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Blow-up Rate for a Semilinear Wave
Equation with Exponential Nonlinearity

in One Space Dimension
Asma Azaiez∗, Nader Masmoudi† and Hatem Zaag‡

We consider in this paper blow-up solutions of the semilinear wave equation in one
space dimension, with an exponential source term. Assuming that initial data are in
H1

loc×L2
loc or sometimes in W1,∞×L∞, we derive the blow-up rate near a

non-characteristic point in the smaller space, and give some bounds near other
points. Our results generalize those proved by Godin under high regularity
assumptions on initial data.

1.1 Introduction

We consider the one dimensional semilinear wave equation:{
∂2

t u= ∂2
x u+ eu,

u(0)= u0 and ∂tu(0)= u1,
(1.1)

where u(t) : x ∈ R→ u(x, t) ∈ R,u0 ∈ H1
loc,u and u1 ∈ L2

loc,u. We may also add
more restrictions on initial data by assuming that (u0,u1) ∈ W1,∞ × L∞. The
Cauchy problem for equation (1.1) in the space H1

loc,u × L2
loc,u follows from

fixed point techniques (see Section 1.2).
If the solution is not global in time, we show in this paper that it blows up

(see Theorems 1.1 and 1.2). For that reason, we call it a blow-up solution. The
existence of blow-up solutions is guaranteed by ODE techniques and the finite
speed of propagation.

More blow-up results can be found in Kichenassamy and Littman [12], [13],
where the authors introduce a systematic procedure for reducing nonlinear
wave equations to characteristic problems of Fuchsian type and construct
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singular solutions of general semilinear equations which blow up on a
non-characteristic surface, provided that the first term of an expansion of such
solutions can be found.

The case of the power nonlinearity has been understood completely in a
series of papers, in the real case (in one space dimension) by Merle and Zaag
[16], [17], [20] and [21] and in Côte and Zaag [6] (see also the note [18]), and
in the complex case by Azaiez [3]. Some of those results have been extended
to higher dimensions for conformal or subconformal p:

1 < p≤ pc ≡ 1+ 4

N− 1
, (1.2)

under radial symmetry outside the origin in [19]. For non-radial solutions, we
would like to mention [14] and [15] where the blow-up rate was obtained.
We also mention the recent contribution of [23] and [22] where the blow-up
behavior is given, together with some stability results.

In [5] and [4], Caffarelli and Friedman considered semilinear wave
equations with a nonlinearity of power type. If the space dimension N is
at most 3, they showed in [5] the existence of solutions of Cauchy problems
which blow up on a C1 spacelike hypersurface. If N = 1 and under suitable
assumptions, they obtained in [4] a very general result which shows that
solutions of Cauchy problems either are global or blow up on a C1 spacelike
curve. In [11] and [10], Godin shows that the solutions of Cauchy problems
either are global or blow up on a C1 spacelike curve for the following mixed
problem (γ 	= 1, |γ | ≥ 1):{

∂2
t u= ∂2

x u+ eu, x > 0,
∂xu+ γ ∂tu= 0 if x= 0.

(1.3)

In [11], Godin gives sharp upper and lower bounds on the blow-up rate for
initial data in C4 ×C3. It so happens that his proof can be extended for initial
data (u0,u1) ∈H1

loc,u×L2
loc,u (see Proposition 1.15).

Let us consider u a blow-up solution of (1.1). Our aim in this paper
is to derive upper and lower estimates on the blow-up rate of u(x, t). In
particular, we first give general results (see Theorem 1.1), then, considering
only non-characteristic points, we give better estimates in Theorem 1.2.

From Alinhac [1], we define a continuous curve � as the graph of a function
x �→ T(x) such that the domain of definition of u (or the maximal influence
domain of u) is

D= {(x, t)|0≤ t < T(x)}. (1.4)

From the finite speed of propagation, T is a 1-Lipschitz function. The graph �

is called the blow-up graph of u.

https://doi.org/10.1017/9781108367639.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108367639.001


Blow-up Rate for a Semilinear Wave Equation 3

Let us introduce the following non-degeneracy condition for �. If we
introduce for all x ∈R, t≤ T(x) and δ > 0, the cone

Cx,t,δ = {(ξ ,τ) 	= (x, t) |0≤ τ ≤ t− δ|ξ − x|}, (1.5)

then our non-degeneracy condition is the following: x0 is a non-characteristic
point if

∃δ0 = δ0(x0) ∈ (0,1) such that u is defined on Cx0,T(x0),δ0 . (1.6)

If condition (1.6) is not true, then we call x0 a characteristic point. We denote by
R⊂R (resp. S ⊂R) the set of non-characteristic (resp. characteristic) points.

We also introduce for each a ∈ R and T ≤ T(a) the following similarity
variables:

wa,T(y,s)= u(x, t)+ 2log(T− t), y= x− a

T− t
, s=− log(T− t). (1.7)

If T = T(a), we write wa instead of wa,T(a).
From equation (1.1), we see that wa,T (or w for simplicity) satisfies, for all

s≥− logT , and y ∈ (−1,1),

∂2
s w− ∂y((1− y2)∂yw)− ew+ 2=−∂sw− 2y∂2

y,sw. (1.8)

In the new set of variables (y,s), deriving the behavior of u as t → T is
equivalent to studying the behavior of w as s →+∞.

Our first result gives rough blow-up estimates. Introducing the following set:

DR ≡ {(x, t) ∈ (R,R+), |x|< R− t}, (1.9)

where R > 0, we have the following result.

Theorem 1.1 (Blow-up estimates near any point) We claim the following:

(i) (Upper bound) For all R > 0 and a ∈R such that (a,T(a)) ∈DR, it holds
that:

∀|y|< 1, ∀s≥− logT(a), wa(y,s)≤−2log(1−|y|)+C(R),

∀t ∈ [0,T(a)), eu(a,t) ≤ C(R)

d((a, t),�)2
≤ C(R)

(T(a)− t)2
,

where d((x, t),�) is the (Euclidean) distance from (x, t) to �.
(ii) (Lower bound) For all R > 0 and a∈R such that (a,T(a)) ∈DR, it holds

that

1

T(a)− t

∫
I(a,t)

e−u(x,t)dx≤ C(R)
√

d((a, t),�)≤ C(R)
√

T(a)− t.
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If, in addition, (u0,u1) ∈W1,∞×L∞ then

∀t ∈ [0,T(a)), eu(a,t) ≥ C(R)

d((a, t),�)
≥ C(R)

T(a)− t
.

(iii) (Lower bound on the local energy “norm”) There exists ε0 > 0 such
that for all a ∈R, and t ∈ [0,T(a)),

1

T(a)− t

∫
I(a,t)

((ut(x, t))2+ (ux(x, t))2+ eu(x,t))dx≥ ε0

(T(a)− t)2
, (1.10)

where I(a, t)= (a− (T(a)− t),a+ (T(a)− t)).

Remark The upper bound in item (i) was already proved by Godin [11], for
more regular initial data. Here, we show that Godin’s strategy works even for
less regular data. We refer to the integral in (1.10) as the local energy “norm”,
since it is like the local energy as in Shatah and Struwe [24], though with the
“+” sign in front of the nonlinear term. Note that the lower bound in item
(iii) is given by the solution of the associated ODE u′′ = eu. However, the
lower bound in (ii) doesn’t seem to be optimal, since it does not obey the ODE
behavior. Indeed, we expect the blow-up for equation (1.1) in the “ODE style”,
in the sense that the solution is comparable to the solution of the ODE u′′ = eu

at blow-up. This is in fact the case with regular data, as shown by Godin [11].

If, in addition, a ∈R, we have optimal blow-up estimates.

Theorem 1.2 (An optimal bound on the blow-up rate near a non-charac-
teristic point in a smaller space) Assume that (u0,u1) ∈ W1,∞ × L∞. Then,
for all R > 0, for any a∈R such that (a,T(a))∈DR, we have the following:

(i) (Uniform bounds on w) For all s≥− logT(a)+ 1,

|wa(y,s)|+
∫ 1

−1

(
(∂swa(y,s))2+ (∂ywa(y,s))2

)
dy≤ C(R),

where wa is defined in (1.7).
(ii) (Uniform bounds on u) For all t ∈ [0,T(a)),

|u(x, t)+ 2log(T(a)− t)|+ (T(a)− t)
∫

I
(∂xu(x, t))2+ (∂tu(x, t))2 dx≤ C(R).

