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Dietary studies are often conducted as longitudinal intervention or crossover trials using multiple days of measurement on each subject
during each of several measurement periods, and determining the required numbers of days and subjects is important in designing
these studies. Linear mixed statistical models were used to derive equations for precision, statistical power and sample size (number of
days and number of subjects) and to obtain estimates of between-subject, period-to-period, and day-to-day variation needed to apply
the equations. Two cohorts of an on-going exercise intervention study, and a crossover study of Olestra, each with 14 d of measure-
ment/subject per period, were used to obtain estimates of variability for energy and macronutrient intake. Numerical examples illustrate
how the equations for calculating the number of days or number of subjects are applied in typical situations, and sample SAS code is given.
It was found that between-subject, period-to-period, and day-to-day variation all contributed significantly to the variation in energy and
macronutrient intake. The ratio of period-to-period and day-to-day standard deviations controls the trade-off between the number of
days and the number of subjects, and this remained relatively stable across studies and energy and macronutrient intake variables. The
greatest gains in precision were seen over the first few measurement days. Greater precision and fewer required days were noted in
the study (Olestra) that exerted greater control over the subjects and diets during the feeding protocol.

Dietary assessment: Dietary intake: Dietary variability: Within-subject variation: Between-subject variation

Dietary intervention trials often involve the measurement
of each subject for several days during at least two separate
periods. This situation arises in many longitudinal inter-
vention studies (for example, see Bowen et al. 1996;
Lanza et al. 1996; Dolecek et al. 1997; Lauer et al.
2000). Dietary intake for each subject is measured at base-
line for several days, subjects are allocated to one of two or
more groups (for example, intervention and control), and
each subject is again measured for several days during
some later period. A similar situation can arise in crossover
studies, where subjects are given one of two or more treat-
ments and dietary intake is measured for several days on
each subject. Following a washout period, subjects are
given a different treatment and dietary intake is again
assessed for several days (for example, see Stubbs et al.
1995, 1998; Poppitt & Swann, 1998; Johnstone et al.
2000).

A substantial literature exists on sample-size estimation
in nutrition studies. Several authors have given methods
for estimating the number of days of dietary intake data
required to estimate a given individual’s mean intake to
a specified precision (Beaton et al. 1979; Basiotis et al.
1987; Nelson et al. 1989; Hartman et al. 1990; Bellu
et al. 1995). An estimate of the number of days may be
needed in order to estimate the mean dietary intake of a
group of subjects (Beaton et al. 1979; Basiotis et al.
1987; Gay, 2000) or to compare the mean intake between
two groups (Nelson et al. 1989). Also, an estimate of the
number of days may be required in order to rank individ-
uals in terms of intake (Nelson et al. 1989; Hartman et al.
1990), or to classify subjects into percentiles of consump-
tion (Liu et al. 1978; Marr & Heady, 1986; Hartman et al.
1990). Beaton (1994) has provided a thorough discussion
of potential biases in dietary measurement methods
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and their effects on several of the above research questions.
Some authors have also considered trade-offs between
increasing the number of subjects and increasing the
number of days to estimate the mean dietary intake of a
group of subjects (Beaton et al. 1979; Gay, 2000), or to
estimate correlations between two nutritional variables
(Liu et al. 1978; Rosner & Willett, 1988). Beaton et al.
(1979), Beaton et al. (1983), Marr & Heady (1986),
Nelson et al. (1989), Borrelli et al. (1989), Hartman et al.
(1990), and Bhargava et al. (1994) have studied and esti-
mated daily and between-subject variability in nutrition
studies. Willett (1998) has summarised some of the results
from these studies.

Because of the complex design of longitudinal or cross-
over studies with multiple measurements, specialised
methods for estimating statistical power and sample size
are required. The first purpose of the present study is to
provide statistical methods for estimating the sources of
variation in dietary longitudinal intervention or crossover
trials with multiple days of measurement on each subject
during each period. The second purpose of the present
study is to provide statistical methods for estimating the
number of days and number of subjects needed to achieve
a given power or detectable effect size in a proposed study.
Further purposes of the present study are to study the rela-
tive gains of more days v. more subjects in these studies,
and to provide data on the magnitudes of the sources of
variation involved for energy and macronutrient intakes.
As a by-product, the proposed statistical models and soft-
ware describe efficient modern methods for analysing
data from such trials, even in the presence of unequal num-
bers of days or missing days for some subjects.

