |f(D1kθ1aukθ2D2)| � Ce−|u|(1 + |u| + |θ1 + θ2|)−n, ∀n ∈ N,D1,D2 ∈ g},
where f(D1kθ1aukθ2D2) denotes the convolution D1 ∗ δkθ1

∗ δau ∗ δkθ2
∗D2 evaluated on f . Let us

put

K(t, x, y) :=
∑

γ∈Z\Γ
f̂t,r(x−1γy)χ(γ) =

∑
γ∈Z\Γ

D̃re
−tD̃2

r (x, γy)χ(γ) for x, y ∈ G,

which is absolutely uniformly convergent on compact sets in G. For a Γ-cuspidal parabolic subgroup
Pj = P = NAZ , we define the constant term of K(t, x, y) along P as follows,

KP (t, x, y) = vol(ΓN\N)−1

∫
ΓN\N

∑
γ∈Z\ΓP

f̂t,r(x−1γny)χ(γ) prP dn.

For u ∈ R, let αP (u) be the characteristic function of {x ∈ G | HP (x) + uP > u}, which projects
on certain region CP,u ⊂ Γ\G for a large u. Then the truncation of K(x, x) is defined by

ΛuK(t, x, x) := K(t, x, x) −
∑
P∈P

αP (u)KP (t, x, x),

which is an automorphic form over Γ\G.

Proposition 4.1 (Maass–Selberg relation). For u� 0, we have∫
Γ\G

tr(ΛuK(t, x, x)) dx = u
1
2π

∫ ∞

−∞
Tr(πcst

1
2
+iτ

(ft,r)) dτ + Tr(πdis(ft,r)) +
1
4
Tr

(
C

(
1
2

)
πcst

1
2

(ft,r)
)

− 1
4π

∫ ∞

−∞
Tr

(
C ′

(
1
2
− iτ

)
C

(
1
2

+ iτ

)
πcst

1
2
+iτ

(ft,r)
)
dτ. (4.5)

Proof. For a test function with compact support and K-finite condition, we can prove this proposi-
tion by simply following the argument in [Hof94, pp. 58–60]. Then this can be generalized easily to
our test function ft,r as in [Hof94, Proof of the Theorem 25]. The finiteness of the integrand of the
integrals on the right-hand side follows from Theorem 1.1 and Lemma 5.2 since Tr(πcst

1
2
+iτ

(ft,r)) is

given by κt-copies of Θ 1
2
+iτ (ft,r) := Tr(π 1

2
+iτ (ft,r)) recalling πcst

1
2
+iτ

(ft,r) := π 1
2
+iτ (ft,r)⊗ IdV cst .

From Proposition 4.1, one can see that the first term on the right-hand side of (4.5) is blowing
up as u→ ∞. Hence, it is natural to remove this term in the following definition,

Tr(Dre
−tD2

r ) := Tr(πdis(ft,r)) +
1
4
Tr

(
C

(
1
2

)
πcst

1
2

(ft,r)
)

− 1
4π

∫ ∞

−∞
Tr

(
C ′

(
1
2
− iτ

)
C

(
1
2

+ iτ

)
πcst

1
2
+iτ

(ft,r)
)
dτ. (4.6)
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This regularized trace is essentially the same as the b-trace of Melrose [Mel93], and is related with
the geometric side of the Selberg trace formula as we will see in Proposition 4.2. Denote

h(τ) = Θ 1
2
+iτ (f), h(n) = Θn(f)

where Θ 1
2
+iτ (f) := Tr(π 1

2
+iτ (f)) for a principal series representation π 1

2
+iτ , and Θn(f) := Tr(πn(f))

for a discrete series representation πn. An operator J(s) over H = L2(Z\K) is defined by

J(s)φm =
1√
π
· Γ(s)Γ(s− 1

2)
Γ(s+m/2)Γ(s −m/2)

φm (4.7)

for the basis φm(kθ) = eimθ ∈ H where kθ =
(

cos θ sin θ
−sin θ cos θ

)
. The following proposition follows

from [Hof94, Theorem 13 and Lemma 24].

Proposition 4.2 (Selberg trace formula). We have

Tr(Dre
−tD2

r ) =
vol(Γ\G)

2π

(∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ +

∑
n≡0(mod2)

(|n| − 1)ht,r(n)
)

+
∑

[γ]∈Z\Γhyp

tr(χ(γ))uγ

4π[Γγ : Z] sinh(uγ/2)

∫ ∞

−∞
cos(uγτ)ht,r(τ) dτ

− 2κt

(
1
2π

∫ ∞

−∞
ψ(1 + 2iτ)ht,r(τ) dτ +

1
2

∑
n≡0(mod2)

ht,r(n)
)

+ 2(κ− κt)
log 2
2π

∫ ∞

−∞
ht,r(τ) dτ

+
κt

2
ht,r(0) − 1

4π
p.v.

