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Abstract
We study the generalized Ramsey–Turán function RT(𝑛, 𝐾𝑠 , 𝐾𝑡 , 𝑜(𝑛)), which is the maximum possible number of
copies of 𝐾𝑠 in an n-vertex 𝐾𝑡 -free graph with independence number 𝑜(𝑛). The case when 𝑠 = 2 was settled by
Erdős, Sós, Bollobás, Hajnal, and Szemerédi in the 1980s. We combinatorially resolve the general case for all 𝑠 ≥ 3,
showing that the (asymptotic) extremal graphs for this problem have simple (bounded) structures. In particular, it
implies that the extremal structures follow a periodic pattern when t is much larger than s. Our results disprove a
conjecture of Balogh, Liu, and Sharifzadeh and show that a relaxed version does hold.
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1. Introduction

Ramsey theory, initially explored by Ramsey [32] in 1930, stands as a pivotal branch of combinatorics.
It seeks to tackle a fundamental question: what is the minimum size required to guarantee the existence
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of a well-defined substructure within a larger, often chaotic, set or system? One of the most renowned
results in Ramsey theory is Ramsey’s theorem, which asserts that if n is large enough in terms of k, then
no matter how one colors the edges of a complete graph of order n using two colors, there will always
exist a monochromatic complete subgraph 𝐾𝑘 .

In 1941, Turán [37] proposed and solved the following problem: what is the maximum number of
edges that a graph G of order n can have without containing a complete graph 𝐾𝑘? He also proved that
the value is attained only by the balanced complete (𝑘 −1)-partite graph, now known as the Turán graph
𝑇𝑘−1 (𝑛). Subsequently, a new branch of extremal combinatorics named after him emerged: Turán-type
problems. Formally, we define the generalized Turán function ex(𝑛, 𝐻1, 𝐻2) as the maximum possible
number of copies of 𝐻1 in an n-vertex 𝐻2-free graph. There has been extensive research on this function.
When 𝐻1 � 𝐾2, Erdős, Stone, and Simonovits (see [14, 15]) gave an asymptotically satisfactory solution
for all graphs 𝐻2, and Erdős [13] additionally determined ex(𝑛, 𝐾𝑠 , 𝐾𝑡 ) for all 𝑡 > 𝑠 ≥ 3. More recently,
Alon and Shikhelman [1] systematically studied ex(𝑛, 𝐻1, 𝐻2) for other graphs 𝐻1, and there have been
a number of results in this direction (see e.g., [9, 19, 20, 30, 31]).

In this paper, we study the following extremal quantity which mixes Ramsey theory with Turán-type
problems. Define the generalized Ramsey–Turán number RT(𝑛, 𝐻1, 𝐻2, ℓ) to be the maximum number
of copies of 𝐻1 in an n-vertex 𝐻2-free graph G with independence number 𝛼(𝐺) < ℓ. We remark that
the existence of such a graph G is controlled by the Ramsey number 𝑅(𝐻2, 𝐾ℓ), which is defined to
be the least N such that every graph G on N vertices contains either a subgraph isomorphic to 𝐻2 or
an independent set of size ℓ. This quantity is also inherently related to the generalized Turán function;
indeed, we have ex(𝑛, 𝐻1, 𝐻2) = RT(𝑛, 𝐻1, 𝐻2, 𝑛 + 1).

This beautiful way of combining Ramsey theory with Turán-type problems was first proposed in
the late 1960s by Sós [34], who investigated RT(𝑛, 𝐾2, 𝐻, ℓ). The most studied case is when the
independence number is sublinear: ℓ = 𝑜(𝑛). To eliminate minor fluctuations caused by small values
of n, one usually considers the asymptotic behavior via the Ramsey–Turán density function,

𝜚𝑠 (𝐾𝑡 ) = lim
𝛿→0

lim
𝑛→∞

RT(𝑛, 𝐾𝑠, 𝐾𝑡 , 𝛿𝑛)(𝑛
𝑠

) .

It is not hard to see that the above limits exist. Then define RT(𝑛, 𝐾𝑠 , 𝐾𝑡 , 𝑜(𝑛)) = 𝜚𝑠 (𝐾𝑡 )
(𝑛
𝑠

)
+𝑜(𝑛𝑠). We

say an n-vertex 𝐾𝑡 -free graph G with 𝛼(𝐺) = 𝑜(𝑛) is an (asymptotic) extremal graph if its 𝐾𝑠-density
attains 𝜚𝑠 (𝐾𝑡 ).

When 𝑠 = 2, the Ramsey–Turán density has now been completely determined. It was, however,
a bumpy road. In 1969, Erdős and Sós [17] showed that 𝜚2 (𝐾2𝑘+1) = 𝑘−1

𝑘 . The even cliques case
became significantly more challenging. As a first application of the celebrated regularity lemma,
Szemerédi [35] in 1972 proved that 𝜚2(𝐾4) ≤ 1

4 , and in 1976 Bollobás and Erdős [10] obtained a match-
ing lower bound 𝜚2 (𝐾4) ≥ 1

4 via an astonishing geometric construction (now called the Bollobás–Erdős
graph). Eventually, in 1983, Erdős, Hajnal, Sós and Szemerédi [16] completed the picture, showing that
𝜚2 (𝐾2𝑘 ) = 3𝑘−5

3𝑘−2 for all 𝑘 ≥ 2. In fact, they proved a much stronger result showing that extremal graphs
for 𝜚2(𝐾𝑡 ) exhibit the following periodic behavior:

(★) Let 𝑡 = 2𝑝 + 𝑟 ≥ 4, where 𝑟 ∈ {0, 1}. There is an extremal graph G for 𝜚2(𝐾𝑡 ) whose vertex set
can be partitioned into 𝑉1 ∪ · · · ∪𝑉𝑝 satisfying (i) 𝐺 [𝑉1, 𝑉2] has edge density 𝑟+1

2 − 𝑜(1); (ii) every
other 𝐺 [𝑉𝑖 , 𝑉 𝑗 ] has edge density 1 − 𝑜(1); and (iii) each 𝐺 [𝑉𝑖] has edge density 𝑜(1).

In other words, the extremal structure depends on the parity r of t and evolves as follows: the density
of 𝐺 [𝑉1, 𝑉2] increases as the parity r increases; and whenever t increases by 2, a new part is added and
joined almost completely to all previous parts (depicted in the first row of Table 1). For more recent
developments of the 𝑠 = 2 case and related variations, we refer the interested reader to [2, 3, 4, 5, 6, 8,
11, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29].

Balogh, Liu, and Sharifzadeh [6] recently initiated the study of the general case 𝑠 ≥ 3, which turns
out to be much more difficult and delicate than the 𝑠 = 2 case. Note that 𝜚𝑠 (𝐾𝑠+1) = 0: in any n-vertex
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Table 1. Conjectured periodic extremal structure. Black edges have density 1 and red edges have density 1/2..

𝐾𝑠+1-free graph with independence number 𝑜(𝑛), each copy of 𝐾𝑠−1 lies in 𝑜(𝑛) copies of 𝐾𝑠 . Balogh,
Liu, and Sharifzadeh [6] determined the first non-trivial cases 𝜚3 (𝐾𝑡 ) and 𝜚𝑠 (𝐾𝑠+2), and made a
conjecture predicting the general case. We find it more convenient to work with the following definition,
which helps reformulate their conjecture.