Methods

Subjects and measurements

The present study used data for energy intake (MJ/d),
macronutrient intake (g/d), and macronutrient composition
(percentage of energy) from two sources. Cohorts 1 and 2
are part of an ongoing 16-month supervised exercise inter-
vention trial conducted at the Department of Health, Sport
and Exercise Science at the University of Kansas. The sub-
jects were weight stable (^2·27 kg for 6 months), moder-
ately overweight (defined as BMI of 27·3–32·3 kg/m2 for
females and 27·8–31·1 kg/m2 for males) healthy, sedentary
college-age students. The study was a two-group longitudi-
nal intervention study with the subjects randomly assigned
to a control group or an exercise intervention group. The
exercise intervention subjects engaged in 45 min of super-
vised, verified exercise at 70 % VO2max for 5 d/week.
Energy and nutrient intake were measured at six separate
14 d periods throughout the 16-month trial. Data from the
baseline and 4-month measurements were used. The sub-
jects were advised to maintain normal ad libitum eating
habits throughout the study. At least two meals/d were con-
sumed in the university cafeteria. The cafeteria is a large
food court offering ten entrees/meal plus numerous stations
with additional items. Dietary intake was measured
by observer-recorded plate waste. Research staff inter-
viewed the subjects at each meal to ascertain the foods

and beverages consumed outside the cafeteria. The subjects
were advised to bring in labels from any foods consumed
outside the cafeteria. The subjects were also instructed on
routine household portion sizes, and three-dimensional
food models were available for subjects to aid in portion-
size estimations for snack recalls. Data were used from
two cohorts; these cohorts began the study around the
start of 1997 and 1998 respectively.

The third dataset arose from a randomised double-blind
crossover trial of the fat replacer Olestra conducted at the
Center for Human Nutrition, University of Colorado
Health Sciences Center, Denver (Hill et al. 1998). The sub-
jects were recruited from the Fort Collins, Colorado area
and were required to have a BMI between 19 and 35 kg/
m2, to be weight stable (^2·27 kg for 6 months), to be
between 18 and 65 years old, and to be in good health
and not pregnant or lactating. Energy and nutrient intake
were measured during two 14 d periods separated by a
7 d washout period. During each 14 d period each subject
consumed foods containing either a covert Olestra sup-
plement or a placebo (triacylglycerol), and they received
the opposite treatment during the second period. The
order of treatment was determined randomly for each sub-
ject. Breakfast and dinner were consumed on-site at the
feeding laboratory. The subjects were required to eat core
menu food items, to which Olestra was substituted during
the intervention period but which were normal foods
during the control period. Core foods comprised about
25 % of the subjects’ daily energy intake. The subjects
could self-select additional items from a buffet. The core
food item at breakfast was a muffin or biscuit, and optional
buffet items included cereal, bread, eggs, hash browns, sau-
sage, fruit, milk, and condiments. Core food items at dinner
were one entrée (for example, chicken pot pie, corn muffin,
pizza) and one snack or dessert item (for example, cookies,
tortilla chips), and optional buffet items included veg-
etables, chicken, lasagne, ice-cream, yoghurt, milk, soda,
fruit, and cake. Lunch and snacks were provided to sub-
jects in backpacks for off-site consumption, and contents
were pre- and post-weighed to determine consumption.
These additional food items were provided in large quan-
tities to ensure that availability did not limit intake.
Lunch items included sandwiches, microwave entrées,
soups, fruit, crackers, crisps (potato chips), candy, cookies,
milk, juice, and soda. All foods were served in discrete,
weighed portions, and the amounts of foods eaten were
recorded by laboratory personnel. More detailed infor-
mation on the study is given in Hill et al. (1998).

Subject characteristics are shown in Table 1. The sub-
jects in the two exercise cohorts were younger college-
aged students and were more overweight than those in
the Olestra study.

Statistical analysis

Data format. Studies can be considered with M and N
subjects in groups 1 and 2 respectively, with C and D
days of measurement on each subject during periods 1
and 2 respectively. Each subject is in only one group but
is measured for several days during each period. Various
means are denoted as follows: p1 is the period 1 mean,
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g1 is the group 1 mean, gp12 is the period 2 mean for group
1, etc. Data of this form can arise from a two-period, two-
group longitudinal intervention trial where periods 1 and 2
denote pre-intervention and post-intervention periods. Sub-
jects are allocated into one of two groups (for example,
intervention and control) and are measured for several
days during each period.

Data from a two-treatment (A or B), two-period (2 £ 2)
crossover design (Jones & Kenward, 2003) can also be
arranged in this form, by letting period 1 represent the
period where treatment A was given and period 2 represent
the period where treatment B was given, regardless of
treatment order. Each subject is measured for several
days under each treatment condition. In this case, ‘group’
represents the order of treatment administration (A then
B or B then A, sometimes called ‘sequence’ in the cross-
over study literature), which is typically random. It is
assumed that there are no systematic differences between
the first and second measurement period, and that carry-
over effects are eliminated by the use of a sufficient
washout period.

Statistical models. A linear mixed model appropriate
for the studies being considered is:

Yijkd ¼ m þ gi þ pj þ gpij þ sik þ psijk þ eijkd; ð1Þ

where Yijkd is the response measurement on day d (d ¼ 1,
. . ., C or D) of period j ( j ¼ 1, 2) for subject k (k ¼ 1,
. . ., M or N) in group i (i ¼ 1, 2). The effects m, gi, pj

and gpij are fixed effects for the overall mean, group,
period and group £ period interaction (the difference in
period effect between the two groups). The fixed effects
describe systematic differences that affect all subjects in
the same way (for example, group differences, changes
over time, or differences between groups in the change
over time). The effects sik, psijk and eijkd are random effects
that describe subject-specific patterns, and are assumed to
be independent and normal with mean 0 and standard devi-
ations sS, sP and sE respectively. The effect eijkd and sE

describe the day-to-day variation for a given subject
during a given period, due to natural variation in behaviour
or food supply. Thus, about 95 % of days for a given

subject during a given period would lie within about ^2
sE of that subject’s mean level during that period. The
effect psijk and sP describe the variation between a sub-
ject’s true mean response during period 1 and period 2,
adjusting for overall period and group differences. This
variation is due to changes in behaviour, season, etc. The
effect sik and sS describe the subject-to-subject variation
in mean response, adjusting for period and group differ-
ences. This variation is due to differences in behaviour,
environment, body size and composition, etc. Model (1)
was also used by Hartman et al. (1990) for estimating indi-
viduals’ dietary intake and for ranking and classifying
individuals.

