
ON THE MONODROMY GROUPS OF LIFTED
EULER EQUATIONS

by KATHRYN KUIKEN and JOHN T. MASTERSON

(Received 4 August, 1982)

In [13], Poincare asked the following question: Which abstract groups can appear as
monodromy groups [14] of second order, linear, homogeneous differential equations with
meromorphic coefficients (which might depend on one or more parameters) on C? In the
present paper, we initiate a classification of monodromy groups of differential equations
on compact Riemann surfaces of genus 1. We proceed as follows: Let

y" + - y ' + 4 y = 0 with a, |3eC (I)

be the general Euler equation [1] which has two regular singular points at 0 and =° jn the
extended complex plane C. Further, let y,,U) (v = 1,2) be an arbitrary but fixed pair of
linearly independent solutions to (1) valid in a neighborhood of some ordinary point.
Analytic continuation of each solution along a closed loop A in C-{0, °°}, starting and
ending at some fixed base point, produces a new solution yvA (v = 1, 2) which can be
expressed as

)

where the constants avlx (v, jz = l,2) in C depend on the homotopy class [A] of A.
Clearly, yi,A(z)/y2,A(z) = T°(y,(z)/y2(z)) where the Mobius transformation T:w>-^
(aiiW + a12)/(a2iW + a22) depends on [A]. The set of all Mobius transformations T
belonging to every possible closed loop A in C-{0,°°} forms a group G, called the
monodromy group of the Euler equation (1). G is generated by the Mobius transformation
belonging to a simple, closed loop Ao encircling 0. Hence, G is cyclic.

We will show that substitution of various meromorphic functions z = g(w) into (1)
results in equations (henceforth referred to as untransformed lifted Euler equations) which
can be transformed to eliminate their first derivative terms to give equations (called
transformed lifted Euler equations) having coefficients doubly periodic with respect to an
arbitrary lattice [12] L = (nw, + ma>2, n,meZxZ, Im(w,/«2)>0). Consequently, the
transforms can be viewed as equations on an arbitrary complex torus C/L. Thus, each
transformed lifted Euler equation has a monodromy group G*. G* is also the mono-
dromy group of the untransformed equation because both lifted equations have the same
ratio of linearly independent solutions.

The generators for G* are obtained by the analytic continuation of yi(g(w))/y2(g(w))
along simple, closed loops about the singularities of the transformed equation as well as
along any two generating loops for the homotopy group [10] of C/L, where all loops avoid
singularities. Equivalently, we find [7] these generators by analytically continuing
y,(z)/y2(z) along the images of the above mentioned loops under g(w) in C. Our selected
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48 KATHRYN KUIKEN AND JOHN T. MASTERSON

substitutions g will not necessarily be doubly periodic so that these images of loops can be
either open arcs or closed loops. These observations will ultimately permit us to determine
G* explicitly.

We now proceed with a detailed description of our findings.

THEOREM 1. The substitutions z = tK(w), A. eC*, with t(w) of the form [11]

or

t(w) = r. r with et = &[—), 1 = 1,2 (2)
V(e2-e,) V2l

with k,l>0; mhnieZ+; £ m i - j > j = O (3)

into any Euler equation (1) (with difference of indicial roots r = rj — r2) on C produce lifted
Euler equations which can be transformed respectively into

l [ ^ ( ^ ) ] = O where e3 = ̂ ( ^ ) (4)
Or i ri _( \\2 / k I \ 2 "I

y" + o — H - ( I ^ ( w - a f ) - I n,C(w-6,) + c +02t(w) y = 0, (5)

where *̂, a, £ are the Weiersfrass functions [12] /or an arbitrary lattice L and Q2 is the
Schwarzian derivative operator [4]. Equations (4) and (5) haue coefficients doubly periodic
for L, can be treated as equations on C/L and determine monodromy groups on C/L.

REMARK 1. It has been shown [11] that the mapping (2) represents a specific
non-affine, branched projective structure [4] on an arbitrary unpunctured torus and is
associated with a Schwarzian differential equation with non-affine monodromy group.
Here we use the mapping (2) to construct differential equations on punctured tori as well
as to determine the monodromy groups of these equations. Similarly, the mappings of
type (3) represent classically known affine structures on unpunctured tori [3] and are used
here to construct differential equations on tori with arbitrarily many punctures as well as
to find the monodromy groups of these equations.