Definition 1.1. Given integers 𝑏 ≥ 𝑎 ≥ 1, a graph G admits a (𝑏, 𝑎)-partition if its vertex set has a
partition 𝑉 = 𝑉1 ∪ · · · ∪𝑉𝑎 satisfying the following for 𝑏1, . . . , 𝑏𝑎 ∈ {� 𝑏𝑎 	, 


𝑏
𝑎 �} with

∑𝑎
𝑖=1 𝑏𝑖 = 𝑏:

(1) For every distinct 𝑖, 𝑗 ∈ [𝑎], 𝐺 [𝑉𝑖 , 𝑉 𝑗 ] has edge density 1 − 𝑜(1); and
(2) For every 𝑖 ∈ [𝑎], 𝑉𝑖 admits an equipartition 𝑉1

𝑖 ∪ · · · ∪ 𝑉𝑏𝑖
𝑖 such that 𝐺 [𝑉 𝑗

𝑖 ] has density 𝑜(1) for
all 𝑗 ∈ [𝑏𝑖] and 𝐺 [𝑉 𝑗

𝑖 , 𝑉
𝑘
𝑖 ] has density 1

2 − 𝑜(1) for all distinct 𝑗 , 𝑘 ∈ [𝑏𝑖].

For instance, if 𝑎 = 𝑏 = 𝑝 then each 𝑏𝑖 = 1, so an n-vertex graph admits a (𝑝, 𝑝)-partition if and
only if it has edit-distance 𝑜(𝑛2) to the Turán graph 𝑇𝑝 (𝑛).

Conjecture 1.2 [6]. Given integers 𝑡 − 2 ≥ 𝑠 ≥ 3, there is an extremal graph for 𝜚𝑠 (𝐾𝑡 ) which admits

(i) an (𝑠, 𝑡 − 1 − 𝑠)-partition if 𝑠 + 2 ≤ 𝑡 ≤ 2𝑠 − 1, or
(ii) a (
 𝑡2 �, 𝑡 − 1 − 
 𝑡2 �)-partition if 𝑡 ≥ 2𝑠.

The preceding conjecture can be better understood, using the language of Definition 1.1, as follows.
For every 𝑡 = 2𝑝 + 𝑟 ≥ 4 with 𝑟 ∈ {0, 1}, the periodic behavior of 𝜚2 (𝐾𝑡 ) in (★) can be rephrased as
‘an extremal graph for 𝜚2 (𝐾𝑡 ) admits a (𝑝, 𝑝 − 1 + 𝑟)-partition’, which is precisely the statement of
Conjecture 1.2(ii) when 𝑠 = 2. Thus, Conjecture 1.2 speculates that similar periodic behavior occurs at
the threshold 𝑡 ≥ 2𝑠 for all 𝑠 ≥ 3 (see Table 1). Further supporting this prediction, it was proved in [6]
that Conjecture 1.2 holds for 𝑠 = 3.

We present infinitely many counterexamples showing that Conjecture 1.2 is false in general. The
smallest counterexamples we observe are 𝑠 = 5 and 𝑡 ∈ {10, 11} (see Figure 2). On the positive side,
we prove that the predicted periodic behavior does eventually occur when 𝑡 � 𝑠 for all 𝑠 ≥ 3.

Theorem 1.3. Conjecture 1.2 is false when 2𝑠 ≤ 𝑡 ≤ 2.08𝑠 for sufficiently large s. Given 𝑡 − 2 ≥ 𝑠 ≥ 3,
Conjecture 1.2 is true if 𝑡 > 𝑠2(𝑠 − 1)/2 + 𝑠, 𝑡 = 𝑠 + 2, or 𝑠 = 3, 4.

Furthermore, our main result shows that a modified version of Conjecture 1.2 is true (which was the
motivation for Definition 1.1). It reads as follows.
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Theorem 1.4. For all integers 𝑡 − 2 ≥ 𝑠 ≥ 3, there is a family of extremal graphs for 𝜚𝑠 (𝐾𝑡 ) admitting
a (𝑏, 𝑎)-partition for some parameters 1 ≤ 𝑎 ≤ 𝑏 satisfying 𝑎 + 𝑏 = 𝑡 − 1.

Theorem 1.4 provides a detailed description of the extremal graphs for the generalized Ramsey–
Turán problem for cliques, showing that they have simple and bounded structures. We remark that
Theorem 1.4 resolves combinatorially the problem of determining the Ramsey–Turán density 𝜚𝑠 (𝐾𝑡 ).
Indeed, given s and t, there is a bounded number of choices for a (because 𝑎 ≤ 𝑡 − 1). Once a is fixed,
the structure of a graph admitting a (𝑏, 𝑎)-partition is determined, so its 𝐾𝑠-density may be computed in
terms of the fractions of vertices allocated to each part. Thus, Theorem 1.4 reduces determining 𝜚𝑠 (𝐾𝑡 )
to a bounded optimization problem (over 𝑎 + 𝑏 = 𝑡 − 1).

Organization. The rest of the paper is structured as follows. The proof of Theorem 1.4 consists of
two parts. We first reduce it to a more tractable problem about clique densities in weighted graphs
(see Theorem 2.4) in Section 2. Understanding this weighted problem is the bulk of the proof (see
Theorem 3.1); we study it in Section 3. In Section 4, we give the proof of Theorem 1.3. Concluding
remarks are given in Section 5.

Notation. We use [𝑛] to denote the finite set {1, 2, . . . , 𝑛}. For a vector 𝒖 = (𝑢1, . . . , 𝑢𝑘 ) ∈ R𝑘 , we write
‖𝒖‖ =

√∑𝑘
𝑖=1 𝑢

2
𝑖 for its ℓ2-norm. Let 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) be a graph. For every 𝑈,𝑉 ⊆ 𝑉 (𝐺), denote

by 𝐺 [𝑈,𝑉] the induced bipartite subgraph of G on partite sets U and V, and by 𝐺 [𝑈] the induced
subgraph of G on set U. For convenience, we let 𝐺 −𝑈 = 𝐺 [𝑉 (𝐺) \𝑈].

2. Reduction to Weighted Graphs

The first step of the proof of Theorem 1.4 reduces understanding Ramsey–Turán density to a problem
about clique density in weighted graphs. The aim of this section will be to prove Theorem 2.4, which
demonstrates the equivalence between these two problems. However, before we can state Theorem 2.4,
we need to define our notion of weighted graphs.
Definition 2.1. A weighted graph 𝑅 = (𝑉, 𝑤) consists of a finite vertex set V together with a weight
function 𝑤 : 𝑉 � 𝑉2 → [0, 1] satisfying the following two properties. The vertex weights must sum
to one (i.e.,

∑
𝑣 ∈𝑉 𝑤(𝑣) = 1). Additionally, the edge weights must satisfy 𝑤(𝑣, 𝑣′) = 𝑤(𝑣′, 𝑣) and

𝑤(𝑣, 𝑣) = 0 for any 𝑣, 𝑣′ ∈ 𝑉 . For 𝛼 ∈ [0, 1], denote by 𝑅>𝛼 the spanning subgraph of R with all edges
of weight larger than 𝛼.

Intuitively, a weighted graph may be thought of as a type of graph limit with a more discrete structure
than a graphon. An r-vertex weighted graph can also be considered to represent a large r-partite graph
G whose ith part 𝑉𝑖 contains a 𝑤(𝑖)-fraction of the vertex set, such that each induced bipartite subgraph
𝐺 [𝑉𝑖 , 𝑉 𝑗 ] is a random graph of density 𝑤(𝑖, 𝑗).

With this perspective in mind, we define subgraph densities in a weighted graph.
Definition 2.2. Let H be a graph with vertex set [𝑠]. The H-density of a weighted graph R is defined as

𝑑𝐻 (𝑅) = E𝑣1 ,...,𝑣𝑠
∈𝑉 (𝑅)

⎡⎢⎢⎢⎢⎣
∏

𝑖 𝑗∈𝐸 (𝐻 )
𝑤(𝑣𝑖 , 𝑣 𝑗 )

⎤⎥⎥⎥⎥⎦ =
∑

𝜎:[𝑠]→𝑉 (𝑅)

(
𝑠∏
𝑖=1

𝑤(𝜎(𝑖))
)���

∏
𝑖 𝑗∈𝐸 (𝐻 )

𝑤(𝜎(𝑖), 𝜎( 𝑗))���,
where vertices 𝑣1, . . . , 𝑣𝑠 ∈ 𝑉 (𝑅) are chosen independently at random according to the vertex weights
of R.