∫ ∞

−∞
Tr

(
J

(
1
2

+ iτ

)−1

J ′
(

1
2

+ iτ

)
π 1

2
+iτ (ft,r)

)
dτ, (4.8)

where ht,r(τ), ht,r(n) are defined for ft,r, the sum
∑

[γ]∈Γhyp
is given over the Γ-conjugacy class of

hyperbolic elements γ conjugate to auγ , and ψ(z) = Γ′(z)Γ(z)−1.

5. Fourier transforms ht,r(τ), ht,r(n)

In this section, we compute ht,r(τ), ht,r(n) which are needed to analyze the right-hand side of the
Selberg trace formula.

First, let us consider ht,r(τ). For this, recall

ht,r(τ) = Tr(π 1
2
+iτ (ft,r)) =

∞∑
n=1

∫
G
ft,r(g)(π 1

2
+iτ (g)ξn, ξn) dg, (5.1)

where {ξn}∞n=1 is the orthonormal basis of the representation space of π 1
2
+iτ , which is given by the

union of the following spaces indexed by m ∈ Z for s = 1
2 + iτ ,

H(s,m) := {φs ∈ Hs | φs(naukθ) = esueimθ for naukθ ∈ N0A0K}.
Since D̃r is Z-invariant, the Fourier transform ht,r(τ) is non-trivial only if m is an even number.
Recalling

D̃r =
(

2 − r2

2r

)
+

(
r−1Z 2X−
−2X+ −r−1Z

)
the problem is again reduced to the following lemma, which can be obtained applying the equalities
in (3.3).
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Lemma 5.1. We have

Zf = mf , X±f = − i

2
(m± 2s)e±2iθf for f ∈ H(s,m).

The second equality in Lemma 5.1 implies that X± maps H(s,m) to H(s,m ± 2). From these
facts,

D̃r

(
φτ,m−2

φτ,m

)
=

(
r−1(m− 2) + 2−1� −i(m− 1 − 2iτ)
i(m− 1 + 2iτ) −r−1m+ 2−1�

)(
φτ,m−2

φτ,m

)
,

where � = (2 − r2)/r and φτ,m−2 ∈ H(1
2 + iτ,m− 2), φτ,m ∈ H(1

2 + iτ,m). Hence, the action of D̃r

on H(1
2 + iτ,m− 2) ⊕ H(1

2 + iτ,m) is given by the roots of

λ2 + rλ+
r2

4
− (m− 1)2

r2
= (m− 1)2 + 4τ2, (5.2)

that is,

λ±(τ,m) = −r
2
± ((m− 1)2(1 + r−2) + 4τ2)1/2 for m ∈ 2Z, τ ∈ R+.

Therefore, we have the following result.

Lemma 5.2. We have

ht,r(τ) = Θ 1
2
+iτ (ft,r) =

∑
m∈2Z

(λ+(τ,m)e−tλ+(τ,m)2 + λ−(τ,m)e−tλ−(τ,m)2).

Just repeating the above computation applied to the Eisenstein series E(P, φm, s), we can also
prove Theorem 1.1.

Next we compute ht,r(n) for the discrete series representation πn. We review the discrete series
representations of G = SL(2,R). For this it is more convenient to use the Lie group SU(1, 1) which
is conjugate to SL(2,R) within SL(2,C):(

1 i
i 1

)
SU(1, 1)

(
1 i
i 1

)−1

= SL(2,R).

Here

SU(1, 1) =
{(

α β

β α

) ∣∣∣∣ |α|2 − |β|2 = 1
}
.

Then the holomorphic discrete series πn (n ∈ N) as a representation of SU(1, 1) acts on analytic
functions on the disc by

πn

(
α β

β α

)
f(z) = (−βz + α)−nf

(
αz − β

−βz + α

)
,

and the norm, except for a constant factor, is given by

‖f‖ =

{∫
|z|<1|f(z)|2(1 − |z|2)n−2 dz dz̄ for n � 2,

sup0�r<1

∫ 2π
0 |f(reiθ)|2 dθ for n = 1.

The anti-holomorphic discrete series πn (n ∈ −N) as a representation of SU(1, 1) acts on analytic
functions on the disc by

πn

(
α β

β α

)
f(z) = (−βz + α)−nf

(
αz − β

−βz + α

)
with the same norm. We refer to [Kna01, ch. II, §§ 5 and 6] for a nice introduction on the discrete
series πn of SL(2,R).
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Lemma 5.3. For the basis {zN}N∈{0}∪N of the space of analytic functions on the disc, we have

X+z
N = (N + n)zN+1, X−zN = −NzN−1, ZzN = (2N + n)zN

by the action of πn, n ∈ N, and

X+z
N = −NzN+1, X−zN = (N + n)zN−1, ZzN = −(2N + n)zN

by the action of πn, n ∈ −N.