Proof. The Euler equation (1) with difference of indicial roots r = \ / ((a- l)2-4 |3)
(see p. 174-177 of [1] for all relevant facts concerning Euler's equation) can be lifted by
the map z = tK(w) to C by a two step process as follows: Let z=f°t(w) with /(t) = fA.
First, lift (1) by z = /(t) to a new Euler equation

j ^ y(f) = O (6)

with a' = ka-\ + l and |3' = |3A2 and with difference of indicial roots

Ar. (7)
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Second, lift (6) to C by the meromorphic substitution t= t(w) to obtain

Y"(w) + P(w)Y'(w) + Q(w)Y(w) = O (8)

where P(w) = (-t"lt') + a'(t'lt) and Q(w) = /3'(t'/t)2. Note that 0> and a in (2) and (3) can
belong to an arbitrary lattice L.

Since t = t(w) is a meromorphic function on C, the transformation [6]

Y(w) = e-'/2rp(s)dsy(w)

can be used to transform (8) into

y"(w) + J(w)y(w) = 0 (9)
where

t'\2 1/ t" t'\' 1/ t" t'\2

Elementary calculations using (7) produce (l-(Ar)2)/4= /3' + (a'/2)-((a')2/4) so that

Equations (8) and (9) have the same ratio of linearly independent solutions.
When (2) is used for t(w), we obtain [11]

= 0>(w)-e3 and M w ) = - |

Hence, (9) assumes the form (4) which clearly has doubly periodic coefficients.
Alternatively, when (3) is used for r(w), we obtain [12]

k

Hence, (9) assumes the form (5). We observe that f It is doubly periodic since X mf -
I

n,=0. Also, 62t(w) is doubly periodic since l(w) can be viewed as a multiplicative
i l

multi-valued function on C/L for some character [3].
From the double periodicity of the coefficients of (4) and (5), we can conclude that

these equations live on C/L and have monodromy groups there.

REMARK 2. The proof of this theorem implies that if the substitutions z = tx(w) and
z = t(w), t(w) fixed and of form (2) or (3), are made respectively into any two Euler
equations with respective differences of indicial roots r and r' = rk, then the same
transformed lifted Euler equation results.
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We are now in a position to state

THEOREM 2. Equation (4) has monodromy group G* given by
. (a) D2n if r\ = k/n, neZ+, k e{±l, ± 3 , . . . } and (|k|, n) = l

(b) Dn if rk = kin, n e Z + , k e{±2, ± 4 , . . . } and (\k\, n) = \
(c) C2 * C2 if rk e ( C - Q) U{0}.

REMARK 3. G* is the Klein 4-group if n = 1 and k e{± l , ± 3 , . . . } while G* is C2 if
n = 1 and k e {±2, ± 4 , . . . } .

Proof. Remark 1 implies that there exists an equation (1) which lifts by map (2) to an
equation which transforms into (4). Therefore, A = 1 can be assumed with no loss of
generality. Let u(z) be some ratio of linearly independent solutions to (1) and h(w) =
u ° t(w) the corresponding ratio of linearly independent solutions to (4). When viewed as
an equation on C/L, (4) has singularities only at the natural projections of 0 and
(w1 + o>2)/2 to C/L. Let AQ and A'(<Ui+O)2)/2 be simple loops starting at some fixed point and
enclosing the respective natural projections of 0 and (to1 + aj2)/2. Let A,^ and A<̂ 2 be
non-contractable loops (based at the same fixed point as above) which together generate
the homotopy group of C/L. Here, all loops avoid singularities of (4). Lift [10] Ao,
A^.+c,)/;) and A^,, AL2 to C to unique loops Ao, A(u)]+<O2)/2 and unique arcs A^,, A^, all
having the same initial point. We can assume that the terminal points of AW| (i = 1, 2) are
translates of the common initial point by Wj (i = 1, 2). G* is generated by the monodromy
elements corresponding to the above loops and arcs (on C).

Since t(0) = °° and t((aj1 + o)2)/2) = (V(e3 — e,) + N/(e3 — e2))/V(e2 — e1) = K=£Q [11], we
can find [7] the generators for G* associated with Ao and A(a)i+U)2)/2 by continuing

Z' if r e C * (10)
In 2 if r = 0 K '

along the loops Fco=t(A0) and FK = t(A(<Oi+(O2)/2) where F^ is homotopic in C-{0 , <»} to a
simple loop enclosing c° while FK is homotopically trivial in this space. Thus, the generator
TK corresponding to A(aJl+a)2)/2 or FK is the identity. Furthermore, the generator T^
corresponding to Ao or F^ is

if r e C*

if r = 0.