We shall show that the Ramsey–Turán density 𝜚𝑠 (𝐾𝑡 ) is determined by the maximum possible
𝐾𝑠-density in a weighted graph avoiding the following forbidden configuration.
Definition 2.3. Let R be a weighted graph and 𝑡 ∈ N. The weighted t-clique family K𝑡 consists of all
pairs of subsets (𝑆1, 𝑆2) with 𝑆2 ⊆ 𝑆1 ⊆ 𝑉 (𝑅), 𝑠1 = |𝑆1 |, 𝑠2 = |𝑆2 | ≥ 1 and 𝑠1 + 𝑠2 = 𝑡 such that 𝑆1
induces a 𝐾𝑠1 in 𝑅>0 and 𝑆2 induces a 𝐾𝑠2 in 𝑅> 1

2
.We say R is K𝑡–free if R contains no such pair (𝑆1, 𝑆2).
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We can then define the 𝐾𝑠-Turán density of K𝑡 as

𝜋𝑠 (K𝑡 ) = sup{𝑑𝐾𝑠 (𝑅) : 𝑅 is a K𝑡 -free weighted graph}.

At this point, we may state the main result of this section.
Theorem 2.4. For 𝑠, 𝑡 ∈ N with 2 ≤ 𝑠 ≤ 𝑡 − 1, we have 𝜚𝑠 (𝐾𝑡 ) = 𝜋𝑠 (K𝑡 ).

The upper and lower bounds of Theorem 2.4 will be proven in the next two subsections.

2.1. Upper bound

Our proof of the upper bound on Theorem 2.4 relies on Szemerédi’s regularity lemma. The regularity
lemma states that any graph looks 𝜀-close to a weighted graph whose number of vertices is bounded in
terms of 𝜀. We recall its statement here, beginning with some preliminary definitions.
Definition 2.5. Let G be a graph and let 𝑋,𝑌 ⊆ 𝑉 (𝐺). The edge density between X and Y, denoted
by 𝑑 (𝑋,𝑌 ), is the fraction of pairs (𝑥, 𝑦) ∈ 𝑋 × 𝑌 that are edges of G. Given 𝜀 > 0, we say the
pair (𝑋,𝑌 ) is 𝜀-regular if, for all 𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 with |𝑋 ′ | ≥ 𝜀 |𝑋 | and |𝑌 ′ | ≥ 𝜀 |𝑌 |, we have
|𝑑 (𝑋 ′, 𝑌 ′) − 𝑑 (𝑋,𝑌 ) | < 𝜀.
Definition 2.6. Let G be a graph. A vertex partition 𝑉 (𝐺) = 𝑉1 ∪ · · · ∪ 𝑉𝑟 ∪ 𝑉𝑟+1 is called 𝜀-regular
if |𝑉1 | = · · · = |𝑉𝑟 | and |𝑉𝑟+1 | ≤ 𝜀𝑛, and additionally at most 𝜀𝑟2 pairs (𝑉𝑖 , 𝑉 𝑗 ) with 𝑖 < 𝑗 ≤ 𝑟 are not
𝜀-regular.
Theorem 2.7 (Regularity Lemma, [36]). For every small constant 𝜀 > 0 and integer 𝑀0, there exists an
integer 𝑀 = 𝑀 (𝜀, 𝑀0) such that the following holds. Given any n-vertex graph G, there is an 𝜀-regular
partition of its vertices 𝑉 (𝐺) = 𝑉1 ∪ · · · ∪𝑉𝑟 ∪𝑉𝑟+1 such that 𝑀0 ≤ 𝑟 ≤ 𝑀 .

We also require the graph counting lemma. Intuitively, if a graph G looks like a weighted graph R,
then this lemma implies that the 𝐾𝑠-density of G is approximately the 𝐾𝑠-density of R.
Lemma 2.8 (Graph Counting Lemma, [12]). Let 𝜀 > 0, and let G be an s-partite graph with
𝑉 (𝐺) =

⋃𝑠
𝑖=1 𝑉𝑠 . Suppose that the pair (𝑉𝑖 , 𝑉 𝑗 ) is 𝜀-regular for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑠. Then������𝑁 (𝐾𝑠 , 𝐺)/

(
𝑠∏
𝑖=1

|𝑉𝑖 |
)
−

∏
1≤𝑖< 𝑗≤𝑠

𝑑 (𝑉𝑖 , 𝑉 𝑗 )

������ ≤ √
𝜀𝑠3,

where 𝑁 (𝐾𝑠 , 𝐺) is the number of copies of 𝐾𝑠 in G.
We now prove the upper bound of Theorem 2.4.

Theorem 2.9. Let 𝑠, 𝑡 be integers with 2 ≤ 𝑠 < 𝑡. For any 𝛿 ∈ (0, 1) there exists 𝛿′ ∈ (0, 1) such that the
following holds. Suppose G is a 𝐾𝑡 -free graph with 𝛼(𝐺) ≤ 𝛿′ |𝑉 (𝐺) |. Then there is a K𝑡 -free weighted
graph R such that 𝑑𝐾𝑠 (𝐺) ≤ 𝑑𝐾𝑠 (𝑅) + 4𝑠2𝛿.
Proof. Choose 𝜀 < 1

2 small enough such that (𝛿−𝜀)𝑡−1 > (𝑡+1)𝜀 and let 𝛿′ = 𝜀/𝑀 , where 𝑀 = 𝑀 (𝜀, 1
𝜀 )

is the constant guaranteed by the regularity lemma (Theorem 2.7). Suppose G is a 𝐾𝑡 -free graph on N
vertices with 𝛼(𝐺) ≤ 𝛿′𝑁 .

Apply Theorem 2.7 with this value of 𝜀 to G. This yields an 𝜀-regular partition 𝑉 (𝐺) = 𝑉1 ∪ · · · ∪
𝑉𝑟 ∪ 𝑉𝑟+1 with 1

𝜀 ≤ 𝑟 ≤ 𝑀 . We show that a substructure similar to a weighted t-clique is forbidden
among the edge densities 𝑑 (𝑉𝑖 , 𝑉 𝑗 ).
Claim 2.10. Suppose 𝑆2 ⊆ 𝑆1 ⊆ [𝑟] are sets of indices such that
(i) For any distinct 𝑖, 𝑗 ∈ 𝑆1, the pair (𝑉𝑖 , 𝑉 𝑗 ) is 𝜀-regular with density 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) > 𝛿; and

(ii) For any distinct 𝑖, 𝑗 ∈ 𝑆2, the pair (𝑉𝑖 , 𝑉 𝑗 ) has density 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) > 1
2 + 𝛿.