Proof. By elementary computations, we can see that the subgroups generating K,H,A are trans-
formed as follows: (

cos θ sin θ
−sin θ cos θ

)
−→

(
eiθ 0
0 e−iθ

)
,(

et 0
0 e−t

)
−→

(
cosh t i sinh t

−i sinh t cosh t

)
,(

cosh t sinh t
sinh t cosh t

)
−→

(
cosh t sinh t
sinh t cosh t

)
,

where the matrices on the right-hand side denote elements in SU(1, 1). To see the action of K under
πn for n ∈ N, let us consider

πn

(
eiθ 0
0 e−iθ

)
zN = e(2N+n)iθzN , (5.3)

which implies

ZzN = −i d
dθ

∣∣∣∣
θ=0

πn

(
eiθ 0
0 e−iθ

)
zN = (2N + n)zN .

In a similar way, we can show that the action πn for n ∈ N by H,A are given by

HzN = i(N + n)zN+1 + iNzN−1, AzN = (N + n)zN+1 − NzN−1.

These imply the equalities for πn for n ∈ N. The case for πn for n ∈ −N can be obtained by taking
the complex conjugates of equalities for the action of πn for n ∈ N.

Now we consider the action of D̃r under πn for n ∈ N. From (5.3), we can see that zN are the
K-type vectors of weight m if m = 2N+n. By Lemma 5.3, over (α, β) for K-type (m−2),m vectors
α, β in the representation space of πn, the Dirac operator D̃r acts by(

2 − r2

2r

)
Id +

(
r−1(m− 2) n−m

−(n+m− 2) −r−1m

)
noting N = (m − n)/2. We have two cases. First, if β is not the minimal K-type for πn, that is,
m � n, as in the derivation of (5.2), we can obtain the corresponding eigenvalue equation

λ2 + rλ+
r2

4
− (m− 1)2

r2
= (m− 1)2 − (n − 1)2.

Hence,

λ±(n,m) = −r
2
± ((m− 1)2(1 + r−2) − (n− 1)2)1/2 for m = n+ 2, n + 4, . . . .

Second, if β is the minimal K-type for πn, that is, K-type m = n vector, then α is just trivial.
Hence, the eigenvalue is given by

λ(n) = −r
2

+
1 − n

r
.
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Repeating the same procedure as in the case of πn for n ∈ N, we can obtain the same eigenvalues
λ±(n,m), λ(n) for πn for n ∈ −N. In our case, n should be an even number since Γ contains −Id.
Combining all of the facts derived in the above, we have the following result.

Lemma 5.4. For n ∈ 2N, h(n) = Θn(f), we have

ht,r(n) = ht,r(−n) =
(
λ(n)e−tλ(n)2 +

∑
m∈n+2N

(λ+(n,m)e−tλ+(n,m)2 + λ−(n,m)e−tλ−(n,m)2)
)

where

λ(n) = −r
2

+
1 − n

r
, λ±(n,m) = −r

2
± ((m− 1)2(1 + r−2) − (n− 1)2)1/2.

6. Eta function of Dr: principal series part

Now we study the eta function defined by

η(Dr, s) :=
1

Γ((s+ 1)/2)

∫ ∞

0
t(s−1)/2 Tr(Dre

−tD2
r ) dt

for �(s) � 0 and r near 0. First let us recall that the bottom of each branch of continuous
spectrum of Dr goes to ∞ as r → 0 by Theorem 1.1. Hence, for a small r > 0, Tr(Dre

−tD2
r ) decays

exponentially as t → ∞. To analyze Tr(Dre
−tD2

r ) in more detail, we apply Proposition 4.2 which
relates Tr(Dre

−tD2
r ) with the geometric side. Note that this geometric side can be decomposed into

two parts:

Trp(Dre
−tD2

r ) = Tr(Dre
−tD2

r ) − Trd(Dre
−tD2

r ),

Trd(Dre
−tD2

r ) =
vol(Γ\G)

2π

∑
n≡0(mod2)

(|n| − 1)ht,r(n) − κt
∑

n≡0(mod2)

ht,r(n)

and accordingly we also decompose the eta function η(Dr, s) into

η(Dr, s) = ηp(Dr, s) + ηd(Dr, s).

The principal part of the eta function ηp(Dr, s) is studied in this section and the other part ηd(Dr, s)
will be considered in the next section.

We start with the following lemma.

Lemma 6.1. Putting I(m, r, τ) = ((m− 1)2(1 + r−2) + 4τ2)
1
2 ,

ht,r(τ) = exp
(
−r

2

4
t− 4τ2t

)
·

∑
m∈2Z

e−(m−1)2(1+r−2)t

( ∞∑
k=0

(
−r (rt)2k

(2k)!
+ 2

(rt)2k−1

(2k − 1)!