In particular, we have

1

C(R)
≤ eu(x,t)(T(a)− t)2 ≤ C(R).
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Remark This result implies that the solution indeed blows up on the curve �.

Remark Note that when a∈R, Theorem 1.1 already holds and directly follows
from Theorem 1.2. Accordingly, Theorem 1.1 is completely meaningful when
a ∈ S .

Following Antonini, Merle and Zaag in [2] and [15], we would like to
mention the existence of a Lyapunov functional in similarity variables. More
precisely, let us define

E(w(s))=
∫ 1

−1

(
1

2
(∂sw)2+ 1

2
(1− y2)(∂yw)2− ew+ 2w

)
dy. (1.11)

We claim that the functional E defined by (1.11) is a decreasing function of
time for solutions of (1.8) on (−1,1).

Proposition 1.3 (A Lyapunov functional for equation (1.1)) For all a ∈
R, T ≤ T(a), s2 ≥ s1 ≥− logT, the following identities hold for w=wa,T :

E(w(s2))−E(w(s1))=−
∫ s2

s1

(∂sw(−1,s))2+ (∂sw(1,s))2ds.

Remark The existence of such an energy in the context of the nonlinear heat
equation has been introduced by Giga and Kohn in [7], [8] and [9].

Remark As for the semilinear wave equation with conformal power nonlin-
earity, the dissipation of the energy E(w) degenerates to the boundary ±1.

This paper is organized as follows:
In Section 1.2, we solve the local in time Cauchy problem.
Section 1.3 is devoted to some energy estimates.
In Section 1.4, we give and prove upper and lower bounds, following the

strategy of Godin [11].
Finally, Section 1.5 is devoted to the proofs of Theorem 1.1, Theorem 1.2

and Proposition 1.3.

1.2 The Local Cauchy Problem

In this section, we solve the local Cauchy problem associated with (1.1) in the
space H1

loc,u×L2
loc,u. In order to do so, we will proceed in three steps.

(1) In Step 1, we solve the problem in H1
loc,u×L2

loc,u, for some uniform T > 0
small enough.

(2) In Step 2, we consider x0 ∈ R, and use Step 1 and a truncation to find a
local solution defined in some cone Cx0,T̃(x0),1

for some T̃(x0) > 0. Then,
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by a covering argument, the maximal domain of definition is given by
D=∪x0∈RCx0,T̃(x0),1

.
(3) In Step 3, we consider some approximation of equation (1.1), and discuss

the convergence of the approximating sequence.

Step 1: The Cauchy problem in H1
loc,u×L2

loc,u

In this step, we will solve the local Cauchy problem associated with (1.1) in
the space H = H1

loc,u × L2
loc,u. In order to do so, we will apply a fixed point

technique. We first introduce the wave group in one space dimension:

S(t) : H →H,

(u0,u1) �→ S(t)(u0,u1)(x),

S(t)(u0,u1)(x)=
⎛⎝ 1

2
(u0(x+ t)+ u0(x− t))+ 1

2

∫ x+t

x−t
u1dt

1
2 (u

′
0(x+ t)− u′0(x− t))+ 1

2 (u1(x+ t)+ u1(x− t))

⎞⎠ .

Clearly, S(t) is well defined in H, for all t ∈R, and more precisely, there is a
universal constant C0 such that

||S(t)(u0,u1)||H ≤ C0(1+ t)||(u0,u1)||H . (1.12)

This is the aim of the step.

Lemma 1.4 (Cauchy problem in H1
loc,u × L2

loc,u) For all (u0,u1) ∈ H, there
exists T > 0 such that there exists a unique solution of the problem (1.1) in
C([0,T],H).

Proof Consider T > 0 (to be chosen later) small enough in terms of
||(u0,u1)||H .

We first write the Duhamel formulation for our equation:

u(t)= S(t)(u0,u1)+
∫ t

0
S(t− τ)(0,eu(τ ))dτ . (1.13)

Introducing

R= 2C0(1+T)||(u0,u1)||H , (1.14)

we will work in the Banach space E = C([0,T],H) equipped with the norm
||u||E = sup

0≤t≤T
||u||H . Then, we introduce

� : E → E

V(t)=
(
v(t)
v1(t)

)
�→ S(t)(u0,u1)+

∫ t

0
S(t− τ)(0,ev(t))dτ

and the ball BE(0,R).
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We will show that for T > 0 small enough, � has a unique fixed point in
BE(0,R). To do so, we have to check two points:

1. � maps BE(0,R) to itself;
2. � is k-Lipschitz with k < 1 for T small enough.

• Proof of 1: Let V =
(
v

v1

)
∈ BE(0,R); this means that:

∀t ∈ [0,T], v(t) ∈H1
loc,u(R)⊂ L∞(R)

and that

||v(t)||L∞(R) ≤ C∗R.

Therefore

||(0,ev)||E = sup
0≤t≤T

||ev(t)||L2
loc,u

≤ eC∗R
√

2. (1.15)

This means that

∀τ ∈ [0,T] (0,ev(τ )) ∈H,

hence S(t − τ)(0,ev(τ )) is well defined from (1.12) and so is its integral
between 0 and t. So � is well defined from E to E.

Let us compute ||�(v)||E.
Using (1.12), (1.14) and (1.15) we write for all t ∈ [0,T],

||�(v)(t)||H ≤ ||S(t)(u0,u1)||H +
∫ t

0
||S(t− τ)(0,ev(τ ))||Hdτ

≤ R

2
+
∫ T

0
C0(1+T)

√
2eC∗Rdτ

≤ R

2
+C0T(1+T)

√
2eC∗R. (1.16)

Choosing T small enough so that

R

2
+C0T(1+T)

√
2eC∗R ≤ R

or

T(1+T)≤ Re−C∗R

2
√

2C0

guarantees that � goes from BE(0,R) to BE(0,R).
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• Proof of 2: Let V , V̄ ∈ BE(0,R). We have

�(V)−�(V̄)=
∫ T

0
S(t− τ)(0,ev(t)− ev̄(t))dτ .

Since ||v(t)||L∞(R) ≤ C∗R and the same for ||v̄(t)||L∞(R), we write

|ev(τ )− ev̄(τ )| ≤ eC∗R|v(τ )− v̄(τ )|,
hence

||ev(τ )− ev̄(τ )||L2
loc,u

≤ eC∗R||v(τ )− v̄(τ )||L2
loc,u

≤ eC∗R||V− V̄||E. (1.17)

Applying S(t− τ) we write from (1.12), for all 0≤ τ ≤ t≤ T ,

||S(t− τ)(0,ev(τ )− ev̄(τ ))||H ≤ C0(1+T)||(0,ev(τ )− ev̄(τ ))||H
≤ C0(1+T)||ev(τ )− ev̄(τ )||L2

loc,u

≤ C0(1+T)eC∗R||V− V̄||E. (1.18)

Integrating, we end up with

||�(V)−�(V̄)||E ≤ C0T(1+T)eC∗R||V− V̄||E. (1.19)

k= C0T(1+T)eC∗R can be made < 1 if T is small.

Conclusion From points 1 and 2, � has a unique fixed point u(t) in BE(0,R).
This fixed point is the solution of the Duhamel formulation (1.13) and of our
equation (1.1). This concludes the proof of Lemma 1.4.

Step 2: The Cauchy problem in a larger region
Let (u0,u1) ∈ H1

loc,u × L2
loc,u be initial data for the problem (1.1). Using the

finite speed of propagation, we will localize the problem and reduces it to the
case of initial data in H1

loc,u × L2
loc,u already treated in Step 1. For (x0, t0) ∈

R× (0,+∞), we will check the existence of the solution in the cone Cx0,t0,1.
In order to do so, we introduce χ , a C∞ function with compact support such
that χ(x)= 1 if |x− x0|< t0; let also (ū0, ū1)= (u0χ ,u1χ) (note that ū0 and ū1

depend on (x0, t0) but we omit this dependence in the indices for simplicity).
So, (ū0, ū1) ∈ H1

loc,u×L2
loc,u. From Step 1, if ū is the corresponding solution of

equation (1.1), then, by the finite speed of propagation, u= ū in the intersection
of their domains of definition with the cone Cx0,t0,1. As ū is defined for all (x, t)
in R× [0,T) from Step 1 for some T = T(x0, t0), we get the existence of u
locally in Cx0,t0,1 ∩R× [0,T). Varying (x0, t0) and covering R× (0,+∞[ by
an infinite number of cones, we prove the existence and the uniqueness of
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the solution in a union of backward light cones, which is either the whole
half-space R× (0,+∞), or the subgraph of a 1-Lipschitz function x �→ T(x).
We have just proved the following.

