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1. Introduction
In this paper we first of all solve the dual series equations

£ An%tt(a,X; p)=f(p), 0Zp<d, (1)
n = 0

£ AnPn(X - a, X)%n(a, X; p) = g(p), d < p g 1, (2)
n = 0

where f(p) and g{p) are prescribed functions,

and
Ma, X; p) = 2F1(-«, a+n; X; p) (4)

is the Jacobi polynomial (2).
Noble (3) has obtained an exact solution to the equations when the term

pn(X—a, X) occurs in equation (1) and not in equation (2) and his equations can
be shown to include as a special case those solved by Srivastav (5). An account
of both Noble's and Srivastav's solutions can be found in the recent book by
Sneddon (4).

When a+1 = 2X equations (1) and (2) can be reduced to the type considered
by Noble and therefore can be solved exactly. In general, however, it does not
seem possible to obtain a closed solution and we show that when (i) a +1 > X > a,
0<<r<l, or (ii) a+l+<7>2>0, - 1 < < T < 0 , the solution of the equations can
be expressed in terms of the solution of a Fredholm integral equation of the
second kind.

We then consider the triple integral equations

f
Jo

f
Jo

A(x)J (rx)dx = 0, 0 g r< a, b < r< oo, (5)

~ 2aA(,x)Jll{rx)dx = H(r), a<r<b, (6)

where JJirx) is the Bessel function of the first kind and H(r) is a known function.
The first attempt at solving these equations seems to have been made by

Tranter (6) who assumed a series representation for the unknown function A(x)
E.M.S.—R
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and reduced the problem to that of solving a pair of dual series of the type (1)
and (2). He was however able to complete the solution only when n = ±i,
o = + \. Since Tranter's paper a number of solutions of equations (5) and (6)
have been obtained and a description of some of the methods used can be
found in (4). The most elegant and comprehensive set of solutions so far
obtained has been given by Cooke (1) who used the method of Erddlyi-Kober
and Hankel operators to reduce the solution of the equations to the solution
of one or two Fredholm integral equations of the second kind.

As an application of the solutions of equations (1) and (2) we show that
the series solution assumed by Tranter for the triple integral equations leads to
solutions which are identical with some of those given by Cooke. That the
method described here for the solution of the integral equations is not the most
convenient or straightforward is obvious; but it is interesting to see that a
development of Tranter's original method of solution yields results which are
in agreement with those obtained in later work.

The analysis used in this paper is purely formal and some results which will
be required are now stated below for convenient reference.

Two relations between Jacobi polynomials which are given in (3) are

X; P), (7)

and

ry C^M-oA-o;

where f — £
From (7) we see that the Bessel function can be represented in terms of an

infinite series of Jacobi polynomials by

n = 0

The orthogonality relation for Jacobi polynomials is

[ rx-1{l-r)a-^m<<a,X;r)UaA;r)dr = 5mM, a + l>A>0, (10)
Jo

where dmn is the Kronecker delta and

A2(a rv =
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Noble (3) has shown that when a + l + <7>A><7>0, then

K(r, p) = {T{a)}2{rpf-l f) An
2(«, X)pn(X-o, A)gn(a, A; r)%JLa, A; p) (12)

n = 0

){r-xy-\p-xy-ldx = Kt{r,p), (13)
Jo
[
o

where m{x) = xx~°~1(l-xy~"~" and t = min (r, p).
If we replace r, p, x, X and CT by (1 — r), (1 — p), (l — x), (1 +a—A) and {—a)

respectively in equations (12) and (13) and write K(l — r, \—p) = S(r, p) we
find, after using equation (7), that they become

= P n{

t A2
n(a,X)pn(X,X-o)%n(a,X; r)U°,X; p) (14)

n = 0

\x-p)—'dx = Stt(r,p), (15)

where a+l>a+l+<T>A>CT, M(X) = {m(x)}~1, pn(X—a, X)pn(X, X—a) = 1, and
u = max (r, p).

2. Solution of the dual series equations
2.1. W/jen a+l>A><7, 0<<7<l. If we define a function 0(p) by the

equation

£ .aUa, *; P) = MO, d<P ^ 1» (16)
n = 0

we see that equations (1) and (16) yield the result

An = A2(a, A)|J/(r)+ J (̂r)J ^ " ' ( l - r r ^ a , A; r)dr,
0, (17)

where we have used the orthogonality relation (10).
Substituting for An into equation (2) and interchanging the order of integra-

tion and summation we find that

P -ry-lK(r, p)dr = { ^ ^ ^ ^ ^ ( p ) , d<p ^ 1, (18)

where K(r, p) is defined by equation (12).
Using the notation of equation (13) the above equation can be written in

the form

P <Kr)\ (l-r)°-xKr(r, p)dr+ P ( l - r )"-^ p(r, p)dr

{nc)Yp"-lg{p), (19)
where a+l>A>a>0.
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Inverting the order of integration in equation (19) we see that it becomes

, (20)

= f' ( 1 ~ r ^ <Kr)dr, (b) *x(x) = P , ( 1~ r^~* <l>{r)dr, (21)
Jx V ~ x ) Jd (r~x)

where

(a)

and

F(C) = -^f(j)dr, (22)

is a known function.
When 0<<7< 1 we can invert the Abel-type integral equations (20) and (21a)

to find that

dx, (23)
n drjr (x-r)°

and

" ( 2 4 )

where

(25)

is a known function and we have used the result

(26)

Substituting for (j)(r) from equation (23) into equation (216), performing an
integration by parts and using the result

-a) T dr

Jd (x-r)»(r-
2 = \ , 0< f f < l , (27)

it is easily shown that Ot(x) is given in terms of O(x) by the equation

(28)

If we now eliminate <J>i(x) between equations (24) and (28) we see that O(x)
satisfies the integral equation

m(x)«D(x)+ P<&O0l/(x).>0^ = G(x)+F1(x), d<x<l, (29)
Jd

where U{x, y) is the kernel
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and

(
is a known function.