A major benefit of repeated-measures designs is that
estimates of treatment effects can be based on within-sub-
ject changes from one period to another. The period var-
iance is the variation in these within-subject changes
above and beyond the daily variation. In contrast, the
fixed effects for period and group describe systematic
changes for all subjects in a group. Observing each subject
for multiple days during each period ‘averages out’ the
daily variation but does not eliminate the period variation
(see the factor 1/D in equation (2)). Another way of look-
ing at the period variance is that it allows measurements on
a given subject during a given period to be more highly
correlated than measurements on a given subject during
different periods. This is typically desirable because the
periods are separated by more time than the daily measure-
ments. When analysing studies with different numbers of
days/period per subject, or designing studies that are to
have a different number of days than were used in obtain-
ing the prior variance estimates for sample size, it is
necessary to separate the period and daily variances.

The fixed effect mean parameters and random effect
variance parameters in model (1) were estimated using
linear mixed models (Laird & Ware, 1982; Verbeke &
Molenberghs, 2000). SAS statistical software (SAS Insti-
tute Inc., Cary, NC, USA) was used, and details are
given in Appendix 1. Assumptions of normality and
equal variance were examined graphically. CI for standard
deviation parameters are based on Chi-square distributions
(SAS Institute Inc., Cary, NC, USA). Significance tests of

Table 1. Subject characteristics at baseline for three studies*

(Mean values and standard deviations)

Cohort 1 Cohort 2 Olestra

Females Males Females Males Females Males

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Number of subjects (N) 11 8 20 17 28 23
Missing days 5 3 13 6 4 2
Age (years) 21 4 22 3 23 5 23 4 44 11 41 10
Weight (kg) 77 10 101 11 82 9 95 13 72 14 83 16
Body fat (%) 38 4 29 4 36 5 27 4 21 4 11 2
BMI (kg/m2) 29 3 31 3 30 3 30 3 26 5 25 4
Energy intake (MJ/d) 9·97 2·72 14·45 3·18 10·90 2·92 14·04 4·71 10·81 2·07 14·55 3·10
Fat intake (g/d) 79 32 137 43 91 37 121 57 87 26 114 28
Dietary fat (%) 30 9 35 7 31 8 32 8 30 6 30 5

* Cohorts 1 and 2 are from the longitudinal exercise intervention trial (for a description see p. 1088). The Olestra data are from the crossover trial (Hill et al. 1998).
In all three cases dietary intake was measured for 14 d during each of two periods, though occasional missing days occurred as shown.
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standard deviation parameters equal to zero were carried
out using a mixture of Chi-square distribution tests
(Verbeke & Molenberghs, 2000).

Power and sample size. Studies can be first considered
which use equal numbers of subjects in the groups; M ¼ N,
and equal numbers of days/period; C ¼ D. It is most useful
and interpretable to base sample-size estimates on the com-
parison of most interest in a given study. For longitudinal
studies the most useful estimate of the effect of the inter-
vention is generally the interaction effect describing the
difference between the intervention and control groups in
the increase from pre-intervention to post-intervention;
(gp22 2 gp21) 2 (gp12 2 gp11). The variance of this inter-
action effect is:

V ¼
4

N
s2

E R2
P þ

1

D

� �
: ð2Þ

The period variation can be expressed as a fraction of the
daily variation (RP ¼ sP=sE) since the latter represents
the natural ‘background’ variation. The widths of CI and
the magnitudes of detectable differences in power analysis
are proportional to the standard error (square root of V
in equation (2)). The variance V in equation (2) can be
rewritten as:

V ¼
4

N
s2

P þ
s2

E

D

� �

showing it to be a combination of the period and daily var-
iances, and the latter term decreasing with more days.

Consider designing a longitudinal intervention study to
achieve 100 £ (1 2 b) % power to detect a difference
between groups in the change from pre- to post-interven-
tion (interaction) of magnitude D using two-sided level a
tests. Using N subjects/group, the required number of
days/subject per period is:

D ¼
1

N£D2

4£ðZ12bþZ12a=2Þ
2£s2

E

2 R2
P

: ð3Þ

(For example, for 80 % power, Z12b ¼ Z0·80 ¼ 0·84 and
for power 90 %, Z12b ¼ Z0·90 ¼ 1·28; for two-sided level
0·05 tests, Z12a=2 ¼ Z0·975 ¼ 1·96:) Using D days/subject
per period, the required number of subjects/group is:

N ¼
4 £ ðZ12b þ Z12a=2Þ

2 £ s2
E £ R2

P þ 1
D

� �
D2

: ð4Þ

Equations (3) and (4) can be solved as usual for power
1 2 b or for detectable difference D if those are of interest.
There are many ways to rewrite these equations, but
equations (3) and (4) involve only quantities that can
usually be specified (for example, N or D and D) or
estimated (for example, sE) easily by investigators design-
ing studies, as well as the ratio RP (see examples,
pp. 1091–1092).