)
I(m, r, τ)2k

)
where the term (rt)2k−1/(2k − 1)! for k = 0 vanishes and for t ∈ [0, 1] and r ∈ (0, 1] the following
estimate holds,

|ht,r(τ)| � 2r exp
(
−r

2

4
t− 4τ2t

)
·

∑
m∈2Z

e−(m−1)2(1+r−2)t(1 + I(m, r, τ)2 + eI(m,r,τ)2rt). (6.1)

Proof. We can rewrite ht,r(τ) as follows,

ht,r(τ) = exp
(
−r

2

4
t− 4τ2t

) ∑
m∈2Z

e−(m−1)2(1+r−2)t

·
(
−r

2
(eI(m,r,τ)rt + e−I(m,r,τ)rt ) + I(m, r, τ)(eI(m,r,τ)rt − e−I(m,r,τ)rt )

)
. (6.2)
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Now the Taylor expansion of eI(m,r,τ)rt ± e−I(m,r,τ)rt gives us the claimed form of the first equality.
To prove the second estimate, we note that

∞∑
k=0

(
−r (rt)2k

(2k)!
+ 2

(rt)2k−1

(2k − 1)!

)
I(m, r, τ)2k

= −r + rt
(

2 − r2t

2

)
I(m, r, τ)2 +

∞∑
k=2

(rt)2k−1

(2k − 1)!

(
2 − r2t

2k

)
I(m, r, τ)2k .

For t ∈ [0, 1] and r ∈ (0, 1], observe that
∞∑

k=2

(rt)2k−1

(2k − 1)!

(
2 − r2t

2k

)
I(m, r, τ)2k � 2r

∞∑
k=0

(rt)k

k!
I(m, r, τ)2k ,

from which it is easy to derive the estimate.

Our first task in this section is to obtain the asymptotic expansion of Trp(Dre
−tD2

r ) as t → 0.
By Lemma 6.1, we can rewrite the first part of Trp(Dre

−tD2
r ) from (4.8) as follows,∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ =

∑
m∈2Z

exp
(
−r

2

4
t− (m− 1)2(1 + r−2)t

)

·
∞∑

k=0

∑
k=p+q

(ak,p,q(r)t2k + bk,p,q(r)t2k−1)

· (m− 1)2p(1 + r−2)p
∫ ∞

−∞
τ tanh(πτ)(2τ)2qe−4τ2t dτ. (6.3)

Here the coefficients ak,p,q(r), bk,p,q(r) are given by

ak,p,q(r) = −
(
k

p

)
r2k+1

(2k)!
, bk,p,q(r) = 2

(
k

p

)
r2k−1

(2k − 1)!
(with b0,p,q(r) = 0),

which are of order O(r) uniformly for small r > 0. The integral in the last line can be handled as
follows, ∫ ∞

−∞
τ tanh(πτ)(2τ)2qe−4τ2t dτ = (−1)q∂q

t

∫ ∞

−∞
τ tanh(πτ)e−4τ2t dτ

= (−1)q∂q
t

∫ ∞

0
tanh(π

√
x)e−4tx dx

= (−1)q∂q
t

π

8t

∫ ∞

0

( ∞∑
k=0

(−4tx)k

k!

)
cosh−2(π

√
x)√

x
dx.

Hence, we have ∫ ∞

−∞
τ tanh(πτ)(2τ)2qe−4τ2t dτ ∼

∞∑
k=0

akt
−q−1+k as t→ 0 (6.4)

where ak are independent of r. Now we note the following equalities for the first and the third
factors on the right-hand side of (6.3),∑

m∈2Z

(m− 1)2p(1 + r−2)p exp(−(m− 1)2(1 + r−2)t)

= (−1)p∂p
t

∑
m∈Z

exp
(
−4

(
m− 1

2

)2

(1 + r−2)t
)
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= (−1)p∂p
t

∑
m∈Z

(−1)m
√
π

2
√

(1 + r−2)t
exp

(
− π2m2

4(1 + r−2)t

)

= (−1)p∂p
t

( √
πr

2
√

(1 + r2)t
+

∑
m∈Z−{0}

(−1)m
√
π

2
√

(1 + r−2)t
exp

(
− π2m2

4(1 + r−2)t

))
, (6.5)

where the second equality is the Poisson summation formula. Note that the terms for non-zero m
in the last line of (6.5) decays exponentially as t → 0, so that small time asymptotics is given by
the first term in the last line of (6.5). Therefore, we have∑

m∈2Z

(m− 1)2p(1 + r−2)p exp(−(m− 1)2(1 + r−2)t) ∼ a(r)t−
1
2
−p as t→ 0 (6.6)

where a(r) is given by r/
√

1 + r2 up to a constant, hence it is of O(r) for small r > 0.
By (6.3) and the asymptotic expansions in (6.4), (6.6), taking care of the r-dependence of their

coefficients, we can conclude that∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ ∼