Lemma 1.5 (The Cauchy problem in a larger region) Consider (u0,u1) ∈
H1

loc,u×L2
loc,u. Then, there exists a unique solution defined in D, a subdomain of

R× [0,+∞), such that for any (x0, t0) ∈ D,(u,∂tu)(t0) ∈ H1
loc × L2

loc(Dt0), with
Dt0 = {x ∈R|(x, t0) ∈D}. Moreover,

• either D=R×[0,+∞),
• or D= {(x, t)|0≤ t < T(x)} for some 1-Lipschitz function x �→ T(x).

Step 3: Regular approximations for equation (1.1)
Consider (u0,u1) ∈ H1

loc,u × L2
loc,u, u its solution constructed in Step 2, and

assume that it is non-global, hence defined under the graph of a 1-Lipschitz
function x �→ T(x). Consider for any n ∈N a regularized increasing truncation
of F satisfying

Fn(u)=
{

eu if u≤ n,
en if u≥ n+ 1

(1.20)

and Fn(u) ≤ min(eu, en+1). Consider also a sequence (u0,n,u1,n) ∈ (C∞(R))2

such that (u0,n,u1,n)→ (u0,u1) in H1×L2(−R,R) as n→∞, for any R > 0.
Then, we consider the problem{

∂2
t un = ∂2

x un+Fn(un),
(un(0),∂tun(0))= (u0,n,u1,n) ∈H1

loc,u×L2
loc,u.

(1.21)

Since Steps 1 and 2 clearly extend to locally Lipschitz nonlinearities, we get a
unique solution un defined in the half-space R× (0,+∞), or in the subgraph
of a 1-Lipschitz function. Since Fn(u)≤ en+1, for all u∈R, it is easy to see that
in fact un is defined for all (x, t) ∈R×[0,+∞). From the regularity of Fn, u0,n

and u1,n, it is clear that un is a strong solution in C2(R, [0,∞)). Introducing the
following sets:

K+(x, t)= {(y,s) ∈ (R,R+), |y− x|< s− t}, (1.22)

K−(x, t)= {(y,s) ∈ (R,R+), |y− x|< t− s},
and

K±
R (x, t)= K±(x, t)∩DR.

We claim the following.
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Lemma 1.6 (Uniform bounds on variations of un in cones) Consider R> 0;
one can find C(R) > 0 such that if (x, t) ∈D∩DR, then ∀n ∈N:

un(y,s)≥ un(x, t)−C(R), ∀(y,s) ∈ K+
R (x, t),

un(y,s)≤ un(x, t)+C(R), ∀(y,s) ∈ K−(x, t).

Remark Of course C depends also on initial data, but we omit that dependence,
since we never change initial data in this setting. Note that since (x, t) ∈DR, it
follows that K−

R (x, t)= K−(x, t).

Proof We will prove the first inequality, the second one can be proved in the
same way. For more details see page 74 of [11].

Let R > 0, consider (x, t) fixed in D ∩ DR, and (y,s) in D ∩ K+
R (x, t). We

introduce the following change of variables:

ξ = (y− x)− (s− t), η=−(y− x)− (s− t), ūn(ξ ,η)= un(y,s). (1.23)

From (1.21), we see that ūn satisfies:

∂ξηūn(ξ ,η)= 1

4
Fn(ūn)≥ 0. (1.24)

Let (ξ̄ , η̄) be the new coordinates of (y,s) in the new set of variables. Note that
ξ̄ ≤ 0 and η̄ ≤ 0. We note that there exists ξ0 ≥ 0 and η0 ≥ 0 such that the
points (ξ0, η̄) and (ξ̄ ,η0) lie on the horizontal line {s= 0} and have as original
coordinates respectively (y∗,0) and (ỹ,0) for some y∗ and ỹ in [−R,R]. We note
also that in the new set of variables, we have:

un(y,s)− un(x, t)= ūn(ξ̄ , η̄)−ūn(0,0)= ūn(ξ̄ , η̄)−ūn(ξ̄ ,0)+ ūn(ξ̄ ,0)− ūn(0,0)

=−
∫ 0

η̄

∂ηūn(ξ̄ ,η)dη−
∫ 0

ξ̄

∂ξ ūn(ξ ,0)dξ . (1.25)

From (1.24), ∂ηūn is monotonic in ξ . So, for example for η= η̄, as ξ̄ ≤ 0≤ ξ0,
we have:

∂ηūn(ξ̄ , η̄)≤ ∂ηūn(0, η̄)≤ ∂ηūn(ξ0, η̄).

Similarly, for any η ∈ (η̄,0), we can bound from above the function
∂ηūn(ξ̄ ,η) by its value at the point (ξ ∗(η),η), which is the projection of (ξ̄ ,η)
on the axis {s= 0} in parallel to the axis ξ (as ξ̄ ≤ 0≤ ξ ∗(η)).

In the same way, from (1.24), ∂ξ ūn is monotonic in η. As η̄≤ 0≤ η0, we can
bound, for ξ ∈ (ξ̄ ,0), ∂ξ ūn(ξ ,0) by its value at the point (ξ ,η∗(ξ)), which is the
projection of (ξ ,0) on the axis {s= 0} in parallel to the axis η (0 < η∗(ξ)). So
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it follows that:

∂ηūn(ξ̄ ,η)≤ ∂ηūn(ξ
∗(η),η), ∀η ∈ (η̄,0),

∂ξ ūn(ξ ,0)≤ ∂ξ ūn(ξ ,η∗(ξ)), ∀ξ ∈ (ξ̄ ,0).
(1.26)

By a straightforward geometrical construction, we see that the coordinates of
(ξ ∗(η),η) and (ξ ,η∗(ξ)), in the original set of variables {y,s}, are respectively
(x+ t−η

√
2,0) and (x− t+η

√
2,0). Both points are in [−R,R].

Furthermore, we have from (1.23):

∂ηūn(ξ
∗(η),η)= 1

2
(−∂tun− ∂xun)(x+ t−η

√
2,0)

= 1

2
(−u1,n− ∂xu0,n)(x+ t−η

√
2),

∂ξ ūn(ξ ,η∗(ξ))= 1

2
(−∂tun+ ∂xun)(x− t+η

√
2,0) (1.27)

= 1

2
(−u1,n+ ∂xu0,n)(x− t+η

√
2).

Using (1.27), the Cauchy–Schwarz inequality and the fact that u1,n and ∂xu0,n

are uniformly bounded in L2(−R,R) since they are convergent, we have:∫ 0
η̄
∂ηūn(ξ

∗(η),η)dη≤ C(R),∫ 0
ξ̄
∂ξ ūn(ξ ,η∗(ξ))dξ ≤ C(R).

(1.28)

Using (1.25), (1.26) and (1.28), we reach the conclusion of Lemma 1.6.

Let us show the following.

Lemma 1.7 (Convergence of un as n→∞) Consider (x, t) ∈ R× [0,+∞).
We have the following:

• if t > T(x), then un(x, t)→+∞,
• if t < T(x), then un(x, t)→ u(x, t).

Proof We claim that it is enough to show the convergence for a subsequence.
Indeed, this is clear from the fact that the limit is explicit and doesn’t
depend on the subsequence. Consider (x, t) ∈ R× [0,+∞); up to extracting
a subsequence, there is an l(x, t) ∈R such that un(x, t)→ l(x, t) as n→∞.

Let us show that l 	= −∞. Since Fn(u)≥ 0, it follows that un(x, t)≥ un(x, t),
where {

∂2
t un = ∂2

x un,
un(0)= u0,n and ∂tun(0)= u1,n.