For crossover designs, the most useful estimate of the
effect of the treatment will typically be the overall
treatment effect, p2 2 p1 in the present notation. In 2 £ 2
crossover studies, the group effect represents the order of
treatments (A then B v. B then A). The interaction effect

represents a combination of the effect of the period of
treatment administration (first or second), any differences
in the effects of treatments during the first and second
periods, plus any carry-over effect of treatments from the
first to the second period of treatment administration.
These effects are typically of little or no practical interest
and tend to be small in comparison with the treatment
effect, and so here the interaction term is omitted from
equation (1) for crossover studies. Equations (2), (3) and
(4) apply to estimating the treatment effect for crossover
designs, with the slight change that the factor of ‘4’ that
appears in each equation is omitted.

Note that equation (3) for the required number of days
can yield a negative value. In this case, the number of sub-
jects N and the detectable effect size D are too small and it
is not possible to measure enough days/subject to achieve
the necessary power. Equation (4) for the required
number of subjects always gives a positive result, so it is
always possible to increase the number of subjects to
achieve the required power regardless of the size of the
effect D to be detected or the number of days D of
measurement/subject.

Equations for studies with unequal numbers of days and/
or subjects are given in Appendix 2. These can be useful in
designing unbalanced studies or for exploring the sensi-
tivity of power and sample size to various designs under
consideration.

Results

Estimated standard deviations for sources of variation in
energy and macronutrient intake

Table 2 shows the estimated random effect standard devi-
ations ŝS; ŝP; and ŝE obtained as in Appendix 1 for energy
intake (MJ/d), macronutrient intake (g/d), and macronutri-
ent composition (percentage of energy) for each of the
three studies. These are of interest in showing the relative
magnitudes of the sources of variation, and also in provid-
ing estimates of sE and RP, which are needed in designing
future studies. Between-subject standard deviations ŝS and
day-to-day standard deviations ŝE were larger than period
standard deviations ŝP for all outcomes in all studies.
Day-to-day variation as quantified by ŝE was smaller in
the Olestra study (Hill et al. 1998) than in the two exercise
study cohorts for all energy and macronutrient variables.
Period standard deviations ŝP were also smaller for the
Olestra study (Hill et al. 1998) than for the two exercise
cohorts for all energy and macronutrient variables. There
are no apparent patterns in between-subject standard devi-
ations between the studies. Period variation was signifi-
cantly different from 0 (P,0·05) for all outcomes in all
studies except for energy intake, protein intake, and protein
percentage in Cohort 1 and fat percentage and protein
percentage in Cohort 2. This means that in most cases
there was a greater difference between the averages for
the two measurement periods on a given subject than
would result from the natural variation of daily measure-
ments within each period.

Table 2 also shows estimates of the ratio RP ¼ sP=sE:
Estimates of RP are between 0·16 and 0·46 for all outcomes
in all studies (i.e. period standard deviations are 16 to 46 %
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of daily standard deviations), with most between 0·2 and
0·4 and median value 0·275. There are no consistent differ-
ences between variables or studies. A small value of RP

indicates that subject averages between two periods vary
mainly due to the variability in daily measurements, and
that there is relatively little tendency for a subject’s true
mean value to vary from period to period (aside from
treatment effects).

The estimation of the standard deviations (Table 2) was
repeated separately for men and women (results not
shown). There was a tendency for the day-to-day standard
deviations for energy (MJ/d) and macronutrient (g/d)
intakes to be slightly greater for men than for women,
probably because of the tendency toward greater intakes
for men. No other consistent sex differences were noted.
All of the patterns previously noted were still evident,
although reduced precision due to fewer subjects made
the estimates more variable and patterns less consistent.
In particular no consistent differences were noted between
men and women in estimates of RP.

Gains in precision from additional days

The precision of a design depends on both the daily vari-
ation sE and the period variation expressed as RP ¼
sP=sE; as in equation (2). Smaller values of RP lead to
greater relative gains from using more days, because
when RP is small, most of the variation in subject averages

between periods is due to daily variation, and this is
reduced by averaging more days. For example, when
RP ¼ 0·25 the standard error (square root of V in equation
(2)) using 7 d compared with using 1 d is:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0·252 þ
1

7

� ��
0·252 þ

1

1

� �s
¼ 0·44

so a CI for the interaction effect is 44 % as wide using 7 d
as the same interval would be using 1 d. The corresponding
value for 14 d compared with 7 d is 0·81 (again assuming
RP ¼ 0·25), so the CI using 14 d will be 81 % as wide as
those using 7 d. Experimentation with these equations
shows that relative gains/d are greatest for the first few
days of measurement, but adequate precision may require
many days of measurement. General statements about the
effects of the number of days and the number of subjects
are more difficult because they depend on the daily vari-
ation sE and on the difference to be detected, but equations
(3) and (4) can be used to explore various scenarios, as
seen later (p. 1092).