∞∑
k=0

ak(r)t−
3
2
+k as t → 0, (6.7)

where ak(r) depends only on r and is of O(r2) for small r > 0 uniformly with respect to the index k.
Now for the second part of Trp(Dre

−tD2
r ), we repeat the above process and noting∫ ∞

−∞
cos(uγτ)(2τ)2qe−4τ2t dτ = (−1)q∂q

t

∫ ∞

−∞
cos(uγτ)e−4τ2t dτ = (−1)q∂q

t

(√
π√
t

exp
(
−u

2
γ

4t

))
,

we can see that this term does not contribute to the asymptotics as t→ 0.
To deal with the third part of Trp(Dre

−tD2
r ), we recall

ψ(1 + z) ∼ log z +
1
2z

−
∞∑

k=1

B2k

2k
z−2k as z → ∞, (6.8)

where B2k is the Bernoulli’s number, which implies∫ ∞

−∞
ψ(1 + 2iτ)(2τ)2qe−4τ2t dτ ∼ bt−

1
2
−q log t+ c+

∞∑
k=0

akt
−q− 1

2
+k as t→ 0, (6.9)

where the constant c vanishes unless q = 0. Proceeding as before and using (6.9),∫ ∞

−∞
ψ(1 + 2iτ)ht,r(τ) dτ ∼

∞∑
k=0

ak(r)t−1+k/2 + bk(r)t−1+k log t as t→ 0, (6.10)

where ak(r), bk(r) depend only on r and is of O(r2) for small r > 0 uniformly with respect to the
index k.

For the fourth part of Trp(Dre
−tD2

r ), it is also easy to obtain the following asymptotic expansion

∫ ∞

−∞
ht,r(τ) dτ ∼

∞∑
k=0

ak(r)t−1+k as t→ 0, (6.11)

where ak(r) depends only on r and is of O(r2) for small r > 0 uniformly with respect to the index k.
Now it is easy to see that the next term (κt/2)ht,r(0) contributes to the small time asymptotics

by (6.7) with the first term a1(r)t−
1
2 .

By (4.7), the integrand of the last integral of the geometric side can be expressed by

ψ

(
1
2

+ iτ

)
+ ψ(iτ) − ψ

(
1 +m

2
+ iτ

)
− ψ

(
1 −m

2
+ iτ

)
. (6.12)
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Using the following formulas about ψ(z),

ψ(z + 1) =
1
z

+ ψ(z), ψ(z) + ψ

(
z +

1
2

)
= 2(ψ(2z) − log 2), (6.13)

the terms in (6.12) can be rewritten as

2(ψ(1 + iτ) − ψ(1 + 2iτ)) − 1
iτ

+ 2 log 2 − 4
(

1
1 + 4τ2

+
3

32 + 4τ2
+ · · · + m− 1

(m− 1)2 + 4τ2

)
.

The terms in the first line give us the asymptotics as (6.10). The terms in the second line also can
be handled as in a similar way and we can show that these term gives us the asymptotics

∞∑
k=0

ak(r)t(−1+k)/2 as t→ 0, (6.14)

where ak(r) depends only on r and is of O(r2) for small r > 0 uniformly with respect to the index k.
Combining (6.7), (6.10), (6.14) and facts derived in the above, we obtain the following theorem.

Theorem 6.2. The small time asymptotics is given by

Trp(Dre
−tD2

r ) ∼
∞∑

k=0

ak(r)t(−3+k)/2 + bk(r)t−1+k log t as t→ 0, (6.15)

where ak(r), bk(r) depend only on r and is of O(r2) for small r > 0 uniformly with respect to the
index k. In particular, if κt = 0, it has the following simple form,

Trp(Dre
−tD2

r ) ∼
∞∑

k=0

ak(r)t(−3+k)/2 as t→ 0.

This theorem also immediately implies the following result.

Theorem 6.3. For a sufficiently small r > 0, the function ηp(Dr, s) defined for �(s) > 2
extends meromorphically to C and may have a double pole at s = 1 and simple poles at s ∈
{2, 0,−1,−2,−3, . . .}. In particular, if κt = 0, ηp(Dr, s) may have only simple poles at
s ∈ {2, 1, 0,−1,−2,−3, . . .}.

In view of Theorem 6.3, it is natural to define the principal part of the eta invariant of Dr by

ηp(Dr) :=
(
ηp(Dr, s) − r0

s

)∣∣∣∣
s=0

,

where r0 is the residue of the simple pole of ηp(Dr, s) at s = 0. Now let us consider the adiabatic
limit of ηp(Dr) as r → 0. For this, we need the following proposition.