Note that t(w + o}{) = l/t(w) and t(w + co2) = - l / t (w) [11]. Hence, we determine the
generators T .̂ (i = 1, 2) for G* arising from A .̂ (i = 1,2) by continuing (10) along the arcs
F,., = f(A,.,.) as follows:

..,

— if reC*

2Lm-z if r = 0
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and

( (2l,+ l)mr

if reC*

(2?2+l)77i-2 if r = 0
where lt e Z (i = 1,2) are fixed and depend respectively on AM] and A^.

Replace T^,, T^ and T^ by the new generators [9] for G* given as

- if reC*

- z if r = 0

^ -i« x^J}:

and

| — if reC

- 2 + 771 if r = 0

observing that Tm is not needed as a generator since Ta,= (A °B)2.
At this point, the proof splits naturally into three cases depending on the value of r.

Case 1. r = k/n, neZ+, k e{±l, ±3 , . . . } and (|fc|, n) = l: Let C, = A and C2 = B ° A
with A(z) as above and C2(z) = e™ikln)z. Clearly, C2 = id and C\C2CX = C2\ Also,
C2" = id where elementary calculations using the oddness of k show that no lower positive
power of C2 is the identity. Therefore, G* = D2n. Hence, (a) has been verified.

Case 2. r = kin, n e Z+, ke{±2, ±4 , . . . } and (|fc|, n) = 1: Let C, and C2 be defined
as in Case 1. As above, C2 = id and CiC2Ci = C2 ' . However, C$ = id where elementary
calculations using the evenness of k show that no lower positive power of C2 is the
identity. Therefore, G* = Dn. Hence, (b) has been verified.

Case 3. re(C-Q)U{0}: A and B satisfy A2 = B2 = id. Consequently, all elements of
G* other than A, B and the identity can be realized as (B ° A)" and (B ° A)" ° B for
neZ-{0} . None of these elements is the identity for the given r values. Therefore,
G* = (A; A2)*(B; B2>. Hence, (c) has been verified.

COROLLARY. The monodromy group G* of equation (4) is Kleinian iff r\ e
(C-Re)UQ.

Proof. As in the proof of Theorem 2, we can assume that A = 1 so that G* is
generated by

AW- 1 " 'eC*
1 - 2 if r = 0

and

( iirr

T « ««=*
-z + tri if r = 0.
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Case 1. r e Q-{0}: By Theorem 2, G* = D,, for some n e Z+. Since G* is finite, it is
Kleinian.

Case 2. r = 0: G* is generated by (B ° A) (z) = z + vi and A(z) = —z and therefore
has fundamental domain [3]

FD = { z : R e z > 0 and 0<Imz<7r}.

Hence, G* is Kleinian.
Case 3. r e C - R e : Now, r = a + ib, a, fceRe, b / 0 and G* is generated by A(z) =

1/z and B(z) = eim7z = ei7ta""hlz. Therefore, a e (0, 2] and b >0 can be assumed with no
loss of generality.

We will show that

D={z :e-"b<\z\<l, 0<Argz<<M

(with 4> determined below) is an open subset of a fundamental domain for G* by
examining the action of the nontrivial elements of G* on D. As in Case 3 in the proof of
Theorem 2, we can list all elements of G* as follows:

(i) id
(ii) A
(iii) B
(iv) (BA)n, n = ±1, ± 2 , . . .
(v) (BA)nB, n = +1, ±2, ± 3 , . . . .

Here, (BA)n(z) = ei7Tan-7Tnbz and (BA)"B(z) = e("ra^1))(1+")/z.
If T G G * assumes forms (ii), (iv) or (v), then

T(D) = {z : l

T(D) = {z :e^b(n+1)<\z\<e^bn, iran < Arg z < 4> +-nan, ne{±l, ±2,...}}

T(D) = {z : c ^ b ( n + 1 ) < | z | < e ^ b n , -4> + mi(l + n)<Arg z<ira( l + n), ne{+l ,±2, ± 3 , . . .

respectively. Thus, in each instance T(D) D D = 0 independently of the selection of $ > 0.
If T e G* assumes form (iii) and if <f> = ira/2, then

and

T(D) = jz : e-^h <

T(D)RD = 0 since as(0,2] . Therefore, T ( D ) n D / 0 only if T assumes form (i).
Hence, D is an open subset of a fundamental domain for G* and G* is Kleinian.

Case 4. r e R e - Q : G* contains (JB ° A) (z) = elirrz which is an elliptic element of
infinite order since r is irrational. Thus, G* is not Kleinian [8].

THEOREM 3. Each equation of form (5) has monodromy group G* of one of the

following types: Q, Cxx Q, C^xC^xQ where /eZ+U{+oo}.
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All of these groups (for all ZeZ+U{+°°}) are realized as rA e C and t(w) of form (3) both
vary.