Then G contains a clique of order |𝑆1 | + |𝑆2 |. In particular, |𝑆1 | + |𝑆2 | < 𝑡.
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Proof of claim. Order the elements of 𝑆1 as 𝑎1, . . . , 𝑎ℓ with the elements of 𝑆1 \ 𝑆2 listed first. Set
𝑘 = |𝑆1 | − |𝑆2 |. By Lemma 2.8, there exists a clique S of order ℓ in G such that |𝑆 ∩ 𝑉𝑎𝑖 | = 1 for each
𝑖 ∈ [ℓ]; as G is 𝐾𝑡 -free, it follows that ℓ < 𝑡. Our proof follows an ℓ-step process, where the ith step
chooses one (if 𝑖 ≤ 𝑘) or two (if 𝑖 > 𝑘) vertices from 𝑉𝑎𝑖 that are adjacent to all previously chosen
vertices. For 0 ≤ 𝑖, 𝑗 ≤ ℓ, write 𝑊 (𝑖) for the common neighborhood of those vertices chosen in the first
i steps, and let 𝑊 (𝑖)

𝑗 = 𝑉𝑎 𝑗 ∩𝑊 (𝑖) . In particular, 𝑊 (0) = 𝑉 (𝐺). We will choose 2ℓ − 𝑘 vertices such that
|𝑊 (𝑖)

𝑗 | ≥ (𝛿 − 𝜀) |𝑊 (𝑖−1)
𝑗 | ≥ (𝛿 − 𝜀)𝑖 |𝑉𝑎 𝑗 | for all 0 ≤ 𝑖 < 𝑗 ≤ ℓ.

On the ith step with 1 ≤ 𝑖 ≤ 𝑘 , choose one vertex 𝑣𝑖 ∈ 𝑊 (𝑖−1)
𝑖 such that 𝑊 (𝑖)

𝑗 := 𝑁 (𝑣𝑖) ∩𝑊 (𝑖−1)
𝑗 has

cardinality at least (𝛿 − 𝜀) |𝑊 (𝑖−1)
𝑗 | for each 𝑗 > 𝑖. To show that such a vertex 𝑣𝑖 exists, consider the sets

𝑋 𝑗 =
{
𝑣 ∈ 𝑊 (𝑖−1)

𝑖 : |𝑁 (𝑣) ∩𝑊 (𝑖−1)
𝑗 | < (𝛿 − 𝜀) |𝑊 (𝑖−1)

𝑗 |
}

for each 𝑗 > 𝑖. Observe that 𝑑
(
𝑋 𝑗 ,𝑊

(𝑖−1)
𝑗

)
< 𝛿 − 𝜀 < 𝑑 (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) − 𝜀 by construction, and that

|𝑊 (𝑖−1)
𝑗 | ≥ (𝛿 − 𝜀)𝑖−1 |𝑉𝑎 𝑗 | ≥ (𝛿 − 𝜀)𝑡 |𝑉𝑎 𝑗 | ≥ 𝜀 |𝑉𝑎 𝑗 |. Because the pair (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) is 𝜀-regular, it follows

that |𝑋 𝑗 | < 𝜀 |𝑉𝑎𝑖 |. Thus,������𝑊 (𝑖−1)
𝑖 −

ℓ⋃
𝑗=𝑖+1

𝑋 𝑗

������ > (𝛿 − 𝜀)𝑖−1 |𝑉𝑎𝑖 | − (ℓ − 𝑖)𝜀 |𝑉𝑎𝑖 | ≥ ((𝛿 − 𝜀)𝑡−1 − (𝑡 − 1)𝜀) |𝑉𝑎𝑖 | > 0.

It follows that there is a vertex 𝑣𝑖 ∈ 𝑊 (𝑖−1)
𝑖 such that |𝑊 (𝑖)

𝑗 | = |𝑁 (𝑣𝑖) ∩𝑊 (𝑖−1)
𝑗 | ≥ (𝛿 − 𝜀) |𝑊 (𝑖−1)

𝑗 | for
each 𝑗 > 𝑖.

On the ith step with 𝑘 < 𝑖 ≤ ℓ, choose two adjacent vertices 𝑣𝑖 , 𝑣
′
𝑖 ∈ 𝑊 (𝑖−1)

𝑖 such that 𝑊 (𝑖)
𝑗 :=

𝑁 (𝑣𝑖) ∩𝑁 (𝑣′𝑖) ∩𝑊
(𝑖−1)
𝑗 has cardinality at least 2(𝛿− 𝜀) |𝑊 (𝑖−1)

𝑗 | for all 𝑗 > 𝑖. To verify that such vertices
exist, set

𝑋 𝑗 =

{
𝑣 ∈ 𝑊 (𝑖−1)

𝑖 : |𝑁 (𝑣) ∩𝑊 (𝑖−1)
𝑗 | <

(
1
2
+ 𝛿 − 𝜀

)
|𝑊 (𝑖−1)

𝑗 |
}

for each 𝑗 > 𝑖. The argument from the prior paragraph shows that������𝑊 (𝑖−1)
𝑖 −

ℓ⋃
𝑗=𝑖+1

𝑋 𝑗

������ > (
(𝛿 − 𝜀)𝑡−1 − (𝑡 − 1)𝜀

)
|𝑉𝑎𝑖 | > 2𝜀 |𝑉𝑎𝑖 |.

Noting that |𝑉𝑎𝑖 | = (𝑁 − |𝑉𝑟+1 |)/𝑟 > 𝑁/2𝑟 , we have������𝑊 (𝑖−1)
𝑖 −

ℓ⋃
𝑗=𝑖+1

𝑋 𝑗

������ > 2𝜀 |𝑉𝑎𝑖 | >
𝜀𝑁

𝑟
≥ 𝛿′𝑁 ≥ 𝛼(𝐺).

It follows that there are adjacent vertices 𝑣𝑖 , 𝑣′𝑖 ∈ 𝑊 (𝑖−1)
𝑖 such that 𝑁 (𝑣𝑖) ∩𝑊 (𝑖−1)

𝑗 and 𝑁 (𝑣′𝑖) ∩𝑊 (𝑖−1)
𝑗

have cardinality at least (1/2 + 𝛿 − 𝜀) |𝑊 (𝑖−1)
𝑗 | for each 𝑗 > 𝑖. By the pigeonhole principle,

|𝑊 (𝑖)
𝑗 | = |𝑁 (𝑣𝑖) ∩ 𝑁 (𝑣′𝑖) ∩𝑊 (𝑖−1)

𝑗 | ≥ 2(𝛿 − 𝜀) |𝑊 (𝑖−1)
𝑗 |

for each 𝑗 > 𝑖, as desired.
After ℓ steps, this process results in 𝑘+2(ℓ−𝑘) = |𝑆1 | + |𝑆2 | vertices 𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1, 𝑣

′
𝑘+1, . . . , 𝑣ℓ , 𝑣

′
ℓ

that form a clique in G. It follows that |𝑆1 | + |𝑆2 | < 𝑡, because G is 𝐾𝑡 -free. �
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Let R be the weighted graph on [𝑟] with vertex weights 𝑤(𝑖) = 1
𝑟 for all 𝑖 ∈ [𝑟] and edge weights

𝑤(𝑖, 𝑗) =
{

max{𝑑 (𝑉𝑖 , 𝑉 𝑗 ) − 𝛿, 0}, if 𝑖 ≠ 𝑗 and (𝑉𝑖 , 𝑉 𝑗 ) is 𝜀-regular,
0, if 𝑖 = 𝑗 or (𝑉𝑖 , 𝑉 𝑗 ) is not 𝜀-regular,

for all 𝑖, 𝑗 ∈ [𝑟]. We observe that R is K𝑡 -free as a direct consequence of Claim 2.10.
To conclude the proof, we bound the 𝐾𝑠-density of G. We have

𝑑𝐾𝑠 (𝐺) = 1
𝑁𝑠

���
∑

𝑎1 ,...,𝑎𝑠 ∈[𝑟+1]
#{(𝑣1, . . . , 𝑣𝑠) ∈ 𝑉𝑎1 × · · · ×𝑉𝑎𝑠 that form a 𝐾𝑠 in 𝐺}���.