Proposition 6.4. As r → 0, Trp(Dre
−tD2

r ) converges to 0 for t ∈ (0,∞), and t
3
2 Trp(Dre

−tD2
r )

converges to 0 uniformly for t ∈ [0, 1].

Proof. From the expression of ht,r(τ) in (6.2), we can see

|ht,r(τ)| � C exp
(
−r

2

4
t− 4τ2t

) ∑
m∈2Z

e−c(m−1)2(1+r−2)t for small r > 0,

where C, c are the positive constants that do not depend on r, τ . Hence, the integral∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ

1611

https://doi.org/10.1112/S0010437X0800362X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0800362X


P. Loya, S. Moroianu and J. Park

vanishes as r → 0 by the dominated convergence theorem. The same argument holds for the other
terms defining Trp(Dre

−tD2
r ). Hence, Trp(Dre

−tD2
r ) converges to 0 as r → 0. The uniform conver-

gence of t
3
2 Trp(Dre

−tD2
r ) follows from the following estimate

|t 3
2 Trp(Dre

−tD2
r )| � Cr2 for t ∈ [0, 1], (6.16)

which also follows easily from (6.1) and (6.5).

Now we have the following result.

Theorem 6.5. We have

lim
r→0

ηp(Dr) = 0.

Proof. Let us consider

ηp(Dr) =
1√
π

∫ ∞

1
t−

1
2 Trp(Dre

−tD2
r ) dt +

(
1

Γ((s+ 1)/2)

∫ 1

0
t(s−1)/2 Trp(Dre

−tD2
r ) dt − r0

s

)∣∣∣∣
s=0

.

For the integration over [1,∞), recalling that Trp(Dre
−tD2

r ) is exponentially decaying as t→ ∞, it
is easy to see that this part vanishes as r → 0 by Proposition 6.4 and the dominated convergence
theorem. By (6.15) the meromorphic extension of the integral

∫ 1
0 · dt has the following form for

�(s) � −ε with small ε > 0,∫ 1

0
t(s−1)/2 Trp(Dre

−tD2
r ) dt =

2a0

s− 2
+

2a1

s− 1
− 4b0

(s− 1)2
+

2a2

s

+
2a3

s+ 1
− 4b1

(s+ 1)2
+

∫ 1

0
t(s−1)/2 Tr∗p(Dre

−tD2
r ) dt, (6.17)

where

Tr∗p(Dre
−tD2

r ) := Trp(Dre
−tD2

r ) − a0t
− 3

2 − a1t
−1 − b0t

−1 log t− a2t
− 1

2 − a3 − b1 log t.

By Theorem 6.2, all of the coefficients a0, a1, a2, a3, b0, b1 (as function of variable r) vanish as r → 0.
Hence, putting s = 0 except the term 2a2/s, we can see that −a0 − 2a1 − 4b1 + 2a3 − 4b1 vanishes
as r → 0. For the last integral with s = 0 also vanishes as r → 0 since

|t− 1
2 Tr∗p(Dre

−tD2
r )| � Cr2 for t ∈ [0, 1],

which follows from (6.16) and the coefficients a0, a1, a2, a3, b0, b1 vanish as order of r2. This completes
the proof.

7. Eta function of Dr: discrete series part

In this section we study the discrete part of the eta function ηd(Dr, s) when r > 0 is sufficiently
small.

First, from Lemma 5.4, let us recall that ht,r(n) is given by λ(n) and λ±(n,m) and we decompose
Trd(Dre

−tD2
r ) into the corresponding two parts. Then we also have

ηd(Dr, s) = η1
d(Dr, s) + η2

d(Dr, s) for �(s) � 0,

where

η1
d(Dr, s) = rs(2g − 2 + κ)

(
−

∞∑
k=1

2(2k − 1)
(2k − 1 + r2/2)s

)
+ rsκt

( ∞∑
k=1

2
(2k − 1 + r2/2)s

)
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η2
d(Dr, s) = (2g − 2 + κ)

(
2

∞∑
k=1

(2k − 1)
∑

	∈k+N

λ+(2k, 2�)−s − λ−(2k, 2�)−s

)

− κt

(
2

∞∑
k=1

∑
	∈k+N

λ+(2k, 2�)−s − λ−(2k, 2�)−s

)
.

Here we used the fact

vol(Γ\G) = 2π(2g − 2 + κ),

where the volume of Γ\G is given with respect to the Haar measure in (4.1) (recall that the volume
of the circle K/Z is normalized to be 1).

Now we investigate η1
d(Dr, s). Let us recall the Hurwitz zeta function

ζ(s, a) =
∞∑

k=0

(k + a)−s,

which has a meromorphic extension to the whole C with a simple pole at s = 1. If we set

ζ0(s, a) =
∞∑

k=1

(2k − 1 + a)−s,

then

ζ0(s, a) = ζ(s, a) − 2−sζ

(
s,
a

2

)
.