Proof. Equation (5) has singularities at at (i = l , . . . , f c ) , b, 0 = 1, . . . , / ) and cp

(p = 1,. . . , t), the poles of 62t(w), as well as at all translates of these points by elements of
the lattice L. Therefore, G* is generated by the elements corresponding to simple loops
Aa. (i = 1 , . . . , k), Ab. (/ = 1,. . . , I), ACp (p = 1,. . . , t) about the points au fy, cp respec-
tively as well as arcs AM. (i = 1, 2) denned as in the proof of Theorem 2. Since f(a;) = 0,
t(bj.) = co and t(cp) = Cp ̂  0, °°, the monodromy elements Ta., Tbj, TCp associated with the
loops mentioned can be found [7] by continuing u(z) in (10) along the closed loops
I T = t ( A J (i = 1 , . . . , k), TS = t(Ab/) (/ = 1,. . . , 0 and Fg; = t(ACp) (p = 1,. . . , f), Op € Z,
where r o is homotopic in C — {0, °°} to a simple loop enclosing 0 and F^ is defined similarly
while FCp is homotopically trivial in C —{0, <»}. Thus, the generators TCp corresponding to
ACp or Fcp

n must all be the identity. Furthermore, the generators T^ corresponding to Aa.
or F™> and the generators Tb. corresponding to Ab. or F"1 are respectively given by

£ V . / i = l , . . . , f c \
i = i j = i v ] — * - , • • • , < • '

ai {+lnii if r =
and

. U-^^z if reC*
bi lz-27rin,- if r = 0 (/ = l , . . . , 0 -

We now show that the subgroup of G* generated by Ta. and Tb. can be generated by
precisely one transformation To. We let dj and e, be integers satisfying

Define

Since there exist integers M; = mj/gcd(mi, n,) and Ni = ri^gcdim^ n,), we conclude that
(ToJ^^T^ (i = l , . . . , k ) and (T0)N'= Tb. (j = l , . . . , / ) . Therefore, To generates this
subgroup of G* as claimed.

We can view any map z = t(w) of form (3) as a multi-valued function on C/L
belonging to a multiplicative character [3] generated by constants At eC* (i = 1, 2) which
are associated with the natural projections of the arcs A^ (i = 1, 2) in C to closed,
non-contractable loops on C/L. Equivalently, we note that t(w) is a single-valued function
on C with transformation laws r(w + «i) = Ajf(vv) for all w e C (i = l ,2) . Hence, the
generators T^ (i = 1, 2) corresponding to AM. (i = 1, 2) are found by continuing u(z) in
(10) along the arcs F^ = t(AM), where F^ is closed iff At = 1. We obtain

if r = 0.

M ) w h e r e F i

*\ A \ e z if reC*
T<Ul l + l A + 2 i k if r = 0 ( i = 1 , 2 )
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where A\ or In Af are arbitrary but fixed branches and where fc, e Z depend on both A .̂
and these branches.

G* is generated by To, Tw. (i = 1, 2) and is a group of affine mappings consisting
entirely of multiplications if reC* or of translations if r = 0. Hence, G* is Abelian and a
direct product of at most three cyclic groups [5].

We now show that G* has at most one generator of finite order. If r = 0, then clearly
G* has no generators or nontrivial elements of finite order. If reC*, then assume that

K,L,M,NeZ*

are generators of G* having finite order. Define

£)(z) = g(2iri/MlV) RCCKKN. LM>Z

Number theory shows that the subgroups of G* generated by Q (i = 1, 2) and D are the
same. We conclude that G* has at most one generator of finite order. Therefore, G* is
one of the types claimed.

We now show that all of these types are realized as follows:
(A) C x O s X C : Let r = 0 and

where ^=£(^12) (i = 1, 2). Then, A, = e, A2 = ej2 and gcd(mi; n,) = 1. Thus, G* is
generated by

) = z + y/2 + 2mk2, fcfeZ (i = l,2)

where the cyclic subgroups generated by To, TWi and T^ are disjoint. Hence, G* =

(B) CooXCooXC,, for all / e Z + : Let

= y and t(w)= (^w-"1'" ^ J 2 '" 2)/a(w)) • e ^ - ^

Here, A, =2, A2 = 3 and gcd (m,, «,-) = 1. Thus, G* is generated by

Ul(z) = 31/le(2lri")fc>z, fcfeZ 0 = 1,2) and 21", 3'71 eRe+.