Example: designing a future study

As an example of estimating the sample size for a future
study, consider designing a two-group, two-period
longitudinal intervention study with a protocol similar to
that used for Cohort 1. Equal numbers of subjects/group

Table 2. Variability of between-subjects (sS), period (sP), day-to-day (sE) and ratio of sP /sE (RP) for seven energy and macronutrient intake
variables in three datasets*

(Estimated standard deviations and 95% confidence intervals)

Energy (MJ/d) FAT (g/d) CHO (g/d) PRO (g/d) FAT (% energy) CHO (% energy) PRO (% energy)

Cohort 1

sS 2·75 31·1 81·6 24·4 3·38 4·98 1·77
95 % CI 2·02, 4·30 22·7, 49·4 59·5, 129·8 18·0, 38·1 2·24, 6·79 3·55, 8·34 1·28, 2·87

sP 0·82 11·7 29·8 7·1 2·82 2·53 0·55
95 % CI 0·52, 1·93 7·8, 23·1 19·2, 65·9 4·4, 17·0 1·95, 5·05 1·66, 5·20 0·28, 3·85

sE 2·70 30·9 91·7 23·8 6·14 7·08 2·89
95 % CI 2·54, 2·88 29·1, 33·0 86·3, 97·8 22·3, 25·3 5·78, 6·55 6·66, 7·56 2·72, 3·08

RP 0·30 0·38 0·32 0·30 0·46 0·36 0·19
95 % CI 0·19, 0·72 0·25, 0·75 0·21, 0·72 0·19, 0·72 0·32, 0·82 0·23, 0·73 0·10, 1·33

Cohort 2

sS 2·61 30·1 82·4 23·7 3·77 4·48 1·86
95 % CI 2·05, 3·60 23·8, 40·8 64·8, 113·3 18·8, 32·1 2·95, 5·22 3·45, 6·36 1·46, 2·57

sP 1·26 12·0 35·1 8·0 1·14 2·27 0·58
95 % CI 0·94, 1·92 8·7, 19·0 25·0, 58·9 5·4, 15·4 0·61, 6·02 1·57, 4·10 0·32, 2·51

sE 3·22 34·2 112·6 30·9 7·17 8·18 3·45
95 % CI 3·08, 3·37 32·7, 35·8 107·7, 117·9 29·6, 32·3 6·86, 7·51 7·83, 8·57 3·30, 3·61

RP 0·39 0·35 0·31 0·26 0·16 0·28 0·17
95 % CI 0·29, 0·60 0·26, 0·56 0·22, 0·52 0·17, 0·50 0·09, 0·84 0·19, 0·50 0·09, 0·73

Olestra

sS 2·82 21·5 111·7 27·1 3·65 4·65 1·72
95 % CI 2·34, 3·54 17·8, 27·2 92·9, 140·2 22·5, 33·9 3·02, 4·62 3·84, 5·89 1·42, 2·18

sP 0·45 4·7 19·9 3·5 0·78 1·12 0·45
95 % CI 0·32, 0·73 3·2, 8·6 14·9, 30·0 2·3, 6·6 0·51, 1·72 0·79, 1·93 0·32, 0·73

sE 1·64 20·4 62·6 15·4 3·95 4·49 1·66
95 % CI 1·59, 1·71 19·6, 21·2 60·3, 65·1 14·9, 16·0 3·81, 4·11 4·32, 4·66 1·60, 1·72

RP 0·27 0·23 0·32 0·22 0·20 0·25 0·27
95 % CI 0·20, 0·44 0·16, 0·42 0·24, 0·48 0·15, 0·42 0·13, 0·43 0·18, 0·43 0·19, 0·44

CHO, carbohydrate; PRO, protein.
* For details of datasets and procedures, see Table 1 and p. 1088.
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(M ¼ N) and equal numbers of days/subject per period
(C ¼ D) are assumed. Suppose the number of days D
needs to be found that are required to obtain 80 % power
using two-sided level 0·05 tests to detect a difference of
1·25 MJ/d (D ¼ 1·25 MJ (300 kcal)/d) between groups in
the change in energy intake from baseline to follow-up.
Assuming the data from Cohort 1 are available, the esti-
mated values of R̂P ¼ 0·30 and ŝE ¼ 2·70 MJ=d in
Table 2 are substituted into equation (3) for the estimated
number of days D. Then, with M ¼ N, i.e. thirty subjects/
group, about C ¼ D ¼ 9 d of measurement/subject per
period would be required. With twenty subjects/group,
about 22 d/subject per period would be needed, and with
ten subjects/group it would not be possible to obtain
80 % power, regardless of the number of days measured.