By these definitions, for �(s) > 2,

η1
d(Dr, s) = 2(2 − 2g − κ)rs

(
ζ0

(
s− 1,

r2

2

)
− r2

2
ζ0

(
s,
r2

2

))
+ 2κtrsζ0

(
s,
r2

2

)
.

The right-hand side gives the meromorphic extension of η1
d(Dr, s) over C with simple poles at

s = 1, 2. We can also see that η1
d(Dr, s) is regular at s = 0 from this equality. Recalling

ζ(0, a) =
1
2
− a, ζ(−1, a) = −1

2

(
a2 − a+

1
6

)
,

we can see that

ζ0(0, a) = −a
2
, ζ0(−1, a) = −1

4

(
a2 − 1

3

)
.

Using these, we obtain

η1
d(Dr, 0) = (2 − 2g − κ)

(
1
6

+
r4

8

)
− κt r

2

2
.

Summarizing all of these for η1
d(Dr, s), we have the following result.

Proposition 7.1. For a sufficiently small r > 0, the function η1
d(Dr, s), define for �(s) > 2, extends

meromorphically to C and may have simple poles at s = 1, 2. The following equality holds,

lim
r→0

η1
d(Dr, 0) = 1

6(2 − 2g − κ). (7.1)

To obtain the meromorphic extension of η2
d(Dr, s) over C, we rewrite this as follows,

η2
d(Dr, s) = 2(2g − 2 + κ)rsfr(s) − 2κtrsgr(s).
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Here

fr(s) =
∑

	>k�1

(2k − 1)
((

qr(k, �) − r2

2

)−s

−
(
qr(k, �) +

r2

2

)−s)
,

gr(s) =
∑

	>k�1

(
qr(k, �) − r2

2

)−s

−
(
qr(k, �) +

r2

2

)−s

where
qr(k, �) = ((2�− 1)2(1 + r2) − r2(2k − 1)2)

1
2 .

Now we put hr(s) =
∑

	>k�1(2k − 1)qr(k, �)−s which can be written as

hr(s) =
∑
k�1

(2k − 1)1−s
∑
	>k

(2�− 1)−s

(
1 + r2

(2k − 1)2
− r2

(2�− 1)2

)−s/2

.

From this and the above analysis of ζ0(s, 0), we can see that hr(s) is holomorphic for �(s) > 2.
For the meromorphic extension of hr(s) over C, we use the identity as = exp(s log(1 + (a− 1))) to
obtain (

1 + r2

(2k − 1)2
− r2

(2�− 1)2

)−s/2

= 1 − s

2

(
1 + r2

(2k − 1)2
− r2

(2�− 1)2
− 1

)
+
s

4

(
1 + r2

(2k − 1)2
− r2

(2�− 1)2
− 1

)2

+ · · · .

From this, we can see that hr(s) has the meromorphic extension over C and may have simple poles
at s = 2, 1, 0,−1, . . . with the residues which are continuous with respect to r. Using the following
equality

fr(s) =
(
r2shr(s + 1) + r6

s(s+ 1)(s + 2)
24

hr(s+ 3) + r10θ(s, r)
)

where θ(s, r) is regular at s = 0 and is continuous at r = 0, we can conclude that fr(s) is regular at
s = 0 and the limit of fr(0) as r → 0 is trivial. In a similar way, we can see that the same conclusion
is true for gr(s). By all these facts, we have the following result.

Proposition 7.2. For a sufficiently small r > 0, the function η2
d(Dr, s), defined for �(s) > 2,

extends meromorphically to C and may have simple poles at s ∈ {1,−1,−2,−3, . . .}. The following
equality holds,

lim
r→0

η2
d(Dr, 0) = 0. (7.2)

By Propositions 7.1 and 7.2, we can define

ηd(Dr) := ηd(Dr, s)|s=0 = η1
d(Dr, 0) + η2

d(Dr, 0)

and we summarize our results in the following.

Theorem 7.3. For a sufficiently small r > 0, the discrete part of the eta function ηd(Dr, s), defined
for �(s) > 2, extends meromorphically to C and may have simple poles at s ∈ {2, 1,−1,−2,−3, . . .}.
Moreover,

lim
r→0

ηd(Dr) = 1
6(2 − 2g − κ).
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would like to express their gratitude to these institutions for their hospitality. Sergiu Moroianu was

1614

https://doi.org/10.1112/S0010437X0800362X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0800362X


Adiabatic limit of the eta invariant

partially supported by a PN-II-ID-PCE-2008-2 contract. The authors also thank the anonymous
referee for many helpful comments.