If 𝑎1, . . . , 𝑎𝑠 are distinct elements of [𝑟] and each pair (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) is 𝜀-regular, then we may simplify the
summand using the graph-counting lemma. Indeed, Lemma 2.8 implies that the number of copies of 𝐾𝑠

in 𝑉𝑎1 × · · · ×𝑉𝑎𝑠 is at most(
𝑠∏
𝑖=1

|𝑉𝑎𝑖 |
)���

∏
1≤𝑖< 𝑗≤𝑠

𝑑 (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) +
√
𝜀𝑠3��� ≤ 𝑁𝑠

𝑟𝑠
���

∏
1≤𝑖< 𝑗≤𝑠

𝑑 (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) +
√
𝜀𝑠3���

in this case. It remains to bound the contribution from terms where some 𝑎𝑖 is 𝑟 + 1, the 𝑎𝑖 are not
distinct, or some pair (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) is not 𝜀-regular.

The terms where at least one index 𝑎𝑖 equals 𝑟 + 1 contribute at most

𝑠

𝑁𝑠
|𝑉𝑟+1 |𝑁𝑠−1 ≤ 𝜀𝑠

to the sum. The terms where 𝑎1, . . . , 𝑎𝑠 are not all distinct contribute at most

1
𝑁𝑠

𝑟∑
𝑖=1

(
𝑠

2

)
|𝑉𝑖 |2𝑁𝑠−2 ≤ 𝑟 ×

(
𝑠

2

)
× 1
𝑟2 ≤ 𝜀

(
𝑠

2

)
because 𝑟 ≥ 1/𝜀. The terms where a pair (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) is not 𝜀-regular contribute at most

1
𝑁𝑠

∑
1≤𝑖< 𝑗≤𝑟 ,
(𝑉𝑖 ,𝑉𝑗 ) not
𝜀-regular

𝑠(𝑠 − 1) |𝑉𝑖 | |𝑉 𝑗 |𝑁𝑠−2 <
𝑠(𝑠 − 1)

𝑟2 × (#𝜀-irregular pairs) ≤ 𝜀𝑠(𝑠 − 1).

Combining these estimates, we have

𝑑𝐾𝑠 (𝐺) ≤ 𝜀

(
𝑠 + 3

(
𝑠

2

))
+ 𝑟−𝑠

∑
𝑎1 ,...,𝑎𝑠 ∈[𝑟 ]

distinct

���
∏

1≤𝑖< 𝑗≤𝑠
𝑑 (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) +

√
𝜀𝑠3���

≤ 𝜀

(
𝑠 + 3

(
𝑠

2

))
+

√
𝜀𝑠3 + 𝑟−𝑠

∑
𝑎1 ,...,𝑎𝑠 ∈[𝑟 ]

distinct

���
∏

1≤𝑖< 𝑗≤𝑠
𝑑 (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 )

���.
To compare this to 𝑑𝐾𝑠 (𝑅), we observe the following inequality. If real numbers 𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑘 ∈
[0, 1] satisfy 𝑥𝑖 ≤ 𝑦𝑖 + 𝛿 for each 𝑖 ∈ [𝑘] then

𝑘∏
𝑖=1

𝑥𝑖 −
𝑘∏
𝑖=1

𝑦𝑖 = (𝑥1 − 𝑦1)𝑥2 · · · 𝑥𝑘 + 𝑦1 (𝑥2 − 𝑦2)𝑥3 · · · 𝑥𝑘 + · · · + 𝑦1 · · · 𝑦𝑘−1 (𝑥𝑘 − 𝑦𝑘 ) ≤ 𝑘𝛿.
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Applying this inequality with 𝑘 =
(𝑠
2
)

to the real numbers 𝑑 (𝑉𝑎𝑖 , 𝑉𝑎 𝑗 ) and 𝑤(𝑎𝑖 , 𝑎 𝑗 ), it follows that

𝑑𝐾𝑠 (𝐺) ≤ 𝜀

(
𝑠 + 3

(
𝑠

2

))
+

√
𝜀𝑠3 + 𝑟−𝑠

∑
𝑎1 ,...,𝑎𝑠 ∈[𝑟 ]

distinct

���
∏

1≤𝑖< 𝑗≤𝑠
𝑤(𝑎𝑖 , 𝑎 𝑗 ) + 𝛿

(
𝑠

2

)���
≤ 2𝜀𝑠2 +

√
𝜀𝑠3 + 𝛿

(
𝑠

2

)
+ 𝑑𝐾𝑠 (𝑅).

Because 𝜀 < (𝛿 − 𝜀)𝑡−1 < 𝛿2, it follows that 𝑑𝐾𝑠 (𝐺) < 𝑑𝐾𝑠 (𝑅) + 4𝑠2𝛿, as desired. �

2.2. Lower bound

The lower bound construction for Theorem 2.4 hinges on a construction of Bollobás and Erdős [10]
which achieves the tight lower bound 𝜚2 (𝐾4) = 1

4 . We briefly describe this construction, following the
notation used in [18].

Fix 0 < 𝜀 < 1 and an integer ℎ ≥ 16, and set 𝜇 = 𝜀√
ℎ

. Let X and Y be sets of points on the unit sphere
Sℎ−1 ⊂ Rℎ . The Bollobás–Erdős graph BE(𝑋,𝑌 ) is a graph on vertex set 𝑋 ∪𝑌 constructed as follows.
(a) Join 𝒙 ∈ 𝑋 to 𝒚 ∈ 𝑌 if ‖𝒙 − 𝒚‖ <

√
2 − 𝜇.

(b) Join 𝒙, 𝒙′ ∈ 𝑋 if ‖𝒙 − 𝒙′‖ > 2 − 𝜇. Similarly, join 𝒚, 𝒚′ ∈ 𝑌 if ‖𝒚 − 𝒚′‖ > 2 − 𝜇.
Bollobás and Erdős showed that this graph is 𝐾4-free and that, if 𝜀 and h are tuned appropriately and X
and Y are uniformly placed on Sℎ−1, it has independence number 𝑜(|𝑋 | + |𝑌 |) and edge density 1

4 −𝑜(1).
Fox, Loh and Zhao [18] analyzed this construction in further detail, providing precise quantitative results
on the independence number and minimum degree. We need some results from their work.
Lemma 2.11 [18]. Let 0 < 𝜀 < 1 and let ℎ ≥ 16 be an integer. Set 𝜇 = 𝜀/

√
ℎ.

(1) If points 𝒙, 𝒚 ∈ Sℎ are chosen independently and uniformly at random then Pr
[
‖𝒙 − 𝒚‖ <

√
2 − 𝜇

]
≥

1
2 −

√
2𝜀.

Now, fix 𝑋,𝑌 ⊆ Sℎ−1, and let 𝐺 = BE(𝑋,𝑌 ) be the graph defined above with parameters 𝜀 and h.
(2) The induced subgraphs 𝐺 [𝑋] and 𝐺 [𝑌 ] are each 𝐾3-free.
(3) G is 𝐾4-free.
(4) If n is sufficiently large in terms of 𝜀, ℎ, there is a choice 𝑋 ⊂ Sℎ of size n such that the induced

subgraph 𝐺 [𝑋] has independence number at most 𝑒−𝜀
√
ℎ/4𝑛.

Using these preliminaries, we prove the lower bound of Theorem 2.4. It follows from Theorem 2.12
by choosing parameters (𝜀, ℎ) such that 𝜀 → 0 and 𝜀

√
ℎ → ∞.

Theorem 2.12. Suppose R is a weighted graph that is K𝑡 -free for some integer 𝑡 ≥ 3. Fix 𝜀 > 0 and an
integer ℎ ≥ 16. For all sufficiently large N, there is a 𝐾𝑡 -free graph G on N vertices with independence
number 𝛼(𝐺) ≤ 3𝑒−𝜀

√
ℎ/4𝑁 and 𝐾𝑠-density 𝑑𝐾𝑠 (𝐺) ≥ (1 − 2

√
2𝑠2𝜀)𝑑𝐾𝑠 (𝑅).