Now suppose the same study is to be designed, but the
only data available are from a single period of several
days of measurement/subject rather than the two separate
periods available in Cohort 1. Without further assumptions,
it is not possible to estimate the required number of days
without an estimate of RP ¼ sP=sE; which requires a
second period of measurement. However, the results in
Table 2 indicate that for studies similar to those in the pre-
sent paper, RP tends to be roughly in the range 0·2 to 0·4
with a median value of 0·275 for energy and macronutrient
intakes. The other required quantity, sE, can be estimated
as usual from a single period with multiple days of
measurement on several subjects, using a linear mixed
model similar to that in Appendix 1. The quantity sE can
also be estimated as the root mean squared error from a
one-way ANOVA model with a single factor for subject,
or more simply by pooling the within-subject variances
for each subject. For example, suppose the available data
are the first 5 d on the six female control subjects in
Cohort 1, shown in Table 3. The pooled day-to-day stan-
dard deviation ŝE is calculated as:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4 2 1Þ £ 1·222 þ ð5 2 1Þ £ 1·762 þ ð5 2 1Þ £ 1·382þ

ð4 2 1Þ þ ð5 2 1Þ þ ð5 2 1Þþ

s

þð5 2 1Þ £ 2·442 þ ð5 2 1Þ £ 2·652 þ ð4 2 1Þ £ 1·142

þð5 2 1Þ þ ð5 2 1Þ þ ð4 2 1Þ

¼ 1·91 MJ=d:

Using this in equation (3) shows that with thirty subjects/
group, between about 3 (if RP ¼ 0·2) and 4 (if RP ¼ 0·4) d
of measurement/subject per period would be needed. With

twenty subjects/group, between about 5 d (if RP ¼ 0·2) and
9 d (if RP ¼ 0·4) would be needed, and with ten subjects/
group about 11 d (if RP ¼ 0·2) would be needed, but
80 % power if RP ¼ 0·4 would not be able to be achieved.
A conservative approach would use the larger value of RP,
and it should be emphasised that using any value for RP not
estimated from a protocol similar to that being considered
represents a substantial assumption. Note that the example
(p. 1092) refers to energy intake. For other variables the
calculations would be modified with the appropriate stan-
dard deviations from Table 2.

Discussion

Summary

Statistical methods have been given for estimating power,
detectable effect magnitude, and sample size for dietary
intervention or crossover studies with multiple measure-
ments on subjects in two or more groups during each of
two or more periods. These methods were applied to data
from two cohorts of a dietary intervention study and data
from a crossover trial (Hill et al. 1998) to obtain estimates
of the magnitudes of the sources of variability inherent in
energy and macronutrient intakes in such studies and to
provide ranges of some quantities necessary in designing
future studies. These results may be useful to researchers
designing and interpreting multi-day feeding trials.

Patterns in variance components

There was substantial between-subject variation as shown
by the generally large and significant values of ŝS, but
there were no apparent patterns between studies, probably
because this variation depends on subject variability within
the sample, and on subject selection in a particular study.
This variation does not appear in the precision (standard
errors) or sample-size equations for the effects of most
interest. This is a consequence and a major advantage of
measuring each subject during each period. Day-to-day
variation (ŝE) was highly significant and of similar magni-
tude as between-subject variation in all three studies and
for all energy and macronutrient intake variables. Other
studies have also noted that day-to-day variation in dietary
intake variables is substantial (Beaton et al. 1979, 1983;
Marr & Heady, 1986; Borrelli et al. 1989; Nelson et al.
1989; Hartman et al. 1990; Bhargava et al. 1994). This
is somewhat striking because at least some of the
between-subject variation is due to differences in body
size and composition and to subject-specific behaviours.
However, the daily variation simply represents the natural
daily variation in the behaviour of individuals, and this is
seen to be very substantial. Period standard deviation was
typically significant, and relative to day-to-day standard
deviation (the ratio R̂P ¼ ŝP=ŝE) remained fairly stable
across studies and dietary intake variables, ranging from
16 to 46 % of daily variation (RP between 0·16 and 0·46),
and in most cases between 20 and 40 %.

Generalisability of the present results

The equations given in the statistical analysis section
(pp. 1089–1090) and appendices apply to any numerical

Table 3. The first 5 d of energy intake (MJ/d) during the pre-inter-
vention period for six female control subjects in Cohort 1, for use in

the example study design

Subject

Day 1 2 3 4 5 6

1 4·48 7·19 10·49 11·12 10·41 11·86
2 9·23 8·92 13·51 13·71 9·82
3 6·63 6·45 10·56 11·88 15·26
4 6·47 6·25 9·04 15·23 9·48 9·30
5 7·31 10·19 12·32 8·78 14·91 9·76
Subject SD 1·22 1·76 1·38 2·44 2·65 1·14
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variable that is roughly normally distributed. These
methods apply to longitudinal or crossover designs with
more than two groups and/or periods when power and
sample sizes are to be based on estimating particular com-
parisons between groups and/or periods. This approach can
be more useful and interpretable than basing estimations on
ANOVA and F tests (for example, Helms, 1992; Verbeke
& Molenberghs, 2000), where the detectable treatment
effect is difficult to specify and interpret.