Equation (29) is a Fredholm integral equation of the second kind which
determines <J>(x), $(0 can then be found from equation (23) and the coefficients
An, which are solutions of the equations (1) and (2) when a+l>A>a,0«r<l,
can be obtained from equation (17).

2.2. When a+l+a>X>0, —l<a<0. In this case we set

£ AnPn(X-o, *)&,(«, X; p) = ip(p), 0 ^ p < d , (32)
B = 0

and using the orthogonality relation (10) we find from equations (2) and (32)
that

An = A2
n(a, X)pn(X, X-o) | | " <Kr)+ P fl(r)J ^ ( l - r y ^ M ; r)dr (33)

where a + l>A>0.
Substituting for An into equation (1) and interchanging the order of integra-

tion and summation we see that

p)drJ" rx~ WSfr, p)dr+ U" Mr)+ P g(r)\ rx-%(r,

= {n-o)}\l-p)°-i(p), (34)
where 0 ^ p<d, a + l > a + l + <7>A>0 and Su(r, p) is defined by equation
(15).

If we now invert the order of integration in the above equation and use a
method similar to that used in section 2.1 we can show that when — l<a<0
the function \]/(r) is given by the equation

1 ( , N sin (an) d Cr *P(x) , » , , - , .
Mr) = L—' — , \ _ f f dx, 0<r<d, (35)

where ^(x) is the solution of the Fredholm integral equation of the second
kind

«(x)¥(x) + !" ¥(y)K(x, yWy = ^2W + G2(x), 0<x<d, (36)
Jo

with the kernel

rx-

and the free terms

7 (££*»* (38)

dxj ( p x )
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The coefficients An, which satisfy equations (1) and (2)
— 1 <<r<0, can then be found from equations (33), (35) and (36).

3. Solution of the triple integral equations
Tranter (6) has shown that if we assume that the solution of equations (5)

and (6) is of the form

£ l; , (40)
n=O r ( l + + )

then the coefficients Cn are solutions of the dual series equations
00

(41)
n = 0

where b2s = a2 and (i) if 0<CT<1 , then n><7—l, or (ii) if — 1 <<r<0, then

These equations are the same as equations (1) and (2) with a = l+/i —<r,
A = 1 +n, and the conditions (i) and (ii) are precisely those for which the equa-
tions can be solved.

3.1. When n>a — l, 0<CT<1. Applying the results of section 2.1 we see
that the solution of equations (41) and (42) is given in terms of a function
<t>*(r) by

[' ; r)dr, (43)

where A2(a, X) is defined by equation (11).
The function <f>*(r) is found from the equation

(1 rTWr) [ p
n drjr (x-r)

where <&*(*) is the solution of the Fredholm integral equation

dx, (44)

f1
®*(y)V*(x, y)dy = G*(x), s<x<l, (45)

with the kernel

U*(x, y) = s ' " y""J I s VJ~S^ di, (46)

and the free term
= 2TXa)T(l+M) ± rP»>2H(bJp)

b'-'m-a) dx]s (x-pY
It is possible to obtain the solution to the triple integral equations without

computing the values of the coefficients Cn. To show this we substitute for Cn
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from equation (43) into equation (40) and interchange the order of integration
and summation to find that

A(x) = — ^ — fl r»(l-r)-°<l>*(r)L(x, r)dr, b2s = a2, (48)
r ( i+ / i ) J s

where

Ux, r)

(49)

after using the result (9).
It follows from equations (48) and (49) that when / i><7- l ,0«x<l , then

A(x) is given by

^Y ~" PA(x) = —*— (^Y P r"'\l - ry'PWJ&Xylhdr, bh = a\ (50)
r(i+n)V2/ J

The solution of the triple integral equations is given by the equations (44)
(45) and (50) and this agrees with the solution obtained by Cooke (1, p. 62).

3.2. When n>-l, —l<o<0. Using the results of section 2.2 it follows
that the solution of the dual series equations (41) and (42) is given by

9(r)\ i*a-P ; r)dr, (51)

where g(r) = 2T(l+^b'-'r-^Hib^).
If we now make use of the result (8) we find that the above equation can be

written in the form

= U
( 5 2 )

Substituting for Cn into equation (40), interchanging the order of integration
and summation and using the result (9) it can be shown that A{x) is given by

sm
o r-y

(53)
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where

ojw-zmtdjv^g*. *_... (54)
The function xf*(x) is the solution of the Fredholm integral equation of the

second kind

"¥*(*)+ f'J¥'(y)V*(x,y)dy = Gl(x),
Jo

0<x<s, (55)

with the kernel

V*(x, y) = n2r(s
S™x)l°^ yi-„ \~nTZKdZ' -l<(r<0> (56)

and the free term

(57)
n Js x-Z

Equations (53) and (55) give the solution to the triple integral equations
when n> — l, — 1 <CT<0, and this is of the same form as that given by Cooke.
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