Proof. Suppose that 𝑉 (𝑅) = [𝑟] for some integer r. Increasing each edge weight to the next multiple
of 1

2 preserves the K𝑡 -freeness of R, so we may assume that all edge weights of R are 0, 1
2 , or 1. Set

𝜇 = 𝜀√
ℎ

as in the Bollobás–Erdős construction.
Choose integers 𝑛𝑖 ≥ 
𝑤(𝑖)𝑁� such that 𝑁 = 𝑛1 + · · · + 𝑛𝑟 . We construct an N-vertex graph G on

vertex set 𝑉1 ∪ · · · ∪𝑉𝑟 as follows. Intuitively, 𝐺 [𝑉𝑖 , 𝑉 𝑗 ] will be complete, empty, or a randomly rotated
Bollobás–Erdős graph, depending on whether 𝑤(𝑖, 𝑗) is 1, 0, or 1

2 .
Suppose N is sufficiently large. For each i, we may choose a set 𝑉𝑖 of 𝑛𝑖 points on Sℎ−1 satisfying

Lemma 2.11(4). Connect vertices in
⋃

𝑖 𝑉𝑖 as follows. Within each part 𝑉𝑖 , add an edge between
𝒗𝑖 , 𝒗

′
𝑖 ∈ 𝑉𝑖 if ‖𝒗𝑖 − 𝒗′𝑖 ‖ > 2 − 𝜇. Let 𝐺 [𝑉𝑖 , 𝑉 𝑗 ] be complete bipartite if 𝑤(𝑖, 𝑗) = 1 and empty if
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𝑤(𝑖, 𝑗) = 0. If 𝑤(𝑖, 𝑗) = 1
2 for some 𝑖 < 𝑗 , then let 𝜌𝑖 𝑗 ∈ 𝑆𝑂 (ℎ) be a rotation of Sℎ−1 chosen uniformly

at random. Connect 𝒗𝑖 ∈ 𝑉𝑖 and 𝒗 𝑗 ∈ 𝑉 𝑗 if ‖𝜌𝑖 𝑗𝒗𝑖 − 𝒗 𝑗 ‖ <
√

2 − 𝜇.
Observe that each induced subgraph 𝐺 [𝑉𝑖] is 𝐾3-free with independence number 𝛼(𝐺 [𝑉𝑖]) ≤

𝑒−𝜀
√
ℎ/4𝑛𝑖 by Lemma 2.11(2) and (4). It follows that 𝛼(𝐺) ≤ 𝑒−𝜀

√
ℎ/4𝑁 . Additionally, if 𝑤(𝑖, 𝑗) = 1

2 ,
the induced subgraph 𝐺 [𝑉𝑖 ∪ 𝑉 𝑗 ] is the Bollobás–Erdős graph BE(𝜌𝑖 𝑗 (𝑉𝑖), 𝑉 𝑗 ), and is thus 𝐾4-free by
Lemma 2.11(3).

Using these properties, we verify that G is 𝐾𝑡 -free. Suppose, for contradiction, that 𝐺 [𝑊] is a clique,
where W is some set of t vertices. Let 𝑆1 = {𝑖 ∈ [𝑟] : |𝑉𝑖∩𝑊 | ≥ 1} and 𝑆2 = {𝑖 ∈ [𝑟] : |𝑉𝑖∩𝑊 | ≥ 2} ⊆ 𝑆1.
Because each induced subgraph 𝐺 [𝑉𝑖] is 𝐾3-free, it follows that W has at most two points in 𝑉𝑖 , and
thus that |𝑆1 | + |𝑆2 | = |𝑊 | = 𝑡. For any distinct 𝑖, 𝑗 ∈ 𝑆1, there is an edge between 𝑉𝑖 and 𝑉 𝑗 , and it
follows that 𝑤(𝑖, 𝑗) > 0. Additionally, for any distinct 𝑖, 𝑗 ∈ 𝑆2, there is a 𝐾4 in 𝐺 [𝑉𝑖 ∪ 𝑉 𝑗 ]. Because
the Bollobás–Erdős graph is 𝐾4-free, this implies that 𝑤(𝑖, 𝑗) > 1

2 . We conclude that (𝑆1, 𝑆2) form a
weighted t-clique in R, which is a contradiction. It follows that G is 𝐾𝑡 -free.

Lastly, we verify that G has large 𝐾𝑠-density in expectation, using the independence of the random
rotations 𝜌𝑖 𝑗 . By Lemma 2.11(1), if 𝑤(𝑖, 𝑗) = 1

2 then the expected edge density between 𝑉𝑖 and 𝑉 𝑗 is at
least 1

2 − 2
√

2𝜀. Thus, if N is sufficiently large, we have

E[𝑑𝐾𝑠 (𝐺)] ≥
∑

𝑖1 ,...,𝑖𝑠 ∈[𝑟 ]
distinct

���
𝑠∏
𝑗=1

𝑛𝑖 𝑗

𝑁

���
����

∏
1≤ 𝑗<𝑘≤𝑠

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 𝑤(𝑖 𝑗 , 𝑖𝑘 ) = 0
1/2 − 2

√
2𝜀 𝑤(𝑖 𝑗 , 𝑖𝑘 ) = 1/2

1 𝑤(𝑖 𝑗 , 𝑖𝑘 ) = 1

����
≥

∑
𝑖1 ,...,𝑖𝑠 ∈[𝑟 ]

distinct

���
𝑠∏
𝑗=1

(1 − 𝜀)𝑤(𝑖 𝑗 )
������

∏
1≤ 𝑗<𝑘≤𝑠

(1 − 4
√

2𝜀)𝑤(𝑖 𝑗 , 𝑖𝑘 )
���

= (1 − 𝜀)𝑠 (1 − 4
√

2𝜀)𝑠 (𝑠−1)/2𝑑𝐾𝑠 (𝑅) ≥ (1 − 2
√

2𝑠2𝜀)𝑑𝐾𝑠 (𝑅).

We conclude that there is a choice of the rotations 𝜌𝑖 𝑗 such that 𝑑𝐾𝑠 (𝐺) ≥ (1 − 2
√

2𝑠2𝜀)𝑑𝐾𝑠 (𝑅). �

3. Understanding the extremal weighted graphs

By Theorem 2.4, 𝜚𝑠 (𝐾𝑡 ) = 𝜋𝑠 (K𝑡 ) for all 3 ≤ 𝑠 ≤ 𝑡 − 2. In this section, we show that the supremum
𝜋𝑠 (K𝑡 ) is attained by a weighted graph on at most 𝑡 − 1 vertices, and characterize the structure of a
minimum-size extremal weighted graph more precisely. Our results are summarized as follows; together
with Theorem 2.4, they imply Theorem 1.4.

Theorem 3.1. Fix integers 𝑠, 𝑡 satisfying 3 ≤ 𝑠 ≤ 𝑡 − 2. There is an extremal K𝑡 -free weighted graph R
achieving 𝐾𝑠-density 𝜋𝑠 (K𝑡 ) and satisfying the following properties.

(A1) For any distinct 𝑣, 𝑣′ ∈ 𝑉 (𝑅), we have 𝑤(𝑣, 𝑣′) ∈ { 1
2 , 1}.

(A2) There is a partition 𝑉 (𝑅) = 𝐵1 ∪ · · · ∪ 𝐵𝑎 into nonempty parts such that vertices inside the same
part 𝐵𝑖 have the same weight, and an edge has weight 1/2 if it lies within some 𝐵𝑖 and weight 1
otherwise. Moreover, setting 𝑏 =

∑
𝑖∈[𝑎] |𝐵𝑖 | = |𝑉 (𝑅) |, we have 𝑏 ≥ 𝑠 and 𝑎 + 𝑏 = 𝑡 − 1.