It could be possible, but the data are not here to show,
that the estimates in Table 2 would not be greatly
affected by the methodology used to estimate intake
(for example, weighed food records, estimated food
records or 24 h recalls), since measurement effects
would be expected to be relatively small in comparison
with the very large day-to-day variation. Since the sub-
ject-to-subject variability does not appear in power and
sample-size equations for these study designs, the esti-
mates of sP, sE and RP in Table 2 would also not be
expected to be greatly affected by different normal
adult subject populations.

Day-to-day variation plays an important role in sample-
size estimation, and this would be expected to depend on
the feeding protocol. Day-to-day variation ŝE was smaller
in the Olestra study (Hill et al. 1998) than in the exercise
cohorts for all energy and macronutrient intake variables.
The consistency and standardisation of the laboratory feed-
ing along with core food requirements of about 25 % of
energy in the Olestra study would probably reduce a sub-
ject’s day-to-day variation compared with the unrestricted
cafeteria feeding for the exercise cohorts, and the present
study’s data are consistent with that notion. Thus, in the
Olestra study, fewer days of measurement are required to
achieve the same level of precision. However, the reduced
variation may also indicate a less realistic reflection of
free-living behaviour. The variation observed in the exer-
cise cohorts represents a closer estimation of free-living
dietary intake as the subjects are presented with a wide var-
iety of different foods at each meal. Slightly larger esti-
mates of daily variation for men were noted though (data
not shown), so it may be advisable to use gender-specific
estimates of this quantity if possible when designing
studies that will involve only one gender.

Period variation ŝP was also smaller in the Olestra study
(Hill et al. 1998) than in the exercise cohorts, perhaps due
to the much shorter length of time between periods in the
Olestra study (7 d) compared with the exercise cohorts
(4 months). Despite the larger daily and period standard
deviations in the exercise cohorts compared with the Oles-
tra study, the ratio RP ¼ sP=sE remained fairly stable
across studies and intake variables, ranging from 0·16 to
0·46 and in most cases between 0·20 and 0·40. It is not
known how generally this would hold, since it will prob-
ably be affected by at least the feeding protocol and the
time between periods. In designing a future study without
data relevant to the particular protocol, the range that
was observed in the present study could be used though
that represents a substantial assumption. The Olestra
study and the two exercise studies were carried out in set-
tings that differed in several ways and were not designed to
study differences in variation due to different study designs

and feeding protocols, so no definitive causes may be
determined for differences between the studies.

Relation to other literature

Hartman et al. (1990) considered models similar to that
given in equation (1), but for different purposes.
However, some similarities with the present results can
be derived. Hartman et al. (1990) noted period standard
deviations to be less than daily standard deviations
(these values can be derived from their Tables 1 and 2).
They had estimated ratios RP ¼ sP=sE of 0·50, 0·45,
0·53, 0·39, and 0·43 for energy, fat, carbohydrate, protein,
and percentage fat by energy (the variables in common
with those in the present study). These values are
slightly higher than those in the present study, but are
in general agreement considering the differences in
location (Finland), time period (1984), procedure (self-
reported food-use questionnaires for twelve periods of
2 d, separated by 16 d each, with n 162), and statistical
methodology and software.

For the designs considered in the present study, Frison &
Pocock (1992) and Schouten (1999) gave equations similar
to equations (2) and (4) but in a different form. In their for-
mulation, investigators must specify three quantities: the
correlation between two observations on a subject during
the same period, the correlation between two observations
on a subject during different periods, and the total variance
s2

S þ s2
P þ s2

E: In most nutritional settings, it can be
expected that specifying these will be more difficult than
specifying s2

E and RP as in the formulation in the present
paper. In addition, the correlations and total variance
depend on the subject variance, which depends on the
population variance and sample selection methods and
this may limit the usefulness of data from previous studies.
However, if those quantities are easier for investigators to
specify, or if complete data from a previous study using a
similar population and sample selection methods are avail-
able (the correlations and total variance can be calculated
from Table 2), using them along with the formulae of
Frison & Pocock (1992) or Schouten (1999) will give the
same power and sample-size estimates as the formulae in
the present paper.

Frison & Pocock (1992) also consider an alternative
analysis for longitudinal designs, using the baseline mean
values as covariates in an analysis of the follow-up
means. In some situations this analysis can be substantially
more powerful than the analysis using model (1), but their
methods along with the data from Table 2 indicate the gain
in precision of this analysis compared with model (1) is at
most 10–15 % and typically much less for the datasets and
variables in the present study. The more complex analysis
of covariance is correspondingly more difficult to interpret,
particularly in studies with more than two periods. Those
methods also do not apply to crossover designs.