The disjoint cyclic subgroups generated by TMi and T^ are of infinite order and are both
disjoint from the cyclic subgroup of order / generated by To. Hence, G* = C^xCooXC,
where leZ+ is arbitrary. Note that when 1 = 1, we obtain G*Cn = Caa.
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(C) C x q , for all leZ+: Let

r = y and W

Here, A, = 1, A2 = 3 and gcd(m;, n,) = 1. Thus, G* is generated by

= 3lVlri ( fc*/oz, kfGZ (i = l ,2) and 31 / !eRe+.

TL, = TS-, O(T0) = f and O(Ta)2) = <» imply that G* = Ca,xQ. Note that when I = 1, we
obtain G* = C .

(D) Q, for all leZ+: Let

, - l and .M

Here, A; = 1 (i = 1, 2) and gcd(m(, nf) = 1. Thus, G* is generated by

fc,eZ 0 = 1,2).
Since TWi = (T0)k' and O(T0) = I, we conclude that G* = Q. Note that when I = 1, G* = id.

REMARK 4. If t(w) of form (3) is doubly periodic (or equivalently if At = 1 for
i = 1, 2), then the arcs A,,,, (i = 1, 2) as well as all loops A,,, and Ab. project under t to
closed loops about 0 (or °°) in C —{0, °°}. Thus, G* is a (cyclic) subgroup of the group G of
(1) when A = 1 and t is as above.

In fact, we can prove

THEOREM 4. The group G* of the equation (5) obtained by lifting an arbitrary equation
(1) by any non-constant doubly periodic function t(w) (A = 1) is a proper subgroup of the
monodromy group G of (1) if

(I) 1 + gcd(o(G), mh *f;'. I ! " ' " ' f) = A*! when O(G) is finite or

ti, n,-; ' • " ' ] = M2 when O(G) = co

and i/
(II) there exists a doubly periodic root function t1/M2(w).

In fact, if (I) and (II) are satisfied, then [G : G*] = Ma or M2 depending respectively on
O(G)eZ+ or O(G)= oo.

REMARK 5. For a given monodromy group G, mappings ( can be constructed for
which [G : G*] in Z+ is arbitrary. Thus, every subgroup of G is the monodromy group of
an equation lifted from (1) by some map t.
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Proof. The existence of a doubly periodic root function tUM2(w) implies that t(Aoy.) =
r™*ki, kj e Z (i = 1, 2), where Fo is homotopic in C-{0 , °°} to a simple, closed loop about 0
[7]. Therefore, the generators T .̂ (j = 1, 2) are given by

"* [z+2mM2ki if r = 0 (i = 1,2).

Since T .̂ = (T0)
ki where To is defined as in Theorem 3 by

V"irM>z if r e C *n-l / \

° 2 \z+2mM2 if r = 0,

it follows that G* is generated by To alone.
Furthermore, G is generated by

e2irirz if reC*

z+2m if r = 0.

We now determine the relationship between G* and G by consideration of the
following two cases.

Case 1. If re(C-Q)U{0}, then G = {D0) is free and G* = <To) = (Dft) is a free
proper subgroup of index M2 in G. We note that both G* and G are purely parabolic,
elliptic or loxodromic.

Case 2. If reQ-{0}, then O(G)eZ+ and r = l/O(G) where feZ-{0} and gcd(|/|,
O(G)) = 1. Note that O(G)^1 . Otherwise, hypothesis I would be contradicted. There-
fore, r£ Z-{0} and G = <D0; D° ( G ) = 1) is not trivial. Also, as in Case 1, G* is generated
by T0 = D^.

We now determine [G : G*] and show that G* is a proper subgroup of G. Observe
that G* = <D^;D? ( G ) = 1). Since M! = gcd(O(G), M2), there exist kuk2eZ such that
klO(G) + k2M2 = M,. Thus, D ^ = D S ' O ( G ) + k ^ = D ^ is an element of G* which must
generate G* since Mj | M2. Hence, G* = <D^'; D° ( G ) = 1). Suppose that there exists
LeZ-{0} such that j l ^ A ^ with DQGG*. Since D^2 generates G*, there exists
k3eZ-{0} with D^ = D^M2. It follows that L = k3M2 mod O{G) and there exists k4eZ
with L = fc3M2+fc4O(G). This statement is contradicted by the fact that M, =
gcd(O(G), M2). Therefore, if DQ e G*, then M! | L. This result together with the facts that
G* = <D^';D?(G) = 1) and MX\O{G) imply, by group theory, that
Hence, [G : G*] = Mi. Since M1>1, G* is a proper subgroup of G.
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