(A3) For any i and j, the cardinalities |𝐵𝑖 | and |𝐵 𝑗 | differ by at most 1.
(A4) If |𝐵𝑖 | ≥ |𝐵 𝑗 | for any (possibly equal) 𝑖, 𝑗 ∈ [𝑎], then 𝑤(𝑣𝑖) ≤ 𝑤(𝑣 𝑗 ) for any 𝑣𝑖 ∈ 𝐵𝑖 and 𝑣 𝑗 ∈ 𝐵 𝑗 .

In particular, if |𝐵𝑖 | = |𝐵 𝑗 | then all vertices in 𝐵𝑖 and 𝐵 𝑗 have the same weight.
(A5) Either 𝑎 = 1 and |𝐵1 | = 𝑠 or 𝑎 ≥ 2 and |𝐵𝑖 | ≤ 𝑠 − 1 for each 𝑖 ∈ [𝑎].

Moreover, all extremal K𝑡 -free weighted graphs with minimum order satisfy (A1)–(A5).

Let t and s be integers such that 3 ≤ 𝑠 ≤ 𝑡 − 2. We shall show in the following subsections that there
exists a K𝑡 -free weighted graph R achieving 𝐾𝑠-density 𝜋𝑠 (K𝑡 ) with |𝑉 (𝑅) | minimized and satisfying
(A1)–(A5). Note that the weighted graph R might not be unique.
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Before beginning the proof, we introduce some notation which will be used in this section. Let R be
a weighted graph and let H be a graph on [𝑠]. For a vertex set 𝑆 ⊆ 𝑉 (𝑅), the density of copies of H
containing S is denoted by

𝑑𝐻 (𝑅, 𝑆) =
∑

𝜎:[𝑠]→𝑉 (𝑅)
𝑆⊆{𝜎 (1) , · · · ,𝜎 (𝑠) }

(
𝑠∏
𝑖=1

𝑤(𝜎(𝑖))
)���

∏
𝑖 𝑗∈𝐸 (𝐻 )

𝑤(𝜎(𝑖), 𝜎( 𝑗))���.
Similarly, write

𝑑𝐻 (𝑅[𝑆]) =
∑

𝜎:[𝑠]→𝑆

(
𝑠∏
𝑖=1

𝑤(𝜎(𝑖))
)���

∏
𝑖 𝑗∈𝐸 (𝐻 )

𝑤(𝜎(𝑖), 𝜎( 𝑗))��� and

𝑑𝐻 (𝑅 − 𝑆) =
∑

𝜎:[𝑠]→𝑉 (𝑅)\𝑆

(
𝑠∏
𝑖=1

𝑤(𝜎(𝑖))
)���

∏
𝑖 𝑗∈𝐸 (𝐻 )

𝑤(𝜎(𝑖), 𝜎( 𝑗))���
for the density of copies of H within S and avoiding S, respectively. For convenience, we write 𝑑𝐻 (𝑅, 𝑣)
instead of 𝑑𝐻 (𝑅, {𝑣}) and 𝑑𝐻 (𝑅 − 𝑣) instead of 𝑑𝐻 (𝑅 − {𝑣}). Additionally, when 𝐻 = 𝐾0, we define
all densities to be 1.

We shall also require the following well-known inequality regarding symmetric functions. This is a
special case of Maclaurin’s inequality.

Lemma 3.2. Let 𝑥1, . . . , 𝑥𝑛 be positive real numbers and let 𝑥 = (𝑥1 + · · · + 𝑥𝑛)/𝑛 be their average. For
any integer 1 ≤ 𝑘 ≤ 𝑛, we have ∑

1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛
𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑘 ≤

(
𝑛

𝑘

)
𝑥𝑘 ,

with equality if and only if all the 𝑥𝑖 are equal.

3.1. Proof of (A1)

For each integer 𝑛 ≥ 𝑠, let 𝑅𝑛 be an n-vertex K𝑡 -free weighted graph of maximum 𝐾𝑠-density. Such
a weighted graph 𝑅𝑛 exists because the space of n-vertex weighted graphs, which is parametrized by
possible choices of the vertex and edge weights, is compact.

We claim that 𝑑𝐾𝑠 (𝑅𝑛−1) ≥ 𝑑𝐾𝑠 (𝑅𝑛) if 𝑅𝑛 contains an edge of weight 0. Suppose that 𝑤(𝑣1, 𝑣2) = 0
for two distinct vertices 𝑣1, 𝑣2 ∈ 𝑉 (𝑅𝑛). For 𝑖 ∈ [2], let 𝑅′

𝑖 be the (𝑛−1)-vertex weighted graph obtained
from 𝑅𝑛 by deleting 𝑣3−𝑖 and increasing the weight of 𝑣𝑖 to 𝑤(𝑣1) + 𝑤(𝑣2). Clearly, both 𝑅′

1 and 𝑅′
2 are

K𝑡 -free. Moreover, writing 𝛼𝑖 =
𝑤 (𝑣𝑖)

𝑤 (𝑣1)+𝑤 (𝑣2) for 𝑖 ∈ [2], we have

𝛼1 · 𝑑𝐾𝑠 (𝑅′
1) + 𝛼2 · 𝑑𝐾𝑠 (𝑅′

2) = 𝑑𝐾𝑠 (𝑅𝑛 − {𝑣1, 𝑣2}) + 𝑑𝐾𝑠 (𝑅𝑛 − 𝑣2, 𝑣1) + 𝑑𝐾𝑠 (𝑅𝑛 − 𝑣1, 𝑣2)
= 𝑑𝐾𝑠 (𝑅𝑛). (3.1)

This implies 𝑑𝐾𝑠 (𝑅𝑛−1) ≥ max𝑖∈[2] 𝑑𝐾𝑠 (𝑅′
𝑖) ≥ 𝑑𝐾𝑠 (𝑅𝑛). In particular, we have 𝑑𝐾𝑠 (𝑅𝑛−1) ≥ 𝑑𝐾𝑠 (𝑅𝑛)

for all 𝑛 ≥ 𝑡, as any K𝑡 -free weighted graph on at least t vertices must contain an edge of weight 0.
It follows that 𝜋𝑠 (K𝑡 ) = sup𝑛≥𝑠 𝑑𝐾𝑠 (𝑅𝑛) is attained by a weighted graph 𝑅𝑛 on at most 𝑡 −1 vertices.

Moreover, any minimal-order weighted graph attaining the 𝐾𝑠-density 𝜋𝑠 (K𝑡 ) must have strictly positive
edge weights.

We conclude the proof of (A1) by observing that if R is a K𝑡 -free weighted graph with maximum
𝐾𝑠-density and strictly positive edge weights, then all edge weights of R must be either 1

2 or 1, as
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increasing any edge weight to the next multiple of 1
2 will preserve the K𝑡 -freeness of R while increasing

its 𝐾𝑠-density.
In the remaining subsections, we will show that any extremal K𝑡 -free weighted graph satisfying (A1)

— and in particular, all such graphs of minimum order — also satisfy (A2)–(A5).

3.2. Proof of (A2)

Let R be an extremal K𝑡 -free weighted graph satisfying (A1). We observe that R must have at least s
vertices, as 𝑑𝐾𝑠 (𝑅) would be 0 if |𝑉 (𝑅) | < 𝑠. Moreover, if R has exactly s vertices, say 𝑣1, . . . , 𝑣𝑠 , then

𝑑𝐾𝑠 (𝑅) = 𝑠!