(1.29)
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12 Asma Azaiez, Nader Masmoudi and Hatem Zaag

Since un ∈ L∞loc(R
+,H1(−R,R)) ⊂ L∞loc(R

+,L∞(−R,R)), for any R > 0, from
the fact that (u0,n,u1,n) is convergent in H1

loc × L2
loc, it follows that l(x, t) ≥

limsupn→+∞ un(x, t) >−∞.
Note from the fact that Fn(u)≤ eu that we have

∀x ∈R, t < T(x), un(x, t)≤ u(x, t). (1.30)

Introducing R = |x| + t+ 1, we see by definition (1.9) of DR that (x, t) ∈ DR.
Let us handle two cases in the following.

Case 1: t < T(x)
Let us introduce vn, the solution of{

∂2
t vn = ∂2

x vn+ evn ,
vn(0)= u0,n and ∂tvn(0)= u1,n ∈H1

loc,u×L2
loc,u.

From the local Cauchy theory in H1
loc,u×L2

loc,u and the Sobolev embedding, we
know that

vn → u uniformly as n→∞ in compact sets of D. (1.31)

Let us consider

K̃ = K−(x,(t+T(x))/2)

and M̃ =max(y,s)∈K̃ |u(y,s)|<+∞, since K̃ is a compact set in D.
From (1.31), we may assume n large enough, so that

||u0,n− u0||L∞(K̃∩{t=0}) ≤ 1,

sup
(y,s)∈K̃

|vn(y,s)| ≤ M̃+ 1 (1.32)

and

n≥ M̃+ 3. (1.33)

In particular,

||u0,n||L∞(K̃∩{t=0}) ≤ M̃+ 1. (1.34)

We claim that

∀(y,s) ∈ K̃, |un(y,s)| ≤ M̃+ 2. (1.35)

Indeed, arguing by contradiction, we may assume from (1.34) and continuity
of un that

∀s ∈ [0, t̃n], ||un(s)||L∞(K̃∩{t=s}) ≤ M̃+ 2 (1.36)
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and

||un(t̃n)||L∞(K̃∩{t=t̃n}) = M̃+ 2, (1.37)

for some t̃n ∈ (0, t+T(x)
2 ).

From (1.33), (1.36) and the definition (1.20) of Fn, we see that

∀(y,s) ∈ K̃ with s≤ t̃n,Fn(un(y,s))= eun(y,s).

Therefore, un and vn satisfy the same equation with the same initial data on
K̃ ∩ {s ≤ t̃n}. From uniqueness of the solution to the Cauchy problem, we see
that

∀(y,s) ∈ K̃ with s≤ t̃n,un(y,s)= vn(y,s).

A contradiction then follows from (1.32) and (1.37). Thus, (1.35) holds.
Again, from the choice of n in (1.33), we see that

∀(y,s) ∈ K̃,Fn(un(y,s))= eun(y,s),

hence, from uniqueness,

∀(y,s) ∈ K̃,un(y,s)= vn(y,s).

From (1.31), and since (x, t) ∈ K̃, it follows that un(x, t)→ u(x, t) as n→∞.

Case 2: t > T(x)
Assume by contradiction that l <+∞. From Lemma 1.6, it follows that

∀(y,s) ∈ K−(x, t), un(y,s)≤ un(x, t)+C(R).

For n≥ n0 large enough, this gives un(y,s)≤ l+ 1+C(R).
If M = E(l+ 1+C(R))+ 1, then

∀n≥max(M,n0), ∀(y,s) ∈ K−(x, t),Fn(un(y,s))= eun(y,s),

and un satisfies (1.1) in K−(x, t) with initial data (u0,n,u1,n)→ (u0,u1) ∈ H1×
L2(K−(x, t)∩ {t= 0}). From the finite speed of propagation and the continuity
of solutions to the Cauchy problem with respect to the initial data, it follows
that un and u are both defined in K−(x, t) for n large enough, in particular
u is defined at (x,s) with T(x) < s < t with u = un in K−(x, t). This gives a
contradiction with the expression of the domain of definition (1.4) of u.
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14 Asma Azaiez, Nader Masmoudi and Hatem Zaag

1.3 Energy Estimates

In this section, we use some localized energy techniques from Shatah and
Struwe [24] to derive a non-blow-up criterion which will give the lower bound
in Theorem 1.1. More precisely, we give the following.

Proposition 1.8 (Non-blow-up criterion for a semilinear wave equation)
∀c0 > 0, there exist M0(c0) > 0 and M(c0) > 0 such that, if

(H) :

{
||∂xu0||2L2(−1,1)

+||u1||2L2(−1,1)
≤ c2

0

∀|x|< 1, u0(x)≤M0,
(1.38)

then equation (1.1) with initial data (u0,u1) has a unique solution (u,∂tu) ∈
C([0,1),H1×L2(|x|< 1− t)) such that for all t ∈ [0,1) we have:

||∂xu(t)||2L2(|x|<1−t)+||∂tu(t)||2L2(|x|<1−t) ≤ 2c2
0 (1.39)

and

∀|x|< 1− t, u(x, t)≤M. (1.40)

Note that here we work in the space H1
loc×L2

loc which is larger than the space
H1

loc,u×L2
loc,u which is adopted elsewhere for equation (1.1). Before giving the

proof of this result, let us first give the following corollary, which is a direct
consequence of Proposition 1.8.

Corollary 1.9 There exists ε̄0 > 0 such that if∫ 1

−1
(u1(x))

2+ (∂xu0(x))
2+ eu0(x) dx≤ ε̄0, (1.41)

then the solution u of equation (1.1) with initial data (u0,u1) doesn’t blow up
in the cone C0,1,1.

Let us first derive Corollary 1.9 from Proposition 1.8.

Proof of Corollary 1.9 assuming that Proposition 1.8 holds
From (1.41), if ε̄0 ≤ 1 we see that∫ 1

−1

(
(u1(x))

2+ (∂xu0(x))
2
)

dx≤ ε̄0 ≤ 1, (1.42)∫ 1

−1
eu0(x)dx≤ ε̄0.

https://doi.org/10.1017/9781108367639.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108367639.001


Blow-up Rate for a Semilinear Wave Equation 15

Therefore, for some x0 ∈ (−1,1), we have 2eu0(x0) = ∫ 1
−1 eu0(x)dx ≤ ε̄0, hence

u0(x0)≤ log ε̄0
2 . Using (1.42), we see that for all x ∈ (−1,1),

u0(x)= u0(x0)+
∫ x

x0

∂xu0 ≤ u0(x0)+
√

2

(∫ 1

−1
(∂xu0(x))

2dx

) 1
2

≤ log
ε̄0

2
+√

2ε̄0 ≤M0(1),

defined in Proposition 1.8, provided that ε̄0 is small enough. Therefore, the
hypothesis (H) of Proposition 1.8 holds with c0= 1, and so does its conclusion.
This concludes the proof of Corollary 1.9, assuming that Proposition 1.8 holds.

Now, we give the proof of Proposition 1.8.

Proof of Proposition 1.8 Consider c0 > 0 and introduce

M0 = log

(
c2

0

16

)
− c0

√
2− c2

0

8
and M(c0)= log

(
c2

0

16

)
.

Then, we consider (u0,u1) satisfying hypothesis (H). From the solution of the
Cauchy problem in H1

loc×L2
loc, which follows exactly by the same argument as

in the space H1
loc,u×L2

loc,u presented in Section 1.2, there exists t∗ ∈ (0,1] such
that equation (1.1) has a unique solution with (u,∂tu)∈C([0, t∗),H1×L2(|x|<
1− t)). Our aim is to show that t∗ = 1 and that (1.39) and (1.40) hold for all
t ∈ [0,1).

Clearly, from the solution of the Cauchy problem, it is enough to show that
(1.39) and (1.40) hold for all t ∈ [0, t∗), so we only do that in the following.

Arguing by contradiction, we assume that there exists at least some time
t∈ [0, t∗) such that either (1.39) or (1.40) doesn’t hold. If t̄ is the lowest possible
t, then we have from continuity either

||∂xu(t̄)||2L2(|x|<1−t̄)+||∂tu(t̄)||2L2(|x|<1−t) = 2c0,

or

∃|x0|< 1− t̄, such that u(x0, t̄)=M.

Note that since (1.39) holds for all t ∈ [0, t̄), it follows that

∀t ∈ [0, t̄),∀|x|< 1− t,u(x, t)≤M = log

(
c2

0

16

)
. (1.43)
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16 Asma Azaiez, Nader Masmoudi and Hatem Zaag

Following the alternative on t̄, two cases arise in the following.