Hsieh (1988) has given equations for the number of
units/cluster and the number of clusters/group for interven-
tion studies involving clusters of subjects which are similar
to equations (3) and (4). When N is small, the Z values in
equations (3) and (4) can be replaced by t values (Hsieh,
1988), though the equations then require iterative solution.
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Practical and statistical considerations

Adjustments for between-subject effects such as sex, age,
or body composition and/or within-subject effects such as
weekday v. weekend can be made by including fixed
effects in model (1), as shown in Appendix 1. The depen-
dence of daily observations on the previous days’ obser-
vations has also been reported in daily dietary data,
typically in the form of auto-correlation (Hartman et al.
1990; Bhargava et al. 1994; Morgan et al. 1987; Tarasuk
& Beaton, 1991). Model (1) can again be modified to
account for this as shown in Appendix 1. However, it
would be difficult to incorporate this effect into the
design of future studies, mainly because the magnitude of
the effect has tended to be relatively small and not in a
consistent direction. It has also been noted that there
tends to be greater correlation between consecutive days
than between non-consecutive days (Hartman et al. 1990;
Tarasuk & Beaton, 1992), and that this has consequences
in designing dietary assessments. The methods provided
in the present study apply to either consecutive or non-con-
secutive days of assessment, but the timing of assessment
to be used in the actual study should also be used in obtain-
ing preliminary variances for sample-size estimation.

Conclusions

The statistical methods that have been provided (for
example, equations (2) to (4)) for estimating the number of
days and the number of subjects required in longitudinal or
crossover dietary trials with multiple measurements can
help investigators assess the potential for a successful
study. Two quantities describing variability in the proposed
study (daily variation sE and period variation relative to
daily variation RP ¼ sP=sE) must be estimated from a simi-
lar previous study if available. Estimates have been provided
of these quantities for energy and macronutrient intake vari-
ables in two studies (Table 2), which can be used as in the
examples on pp. 1091–1092 when no previous data are
available, though this represents a substantial assumption.
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Appendix 1

Statistical analysis for model (1) using SAS
Data must be entered as one row/measurement per subject,
with column variables identifying the subject, period, and
group of each measurement.

PROC MIXED METHOD ¼ REML CL;
CLASS GROUP PERIOD SUBJ;
MODEL ENERGY ¼ GROUP PERIOD GROUP
* PERIOD/DDFM ¼ SATTERTH;
RANDOM SUBJ SUBJ*PERIOD/TYPE ¼ SIMPLE;
RUN;

REML (REstricted Maximum Likelihood) is considered
preferable to ML for estimating variances (Verbeke &
Molenberghs, 2000). The present study used REML in all
analyses. The option CL provides 95 % CI for variance
components. The option / DDFM ¼ SATTERTH gives
correct degrees of freedom for tests and estimates of
fixed effects (Verbeke & Molenberghs, 2000).

The interaction (for longitudinal studies) and the period
effect (for crossover studies) can be estimated, along with
their standard errors, by adding the following statements
below the RANDOM statement:

ESTIMATE (gp22 2 gp21) 2 (gp12 2 gp11)’ PER-
IOD*GROUP 1 -1 -1 1;

ESTIMATE ‘p2-p1’ PERIOD -1 1;
To include within-subject effects such as weekday v.

weekend, or between-subject effects such as sex, modify
the MODEL statement as follows:

MODEL ENERGY¼GROUP PERIOD GROUP
* PERIOD WEEKDAY SEX/DDFM ¼ SATTERTH;
To allow first-order autoregressive (AR(1)) day-to-day

correlation for days on a given subject within a given
period, add the following statement after the RANDOM
statement (Littell et al. 2000):

REPEATED/TYPE ¼ AR(1) SUBJECT ¼ SUBJ * PER
IOD;

Appendix 2

Power and sample-size estimation with unequal group sizes
and/or numbers of days

Relevant quantities are shown for estimating the interaction
effect in longitudinal studies using a two-sided level a test.
N is the number of subjects in group 1 and N £ kN is the
number of subjects in group 2. D is the number of days/
subject in period 1 and D £ kD is the number of days/sub-
ject in period 2. The day-to-day variance is s 2

E and RP ¼
sP=sE where s 2

P is the period variance. The cumulative
normal probability function is denoted by F(x), and
Z12a/2 denotes the 100 £ (1 2 a) percentage quantile of
the standard normal distribution. For example, for
level ¼ a ¼ 0·05, Z12a/2 ¼ 1·96. For power ¼ 1 2 b ¼
80 %, Z12b ¼ 0·84.

For crossover designs, replace the term
�
1 þ 1

kN

�
by�

1
1þkN

�
in all equations. Do not change the term

�
1

1þkD

�
.

Quantity General equation

Variance V ¼ 1
N 1 þ 1

kN

� �
2R2

P þ 1
D 1 þ 1

kD

� �h i
s2

E

Detectable difference D ¼ ðZ 12b þ Z 12a=2Þ
ffiffiffi
V

p

Power 1 2 b ¼ F 2Z 12a=2 þ Dffiffi
V

p

� �

Number of days/
subject per period

D ¼

�
1þ 1

kD

�
ND2�

1þ 1
kN

�
ðZ12bþZ12a=2 Þ

2s2
E

22R2
P

Number of subjects/
group

N ¼

�
1þ 1

kN

��
2R2

Pþ
1
D

�
1þ 1

kD

��
ðZ 12bþZ 12a=2Þ

2s2
E

D2

Covariance Parameter Estimates

Cov Parm Estimate Lower Upper

SUBJECT 7·5766 4·0978 18·4897
SUBJECT * PERIOD 0·6787 0·2712 3·7381
RESIDUAL 7·3092 6·4708 8·3226
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