References

AB98 B. Ammann and C. Bär, The Dirac operator on nilmanifolds and collapsing circle bundles, Ann.
Global Anal. Geom. 16 (1998), 221–253.

APS75 M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I,
Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69.

Bar00 C. Bär, The Dirac operator on hyperbolic manifolds of finite volume, J. Differential Geom. 54
(2000), 439–488.

Bec00 S. Bechtluft-Sachs, The computation of η-invariants on manifolds with free circle action, J. Funct.
Anal. 174 (2000), 251–263.

BF86a J.-M. Bismut and D. S. Freed, The analysis of elliptic families. I. Metrics and connections on
determinant bundles, Comm. Math. Phys. 106 (1986a), 159–176.

BF86b J.-M. Bismut and D. S. Freed, The analysis of elliptic families. II. Dirac operators, eta invariants,
and the holonomy theorem, Comm. Math. Phys. 107 (1986b), 103–163.

Bor97 A. Borel, Automorphic forms on SL2(R), Cambridge Tracts in Mathematics, 130 (Cambridge
University Press, Cambridge, 1997).

BC89 J. M. Bismut and J. Cheeger, η-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989),
33–70.

Che87 J. Cheeger, η-invariants, the adiabatic approximation and conical singularities. I. The adiabatic
approximation, J. Differential Geom. 26 (1987), 175–221.

Dai91 X. Dai, Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J. Amer.
Math. Soc. 4 (1991), 265–321.

DZ95 X. Dai and W. P. Zhang, Circle bundles and the Kreck–Stolz invariant, Trans. Amer. Math. Soc.
347 (1995), 3587–3593.

Don79 H. Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group
actions, Illinois J. Math. 23 (1979), 485–496.

GGP69 I. M. Gel′fand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation theory and automorphic
functions (W. B. Saunders, Philadelphia, PA, 1969).

Hit74 N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1–55.
Hof94 W. Hoffmann, An invariant trace formula for the universal covering group of SL(2,R), Ann. Global

Anal. Geom. 12 (1994), 19–63.

Kna01 A. W. Knapp, Representation theory of semisimple groups. An overview based on examples,
Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 2001).

Lan75 S. Lang, SL2(R) (Addison-Wesley, Reading, MA, 1975).

LM05 R. Lauter and S. Moroianu, An index formula on manifolds with fibred cusp ends, J. Geom. Anal.
15 (2005), 261–283.

LMP07 E. Leichtnam, R. R. Mazzeo and P. Piazza, The index of Dirac operators on manifolds with fibred
boundaries, Bull. Belg. Math. Soc. Simon Stevin 13 (2007), 845–855.

MM90 R. R. Mazzeo and R. B. Melrose, The adiabatic limit, Hodge cohomology and Leray’s spectral
sequence for a fibration, J. Differential Geom. 31 (1990), 185–213.

MM98 R. R. Mazzeo and R. B. Melrose, Pseudodifferential operators on manifolds with fibred boundaries,
Asian J. Math. 2 (1998), 833–866.

Mel93 R. B. Melrose, The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4 (A K
Peters, Wellesley, MA, 1993).

Nic98 Nicolaescu L. I., Adiabatic limits of the Seiberg–Witten equations on Seifert manifolds, Comm.
Anal. Geom. 6 (1998), 331–392.

1615

https://doi.org/10.1112/S0010437X0800362X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0800362X


Adiabatic limit of the eta invariant

Nic99 Nicolaescu L. I. Eta invariants of Dirac operators on circle bundles over Riemann surfaces and
virtual dimensions of finite energy Seiberg–Witten moduli spaces, Israel J. Math. 114 (1999),
61–123.

Par05 J. Park, Eta invariants and regularized determinants for odd dimensional hyperbolic manifolds with
cusps, Amer. J. Math. 127 (2005), 493–534.

SS87 J. Seade and B. Steer, A note on the eta function for quotients of PSL2(R) by co-compact Fuchsian
groups, Topology 26 (1987), 79–91.

Ste89 M. Stern, L2-index theorems on locally symmetric spaces, Invent. Math. 96 (1989), 231–282.
Vai01 B. Vaillant, Index and spectral theory for manifolds with generalized fibred cusps, Dissertation,

Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn (2001).
Wit85 E. Witten, Global gravitational anomalies, Comm. Math. Phys. 100 (1985), 197–229.
Woj K. P. Wojciechowski, Witten’s holonomy theorem in the non-loop case, unpublished note.
Zha94 W. P. Zhang, Circle bundles, adiabatic limits of η-invariants and Rokhlin congruences, Ann. Inst.

Fourier (Grenoble) 44 (1994), 249–270.

Paul Loya paul@math·binghamton·edu
Department of Mathematics, Binghamton University, Binghamton, NY 13902, USA

Sergiu Moroianu moroianu@alum·mit·edu
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