Case 1: ||∂xu(t̄)||2
L2(|x|<1−t̄)

+||∂tu(t̄)||2L2(|x|<1−t̄)
= 2c2

0.
Referring to Shatah and Struwe [24], we see that:∫

|x|<1−t̄
( 1

2 (∂xu2+ ∂tu
2)− eu) dx−

∫
|x|<1

( 1
2 (∂xu2

0+ u2
1)− eu0) dx

=
∫
�

(eu− 1
2 |∂xu− x

|x|∂tu|2) dσ , (1.44)

where
� = {(x, t) ∈R×R+, such that |x| = 1− t}∩ [0, t̄].

Using (1.43), it follows that∫
|x|<1−t̄

eu(x,t̄)dx≤
∫
|x|<1−t̄

eM ≤ c2
0

8
.

∫
�

eudσ ≤
∫ t̄

0
(eu(1−t,t)+ eu(t−1,t))dt≤ c2

0

8
.

Therefore, from (1.44) and (1.38), we write∫
|x|<1−t̄

((∂xu)2+ (∂tu)
2)dx≤

∫
|x|<1

(∂xu0)
2dx+ (u1)

2+
∫
|x|<1−t̄

eu(x,t̄)dx+
∫
�

eudσ

≤ c2
0+

3

8
c2

0 < 2c2
0,

which is a contradiction.

Case 2: ∃x0 ∈ (−(1− t̄),1− t̄), u(x0, t̄)=M.
Recall Duhamel’s formula:

∀|x|< 1− t̄,

u(x, t̄)= 1

2
(u0(x− t̄)+ u0(x+ t̄)+ 1

2

∫ x+t̄

x−t̄
u1(z)dz

+1

2

∫ t̄

0

∫ x+t̄−τ

x−t̄+τ

eu(z,τ) dzdτ . (1.45)

From (H), we write∫ x+t̄

x−t̄
u1 dx≤

(∫ 1

−1
u2

1

) 1
2

2
√

2≤ c0

√
2.

From (1.43), we write∫ t̄

0

∫ z+t̄−τ

z−t̄+τ

eu(z,τ)dzdτ ≤
∫ t̄

0

∫ z+t̄−τ

z−t̄+τ

c2
0

16
≤ c2

0

8
.
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Since u0(x± t̄)≤M0 = log(
c2

0
16 )− c0

√
2− c2

0
8 , it follows from (1.45) that

u(x, t̄)≤M0+ c0

√
2

2
+ c2

0

16
< log

(
c2

0

16

)
=M,

and a contradiction follows.
This concludes the proof of Proposition 1.8. Since we have already derived

Corollary 1.9 from Proposition 1.8, this is also the conclusion of the proof of
Corollary 1.9.

1.4 ODE Type Estimates

In this section, we extend the work of Godin in [11]. In fact, we show that his
estimates hold for more general initial data. As in the introduction, we consider
u(x, t) a non-global solution of equation (1.1) with initial data (u0,u1)∈H1

loc,u×
L2

loc,u. This section is organized as follows.
In the first subsection, we give some preliminary results and we show that

the solution goes to +∞ on the graph �.
In the second subsection, we give and prove upper and lower bounds on the

blow-up rate.

1.4.1 Preliminaries

In this subsection, we first give some geometrical estimates on the blow-up
curve (see Lemmas 1.10, 1.11 and 1.12). Then, we use equation (1.1) to derive
a kind of maximum principle in light cones (see Lemma 1.13), then a lower
bound on the blow-up rate (see Proposition 1.14).

We first give the following geometrical property concerning the distance to
{t= T(x)}, the boundary of the domain of definition of u(x, t).

Lemma 1.10 (Estimate for the distance to the blow-up boundary) For all
(x, t) ∈D, we have

1√
2
(T(x)− t)≤ d((x, t),�)≤ T(x)− t, (1.46)

where d((x, t),�) is the distance from (x, t) to �.

Proof Note first by definition that

d((x, t),�)≤ d((x, t),(x,T(x))= T(x)− t.
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Then, from the finite speed of propagation, � is above Cx,T(x),1, the backward
light cone with vertex (x,T(x)). Since (x, t) ∈ Cx,T(x),1, it follows that

d((x, t),�)≥ d((x, t),Cx,T(x),1)=
√

2

2
(T(x)− t).

This concludes the proof of Lemma 1.10.

Now, we give a geometrical property concerning distances, specific for
non-characteristic points.

Lemma 1.11 (A geometrical property for non-characteristic points) Let
a ∈R. There exists c := C(δ), where δ = δ(a) is given by (1.6), such that for
all (x, t) ∈ Ca,T(a),1,

1

c
≤ T(x)− t

T(a)− t
≤ c.

Remark From Lemma 1.10, it follows that

1

c̄
≤ d((x, t),�)

d((a, t),�)
≤ c̄

whenever a ∈R and (x, t) ∈ Ca,T(a),1.

Proof Let a be a non-characteristic point. We recall from condition (1.6) that

∃δ = δ(a) ∈ (0,1) such that u is defined on Ca,T(a),δ .

Let (x, t) be in the light cone with vertex (a,T(a)). Using the fact that the
blow-up graph is above the cone Ca,T(a),δ and the fact that (x, t) ∈ Ca,T(a),1, we
see that

T(x)− t≥ T(a)− δ|x− a|− t ≥ (T(a)− t)(1− δ). (1.47)

In addition, as � is a 1-Lipschitz graph, we have

T(x)≤ T(a)+|x− a|,
so, for all (x, t) ∈ Ca,T(a),1,

T(x)− t≤ T(a)+|x− a|− t ≤ 2(T(a)− t). (1.48)

From (1.47) and (1.48), there exists c= c(δ) such that

1

c
≤ T(x)− t

T(a)− t
≤ c.

This concludes the proof of Lemma 1.11.
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M1

βP1

M2

ξ

τ

M

t
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slope 1

M0
N1

N0

x

α

Figure 1.1. Illustration for the proof of (1.49)

Finally, we give the following coercivity estimate on the distance to the
blow-up curve, still specific for non-characteristic points.

Lemma 1.12 Let x∈R and t ∈ [0,T(x)). For all τ ∈ [0, t) and j= 1,2, we have

d((zj,wj),�)≥ 1

C
(d((x, t),�)+|(x, t)− (zj,wj)|), (1.49)

where (z1,w1)= (x+ t− τ ,τ) and (z2,w2)= (x− t+ τ ,τ).

Remark Note that (zj,wj) for j = 1,2 lie on the backward light cone with
vertex (x, t).

Proof Consider x ∈R, t ∈ [0,T(x)). By definition, there exists δ ∈ (0,1) such
that Cx,T(x),δ ⊂ D. We will prove the estimate for j= 1 and τ ∈ [0, t), since the
the estimate for j= 2 follows by symmetry. In order to do so, we introduce the
following notations, as illustrated in Figure 1.1: M = (x,T(x)), M0 = (x, t) and
M1 = (z1,w1) = (x+ t− τ ,τ), which is on the left boundary of the backward
light cone Cx,t,1; N1 the orthogonal projection of M1 on the left boundary of
the cone Cx,T(x),δ; P1 the orthogonal projection of M0 on [N1,M1]. Note that
the quadrangle M0N0N1P1 is a rectangle. If α is such that tanα = δ and β =
P̂M1M0, then we see from elementary considerations on angles that β = α+ π

4

and N̂0M0M = α.
Therefore, using Lemma 1.10, and the angles on the triangle M0N0M, we

see that:

d((x, t),�)≤ T(x)− t=MM0 = M0N0

cosα
= N1P1

cosα
. (1.50)

Moreover, since the blow-up graph is above the cone Cx,T(x),δ , it follows that

d((z1,w1),�)≥M1N1.
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In particular,

M1N1 = N1P1+P1M1 = N1P1+ cos( π4 +α)M1M0. (1.51)

Since 0 < δ < 1, hence 0 < α < π
4 , it follows that cos( π4 + α) > 0. Since

M1M0 = |(z1,w1)− (x, t)|, the result follows from (1.50) and (1.51).
In the same way, we can prove this for the other point M2 = (z2,w2), which

gives (1.49).

Now, we give the following corollary from the approximation procedure in
Lemmas 1.6 and 1.7.

Lemma 1.13 (Uniform bounds on variations of u in cones) For any R > 0,
there exists a constant C(R) > 0 such that if (x, t) ∈D∩DR then

u(y,s)≥ u(x, t)−C(R), ∀(y,s) ∈D∩K+
R (x, t),

u(y,s)≤ u(x, t)+C(R), ∀(y,s) ∈ K−(x, t),

where the cones K± and K±
R are defined in (1.22).

Remark The constant C(R) depends also on u0 and u1, but we omit this
dependence in the sequel.

In the following, we give a lower bound on the blow-up rate and we show
that u(x, t)→+∞ as t→ T(x).

Proposition 1.14 (A general lower bound on the blow-up rate)

(i) If (u0,u1) ∈W1,∞×L∞, then for all R > 0, there exists C(R) > 0 such that
for all (x, t) ∈D∩DR,

d((x, t),�)eu(x,t) ≥ C.

In particular, for all (x, t) ∈D∩DR, u(x, t)→+∞ as d((x, t),�)→ 0.

(ii) If we only have (u0,u1) ∈ H1
loc,u × L2

loc,u, then for all R > 0, there exists
C(R) > 0 such that for all (x0, t) ∈D∩DR,

1

T(x0)− t

∫
|x−x0|<T(x0)−t

e−u(x,t)dx≤ C(R)
√

d(x0, t).

In particular, e−u converges to 0 on average over slices of the light cone, as
d(x0, t)→ 0.

Remark Near non-characteristic points, we are able to derive the optimal
lower bound on the blow-up rate. See item (ii) of Proposition 1.15.
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Proof of Proposition 1.14

(i) Clearly, the last sentence in item (i) follows from the first, hence, we only
prove the first.

Let R > 0 and (x, t)∈D∩DR. Using the approximation procedure defined in
(1.21), we write un = un+ ũn with:

un(x, t)= 1

2

(
u0,n(x− t)+ u0,n(x+ t)

)+ 1

2

∫ x+t

x−t
u1,n(ξ)dξ ,

ũn(x, t)= 1

2

∫ t

0

∫ x+t−τ

x−t+τ

Fn(un(z,τ))dzdτ .

(Note that un was already defined in (1.29).)
Since Fn ≥ 0 from (1.20), it follows that

un(x, t)≥ un(x, t)≥−C(R) for all (x, t) ∈D∩DR. (1.52)

Differentiating un, we see that

∂tun(x, t)= 1

2

(
∂xu0,n(x+ t)− ∂xu0,n(x− t)

)+ 1

2

(
u1,n(x+ t)+ u1,n(x− t)

)
≤ ||∂xu0,n||L∞(−R,R)+||u1,n||L∞(−R,R) ≤ C(R). (1.53)

Differentiating ũn, we get

∂tũn(x, t)= 1

2

∫ t

0
(Fn(un(x− t+ τ ,τ),+Fn(un(x+ t− τ ,τ)))dτ

≤ 1

2

∫ t

0

(
eun(x−t+τ ,τ)+ eun(x+t−τ ,τ)

)
dτ

since Fn(u)≤ eu. Since un(x− t+ τ ,τ)≤ un(x, t)+C(R) and un(x+ t− τ ,τ)≤
un(x, t)+C(R) from Lemma 1.6, it follows that

∂tũn(x, t)≤ cteun(x,t) ≤ C(R)eun(x,t). (1.54)

Therefore, using (1.52) we see that

∂tun(x, t)= ∂tun(x, t)+ ∂tũn(x, t)≤ C(R)+C(R)eun(x,t) ≤ C(R)eun(x,t),

hence

∂tun(x, t)e−un(x,t) ≤ C(R). (1.55)

Integrating (1.55) on any interval [t1, t2] with 0 ≤ t1 < T(x) < t2, we get
e−un(x,t1) − e−un(x,t2) ≤ C(t2 − t1). Making n →∞ and using Lemma 1.7 we
see that e−u(x,t1) ≤ C(t2− t1).

Taking t1 = t and making t2 → T(x), we get e−u(x,t) ≤ C(T(x)− t). Using
Lemma 1.10 concludes the proof of item (i) of Proposition 1.14.
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(ii) If (u0,u1)∈H1
loc,u×L2

loc,u, then a small modification in the argument of item
(i) gives the result. Indeed, if t0 ∈ [0,T(x0)),

a0 = x0− (T(x0)− t0), b0 = x0+ (T(x0)− t0),

and t≥ 0, we write from (1.52) and (1.53)∫ b0

a0

∂tun(x, t)e−un(x,t)dx≤ C(R)
√

b0− a0.

Furthermore, from (1.54) we write∫ b0

a0

∂tũn(x, t)e−un(x,t)dx≤ C(R)(b0− a0).

Therefore, it follows that

− d

dt

∫ b0

a0

e−un(x,t)dx=
∫ b0

a0

∂tun(x, t)e−un(x,t)dx≤ C(R)
√

b0− a0. (1.56)

Integrating (1.56) on an interval (t0, t′0), where

t′0 = 2T(x0)− t0, (1.57)

we get∫ b0

a0

e−un(x,t0)dx−
∫ b0

a0

e−un(x,t′0)dx≤ C(R)
√

b0− a0(t
′
0− t0)

= 2
√

2C(R)(T(x0)− t0)
3
2 . (1.58)

Since x �→ T(x) is 1-Lipschitz and T(x0) is the middle of [t0, t′0], we clearly
see that the segment [a0,b0] × {t′0} lies outside the domain of definition of
u(x, t); using Lemma 1.7, we see that∫ b0

a0

e−un(x,t′0)dx→ 0 as n→+∞,

on the one hand (we use the Lebesgue Lemma together with the bound (1.52)).
On the other hand, similarly, we see that

∫ b0

a0

e−un(x,t0)dx→
∫ b0

a0

e−u(x,t0)dx as n→+∞.

Thus, the conclusion follows from (1.58), together with Lemma 1.10, this
concludes the proof of Proposition 1.14.
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1.4.2 The Blow-up Rate

This subsection is devoted to bounding the solution u. We have obtained the
following result.

Proposition 1.15 For any R > 0, there exists C(R) > 0, such that:

(i) (Upper bound on u) for all (x, t) ∈D∩DR we have

eud((x, t),�)2 ≤ C;

(ii) (Lower bound on u) if, in addition, (u0,u1) ∈ W1,∞ × L∞ and x is a
non-characteristic point, then for all (x, t) ∈D∩DR,

eud((x, t),�)2 ≥ 1

C
.

Remark In [11] Godin didn’t use the notion of characteristic point, but
the regularity of initial data was fundamental to achieve the result. In this
work, our initial data are less regular, so we have focused on the case of a
non-characteristic point in order to get his result.

Proof of Proposition 1.15
(i) Consider R > 0. We will show the existence of some C(R) > 0 such that for
any (x, t1) ∈D∩DR, we have

eud((x, t),�)2 ≤ C(R).

Consider then (x, t1) ∈ D∩DR. Since x �→ T(x) is 1-Lipschitz, we clearly see
that

(x,T(x)) ∈DR̄ with R̄= 2R+T(a)+ 1. (1.59)

Consider now t2 ∈ (t1,T(x)), to be fixed later. We introduce the square domain
with vertices (x, t1),(x+ t2−t1

2 , t1+t2
2 ),(x, t2),(x− t2−t1

2 , t1+t2
2 ). Let

Tsup = {(ξ , t) | t1− t2
2

< t < t2, |x− ξ |< t2− t},

Tinf = {(ξ , t) | t1 < t <
t1− t2

2
, |x− ξ |< t− t1},

respectively the upper and lower half of the considered square. From
Duhamel’s formula, we write:

u(x, t2)= 1

2
u

(
x+ t2− t1

2
,
t2+ t1

2

)
+ 1

2
u

(
x− t2− t1

2
,
t2+ t1

2

)
+1

2

∫ x+ t2−t1
2

x− t2−t1
2

∂tu

(
ξ ,

t2− t1
2

)
dξ + 1

2

∫
Tsup

eu(ξ ,t) dξdt
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and

u(x, t1)= 1

2
u

(
x+ t2− t1

2
,
t2+ t1

2

)
+ 1

2
u

(
x− t2− t1

2
,
t2+ t1

2

)
−1

2

∫ x+ t2−t1
2

x− t2−t1
2

∂tu

(
ξ ,

t2− t1
2

)
dξ + 1

2

∫
Tinf

eu(ξ ,t) dξdt.

So,

u(x, t1)+ u(x, t2) (1.60)

= u

(
x+ t2− t1

2
,
t2+ t1

2

)
+ u

(
x− t2− t1

2
,
t2+ t1

2

)
+ 1

2

∫
Tinf∪Tsup

eu(ξ ,t) dξdt.

Since the square Tinf ∪Tsup ⊂DR̄ from (1.59), applying Lemma 1.13, we have
for all (x̃, t̃) ∈ Tinf ∪Tsup and for some C(R) > 0:

u(x̃, t̃)≥ u(x, t1)−C.

Applying this to (1.60), we get

u(x, t2)≥ u(x, t1)− 2C+ (t2− t1)2

4
e(u(x,t1)−C).

Now, choosing t2= t1+σe−u(x,t1)/2, where σ = 2e
c
2
√
η+ 2C, we see that either

(x, t) /∈D or (x, t2) ∈D and u(x, t2)≥ u(x, t1)+ 1 by the above-given analysis.
In the second case, we may proceed similarly and define for n≥ 3 a sequence

tn = tn−1+σe−u(x,tn−1)/2, (1.61)

as long as (x, tn−1) ∈ D. Clearly, the sequence (tn) is increasing whenever it
exists. Repeating between tn and tn−1, for n ≥ 3, the argument we first wrote
for t1 and t2, we see that

u(x, tn)≥ u(x, tn−1)+ 1, (1.62)

as long as (x, tn) ∈D. Two cases arise then.

Case 1: The sequence (tn) can be defined for all n≥ 1, which means that

(x, tn) ∈D, ∀n ∈N∗. (1.63)

In particular, (1.61) and (1.62) hold for all n≥ 2.
If t∞ = limn→∞ tn, then, from (1.63), we see that t∞ ≤ T(x).
Since u(x, tn)→+∞ as n→∞ from (1.62), we need to have

t∞ = T(x),
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from the Cauchy theory. Therefore, using Lemma 1.10, (1.61) and (1.62), we
see that

d((x, t1),�)≤ T(x)− t1 =
∞∑

n=1

(tn+1− tn)≤ σ

∞∑
n=1

e−(u(x,t1)+(n−1))/2

≡ C(R)e−u(x,t1)/2,

which is the desired estimate.

Case 2: The sequence (tn) exists only for all n ∈ [1,k] for some k ≥ 2. This
means that (x, tk) /∈D, that is tk ≥ T(x).

Moreover, (1.61) holds for all n∈ [2,k], and (1.62) holds for all n∈ [2,k−1]
(in particular, it is never true if k = 2). As for Case 1, we use Lemma 1.10,
(1.61) and (1.62) to write

d((x, t1),�)≤ T(x)− t1 ≤ tk− t1 =
k−1∑
n=1

(tn+1− tn)≤ σ

k−1∑
n=1

e−(u(x,t1)+(n−1))/2

≤ σe−(u(x,t1))/2
k−1∑
n=1

e(n−1))/2 ≡ C(R)e−u(x,t1)/2,

which is the desired estimate. This concludes the proof of item (i) of
Proposition 1.15.

(ii) Consider R > 0 and x a non-characteristic point such that (x, t) ∈ DR ∩D.
We dissociate u into two parts u= ū+ ũ with:

ū(x, t)= 1

2
(u0(x− t)+ u0(x+ t))+ 1

2

∫ x+t

x−t
u1(ξ)dξ ,

ũ(x, t)= 1

2

∫ t

0

∫ x+t−τ

x−t+τ

eu(z,τ)dzdτ .

Differentiating ū, we see that

∂tū(x, t)= 1

2
(∂xu0(x+ t)− ∂xu0(x− t))+ 1

2
(u1(x+ t)+ u1(x− t))

≤ ||∂xu0||L∞(−R,R)+||u1||L∞(−R,R) ≤ C(R),

since (x, t) ∈DR. Consider now an arbitrary a ∈ ( 1
2 ,1). Since u(x, t)→+∞ as

d((x, t),�)→ 0 (see Proposition 1.14), it follows that

e(a−1)u(x,t)∂tū(x, t)≤ C(R)d((x, t),�)−2a+1. (1.64)

Now, we will prove a similar inequality for ũ. Differentiating ũ, we see that

∂tũ= 1

2

∫ t

0
(eu(x−t+τ ,τ)+ eu(x+t−τ ,τ))dτ . (1.65)
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Using the upper bound in Proposition 1.15, part (i), which is already proved,
and Lemma 1.13, we see that for all (y,s) ∈ K−(x, t),

u(y,s)= (1− a)u(y,s)+ au(y,s)≤ (1− a)(u(x, t)+C)

+ a(logC− 2logd((y,s),�)).

So,

eu(y,s) ≤ Ce(1−a)u(x,t)(d((y,s),�))−2a. (1.66)

Since x is a non-characteristic point, there exists δ0 ∈ (0,1) such that the cone
Cx̄,T(x̄),δ0 is below the blow-up graph �.

Applying (1.66) and Lemma 1.12 to (1.65), and using the fact that |(x, t)−
(z1,w1)|2 = 2(τ − t)2, we write (recall that 1

2 < a < 1):

∂tũ= 1

2

∫ t

0
eu(z1,w1)+ eu(z2,w2)dτ

≤ 1

2

∫ t

0
Ce(1−a)u(x,t)(d((z1,w1),�)

−2a+ d((z2,w2),�)
−2a)dτ

≤ Ce(1−a)u(x,t)
∫ t

0
(d((x, t),�)+|(x, t)− (z1,w1)|)−2a

+ (d((x, t),�)+|(x, t)− (z1,w1)|)−2a dτ

≤ Ce(1−a)u(x,t)
∫ t

0

(
d((x, t),�)+√2(t− τ)

)−2a
dτ

≤ Ce(1−a)u(x,t) 1√
2(2a− 1)

d((x, t),�)−2a+1,

which yields

e(a−1)u(x,t)∂tũ(x, t)≤ Cd((x, t),�)−2a+1. (1.67)

In conclusion, we have from (1.64), (1.67) and Lemma 1.10:

e(a−1)u(x,t)∂tu(x, t)≤ Cd((x, t),�)−2a+1 ≤ C(T(x)− t)−2a+1. (1.68)

Since u(x, t) → +∞ as d((x, t),�) → 0 from Proposition 1.14, integrating
(1.68) between t and T(x), we see that

e(a−1)u(x,t) ≤ C(T(x)− t)2−2a.

Using Lemma 1.10 again, we complete the proof of part (ii) of Proposi-
tion 1.15.
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1.5 Blow-up Estimates for Equation (1.1)

In this section, we prove the three results of our paper: Theorem 1.1,
Theorem 1.2 and Proposition 1.3. Each proof is given in a separate subsection.

1.5.1 Blow-up Estimates in the General Case

In this subsection, we use energy and ODE type estimates from previous
sections and give the proof of Theorem 1.1.

Proof of Theorem 1.1 (i) Let R > 0, a ∈R such that (a,T(a)) ∈DR and (x, t) ∈
Ca,T(a),1. Consider (ξ ,τ), the closest point of Ca,T(a),1 to (x, t). This means that

||(x, t)− (ξ ,τ)|| = inf
x′∈R

{||(x, t)− (x′, |x′| = 1− t)||} = d((x, t),Ca,T(a),1).

By a simple geometrical construction, we see that it satisfies the following:{
τ = T(a)− (ξ − a),
τ = t+ (ξ − x),

(1.69)

hence, T(a)− t− 2ξ + a+ x= 0, so

ξ − x= 1

2
((T(a)− t)+ (a− x)) . (1.70)

Using the second equation of (1.69) and (1.70) we see that:

||(x, t)− (ξ ,τ)|| =
√
(ξ − x)2+ (τ − t)2 =√2|ξ − x|

=
√

2

2
|(T(a)− t)+ (a− x)|.

Thus,

d((x, t),�)≥ d((x, t),Ca,T(a),1)=
√

2

2
|(T(a)− t)+ (a− x)|. (1.71)

From Proposition 1.15, (1.71) and the similarity transformation (1.7) we have:

ewa(y,s) ≤ (T(a)− t)2eu(x,t) ≤ C
(T(a)− t)2

d((x, t),�)2
≤ C

(
T(a)− t

T(a)− t−|x− a|
)2

≤ C

(1−|y|)2
,

which gives the first inequality of (i). The second one is given by Proposi-
tion 1.15 and Lemma 1.10.

(ii) This is a direct consequence of Proposition 1.14 and Lemma 1.10.
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(iii) Now, we will use Section 1.3 to prove this. Arguing by contradiction,
we assume that u is not global and that ∀ε0 > 0, ∃x0 ∈R,∃t0 ∈ [0,T(x0)), such
that

1

T(x0)− t0

∫
I
((ut(x, t0))

2+ (ux(x, t0))
2+ eu(x,t0))dx <

ε0

(T(x0)− t0)2
,

where I = (x0− (T(x0)− t0),x0+ (T(x0)− t0)).

We introduce the following change of variables:

v(ξ ,τ)= u(x, t)+ log(T(x0)− t0), with x= x0+ ξ(T(x0)− t0),

t= t0+ τ(T(x0)− t0).

Note that v satisfies equation (1.1). For ε0 = ε̄0, v satisfies (1.41), so, by
Corollary 1.9, v doesn’t blow-up in {(ξ ,τ)| |ξ | < 1 − τ ,τ ∈ [0,1)}, thus, u
doesn’t blow-up in {(x, t)| |x − x0| < T(x0) − t, t ∈ [t0,T(x0))}, which is a
contradiction. This concludes the proof of Theorem 1.1.

1.5.2 Blow-up Estimates in the Non-characteristic Case

In this subsection, we prove Theorem 1.2. We give first the following corollary
of Proposition 1.15.

Corollary 1.16 Assume that (u0,u1) ∈W1,∞×L∞. Then, for all R > 0, a ∈R
such that (a,T(a)) ∈DR, we have for all s≥− logT(a) and |y|< 1

|wa(y,s)| ≤ C(R).

Proof of Corollary 1.16 Assume that (u0,u1) ∈W1,∞ × L∞ and consider R >

0 and a ∈ R such that (a,T(a)) ∈ DR. On the one hand, we recall from
Proposition 1.15 that

∀(x, t) ∈ Ca,T(a),1,
1

C
≤ eud((x, t),�)2 ≤ C.

Using (1.7), we see that

1

C
≤
(

d((x, t),�)

T(a)− t

)2

ewa(y,s) ≤ C, with y= x− a

T(a)− t
and s=− log(T(a)− t).

Since

1

C
≤ d((x, t),�)

T(x)− t
≤ C,

from Lemmas 1.10 and 1.11, this yields the conclusion of Corollary 1.16.

Now, we give the proof of Theorem 1.2.
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Proof of Theorem 1.2 Consider R > 0 and a ∈R such that (a,T(a)) ∈DR. We
note first that the fact that |wa(y,s)| ≤ C for all |y| < 1 and s ≥ − logT(a)
follows from Corollary 1.16. It remains only to show that

∫ 1
−1

(
(∂swa(y,s))2+

(∂ywa(y,s))2
)

dy ≤ C. From Proposition 1.15 and Lemmas 1.10 and 1.11, we
have:

∀(x, t) ∈ Ca,T(a),1, eu(x,t) ≤ C(R)

(T(a)− t)2
. (1.72)

We define Ea, the energy of equation (1.1), by

Ea(t)= 1

2

∫
|x−a|<T(a)−t

((∂tu(x, t))2+ (∂xu(x, t))2)dx−
∫
|x−a|<T(a)−t

eu(x,t)dx.

(1.73)
From Shatah and Struwe [24], we have

d

dt
Ea(t)≤ Ceu(a−(T(a)−t),t)+Ceu(a+(T(a)−t),t).

Integrating it over [0, t) and using (1.72), we see that

Ea(t)≤ Ea(0)+C
∫ t

0
eu(a−(T(a)−s),s)ds+C

∫ t

0
eu(a+(T(a)−s),s)ds

≤ C(a, ||(u0,u1)||H1×L2(−R,R))+C
∫ t

0

ds

(T(a)− s)2
≤ C+ C

(T(a)− t)
.

Thus,

Ea(t)≤ C

(T(a)− t)
. (1.74)

Now, using (1.72) and (1.74) to bound the two first terms in the definition of
Ea(t), (1.73), we get

1

2

∫
|x−a|<T(a)−t

((∂tu(x, t))2+ (∂xu(x, t))2)dx≤
∫
|x−a|<T(a)−t

eudx+ C

(T(a)− t)

≤
∫
|x−a|<T(a)−t

C

(T(a)− t)2
dx+ C

(T(a)− t)
≤ C

(T(a)− t)
.

(1.75)

Writing inequality (1.75) in similarity variables, we get for all s ≥
− logT(a), ∫ 1

−1
(∂swa(y,s))2+

∫ 1

−1
(∂ywa(y,s))2 ≤ C(R).

This yields the conclusion of Theorem 1.2.

Now, we give the proof of Proposition 1.3.
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Proof of Proposition 1.3 Multiplying (1.8) by ∂sw, and integrating over
(−1,1), we see that∫ 1

−1
∂sw∂2

s wdy−
∫ 1

−1
∂sw∂y((1− y2)∂yw)dy−

∫ 1

−1
∂swew dy+ 2

∫ 1

−1
∂swdy

=−
∫ 1

−1
(∂sw)2 dy+ 2

∫ 1

−1
y∂sw∂2

y,swdy.

Thus,

d

ds

(∫ 1

−1

1

2
(∂sw)2+ 2w− ew dy

)
+ I1 =−

∫ 1

−1
(∂sw)2 dy+ I2,

where

I1 =−
∫ 1

−1
∂y
(
(1− y2)∂yw

)
∂swdy=

∫ 1

−1

(
(1− y2)∂yw

)
∂2

yswdy

= 1

2

d

ds

(∫ 1

−1
(1− y2)(∂sw)2 dy

)
and

I2 =−2
∫ 1

−1
y∂sw∂2

y,swdy=−
∫ 1

−1
y∂y(∂sw)2 dy

=
∫ 1

−1
(∂sw)2 dy− (∂sw(−1,s))2− (∂sw(1,s))2.

Thus,

d

ds

(∫ 1

−1

[
1

2
(∂sw)2+ 1

2
(1− y2)(∂yw)2− ew+ 2w

]
dy

)
=−(∂sw(−1,s))2− (∂sw(1,s))2,

which yields the conclusion of Proposition 1.3 by integration in time.
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MA, 1995.

[2] C. Antonini and F. Merle. Optimal bounds on positive blow-up solutions for a
semilinear wave equation. Internat. Math. Res. Notices, (21):1141–1167, 2001.

[3] A. Azaiez. Blow-up profile for the complex-valued semilinear wave equation.
Trans. Amer. Math. Soc., 367(8):5891–5933, 2015.

https://doi.org/10.1017/9781108367639.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108367639.001


Blow-up Rate for a Semilinear Wave Equation 31

[4] L. A. Caffarelli and A. Friedman. Differentiability of the blow-up curve
for one-dimensional nonlinear wave equations. Arch. Rational Mech. Anal.,
91(1):83–98, 1985.

[5] L. A. Caffarelli and A. Friedman. The blow-up boundary for nonlinear wave
equations. Trans. Amer. Math. Soc., 297(1):223–241, 1986.

[6] R. Côte and H. Zaag. Construction of a multisoliton blowup solution to the
semilinear wave equation in one space dimension. Comm. Pure Appl. Math.,
66(10):1541–1581, 2013.

[7] Y. Giga and R. V. Kohn. Asymptotically self-similar blow-up of semilinear heat
equations. Comm. Pure Appl. Math., 38(3):297–319, 1985.

[8] Y. Giga and R. V. Kohn. Characterizing blowup using similarity variables. Indiana
Univ. Math. J., 36(1):1–40, 1987.

[9] Y. Giga and R. V. Kohn. Nondegeneracy of blowup for semilinear heat equations.
Comm. Pure Appl. Math., 42(6):845–884, 1989.

[10] P. Godin. The blow-up curve of solutions of mixed problems for semilinear wave
equations with exponential nonlinearities in one space dimension. II. Ann. Inst.
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