(
𝑠∏
𝑖=1

𝑤(𝑣𝑖)
)���

∏
1≤𝑖< 𝑗≤𝑠

𝑤(𝑣𝑖 , 𝑣 𝑗 )
���

is maximized when the vertex weights are equal and the number of edges of weight 1 is maximized
subject to the constraint that 𝑅>1/2 is 𝐾𝑡−𝑠-free. The latter condition holds if and only if 𝑅>1/2, viewed
as an unweighted graph, is the Turán graph 𝑇𝑡−𝑠−1 (𝑠). Equivalently, 𝑉 (𝑅) must admit a partition
𝑉 (𝑅) = 𝐵1 ∪ · · · ∪ 𝐵𝑎 with 𝑎 ≤ 𝑡 − 𝑠 − 1 such that edges have weight 1/2 if they lie within some part
𝐵𝑖 and weight 1 otherwise.

We now show that R admits such a partition if |𝑉 (𝑅) | = 𝑏 ≥ 𝑠 + 1. It suffices to show that any two
vertices 𝑣1, 𝑣2 ∈ 𝑉 (𝑅) with 𝑤(𝑣1, 𝑣2) = 1

2 must be identical [i.e., 𝑤(𝑣1) = 𝑤(𝑣2) and 𝑒(𝑣1, 𝑢) = 𝑒(𝑣2, 𝑢)
for any third vertex 𝑢 ∈ 𝑉 (𝑅)]. For 𝑖 ∈ [2], let 𝑅𝑖 be the graph obtained from R by changing the edge
weight of (𝑣3−𝑖 , 𝑢) to 𝑤(𝑣𝑖 , 𝑢) for all 𝑢 ∈ 𝑉 (𝑅) \ {𝑣1, 𝑣2}, and changing the vertex weights of both 𝑣1
and 𝑣2 to 𝑤 (𝑣1)+𝑤 (𝑣2)

2 . We claim that 𝑅1 and 𝑅2 are K𝑡 -free. Indeed, suppose that 𝑅1 contains a weighted
t-clique (𝑆1, 𝑆2) with 𝑆2 ⊆ 𝑆1 ⊆ 𝑉 (𝑅1) and |𝑆1 | + |𝑆2 | = 𝑡. Because 𝑤(𝑣1, 𝑣2) = 1

2 in 𝑅1, the set 𝑆2
cannot contain both 𝑣1 and 𝑣2; as these vertices are indistinguishable in 𝑅𝑖 , we may assume that 𝑆2 does
not contain 𝑣2. Hence, 𝑅1 and R have the same edge weights between vertices of 𝑆2. Furthermore, all
edge weights of R (and in particular, all edge weights between vertices of 𝑆1) are positive because R
satisfies (A1). It follows that 𝑆1 and 𝑆2 form a weighted t-clique in R, a contradiction. The proof that 𝑅2
is K𝑡 -free is analogous.

Write 𝛼𝑖 = 𝑤 (𝑣𝑖)
𝑤 (𝑣1)+𝑤 (𝑣2) for 𝑖 ∈ [2] as in (3.1). We see that∑
𝑖∈[2]

𝛼𝑖 ·
(
𝑑𝐾𝑠 (𝑅𝑖) − 𝑑𝐾𝑠 (𝑅𝑖 , {𝑣1, 𝑣2})

)
= 𝑑𝐾𝑠 (𝑅) − 𝑑𝐾𝑠 (𝑅, {𝑣1, 𝑣2}).

To compare 𝑑𝐾𝑠 (𝑅, {𝑣1, 𝑣2}) and 𝑑𝐾𝑠 (𝑅𝑖 , {𝑣1, 𝑣2}), let 𝑆 = {𝑣1, . . . , 𝑣𝑠} ⊆ 𝑉 (𝑅) be any set of s vertices
containing 𝑣1 and 𝑣2. We observe that

𝑑𝐾𝑠 (𝑅, 𝑆) = 𝑠! · 𝑤(𝑣1)𝑤(𝑣2)𝑤(𝑣1, 𝑣2)
(

𝑠∏
𝑖=3

𝑤(𝑣𝑖)
) (

𝑠∏
𝑖=3

𝑤(𝑣1, 𝑣𝑖)
) (

𝑠∏
𝑖=3

𝑤(𝑣2, 𝑣𝑖)
)���

∏
𝑠≥𝑖> 𝑗≥3

𝑤(𝑣𝑖 , 𝑣 𝑗 )
���

=
𝑠!
2
𝑤(𝑣1)𝑤(𝑣2)𝑊1𝑊2𝑊3,

where 𝑊1 :=
∏𝑠

𝑖=3 𝑤(𝑣1, 𝑣𝑖), 𝑊2 :=
∏𝑠

𝑖=3 𝑤(𝑣2, 𝑣𝑖), and 𝑊3 :=
( ∏𝑠

𝑖=3 𝑤(𝑖)
) ( ∏

𝑠≥𝑖> 𝑗≥3 𝑤(𝑣𝑖 , 𝑣 𝑗 )
)
.

Furthermore, by the AM-GM inequality, we have∑
𝑖∈[2]

𝛼𝑖 · 𝑑𝐾𝑠 (𝑅𝑖 , 𝑆) =
∑
𝑖∈[2]

𝛼𝑖 ·
𝑠!
2

(
𝑤(𝑣1) + 𝑤(𝑣2)

2

)2
𝑊2
𝑖 𝑊3 ≥ 𝑠!

2
𝑤(𝑣1)𝑤(𝑣2)𝑊1𝑊2𝑊3 = 𝑑𝐾𝑠 (𝑅, 𝑆),

with equality if and only if 𝑤(𝑣1) = 𝑤(𝑣2) and 𝑊1 = 𝑊2.
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Summing over all such sets S, we have∑
𝑖∈[2]

𝛼𝑖 · 𝑑𝐾𝑠 (𝑅𝑖 , {𝑣1, 𝑣2}) =
∑
𝑖∈[2]

∑
𝑆⊇{𝑣1 ,𝑣2 },

|𝑆 |=𝑠

𝛼𝑖 · 𝑑𝐾𝑠 (𝑅𝑖 , 𝑆) ≥
∑

𝑆⊇{𝑣1 ,𝑣2 },
|𝑆 |=𝑠

𝑑𝐾𝑆 (𝑅, 𝑆) = 𝑑𝐾𝑠 (𝑅, {𝑣1, 𝑣2}).

Moreover, equality holds if and only if 𝑤(𝑣1) = 𝑤(𝑣2) and 𝑊1 = 𝑊2 for all sets S. We claim that
this condition implies that 𝑤(𝑣1, 𝑢) = 𝑤(𝑣2, 𝑢) for each 𝑢 ∈ 𝑉 (𝑅) − {𝑣1, 𝑣2}. Indeed, because all edge
weights are either 1/2 or 1, it follows that

𝑠∑
𝑖=3

𝑤(𝑣1, 𝑣𝑖) =
𝑠∑
𝑖=3

𝑤(𝑣2, 𝑣𝑖)

for any 𝑠 − 2 distinct vertices 𝑣3, . . . , 𝑣𝑠 ∈ 𝑉 (𝑅) − {𝑣1, 𝑣2}. Letting w(1) ,w(2) ∈ { 1
2 , 1}

𝑏−2 be vectors
defined as w(𝑖)

𝑢 = 𝑤(𝑣𝑖 , 𝑢) for 𝑢 ∈ 𝑉 (𝑅) − {𝑣1, 𝑣2}, this yields a linear relation v ·w(1) = v ·w(2) , where
v ∈ R𝑏−2 is the indicator vector of {𝑣3, . . . , 𝑣𝑠}. When 𝑏 > 𝑠, the vectors v span R𝑏−2, and it follows
that w(1) = w(2) .

We conclude that 𝛼1 · 𝑑𝐾𝑠 (𝑅1) + 𝛼2 · 𝑑𝐾𝑠 (𝑅2) ≥ 𝑑𝐾𝑠 (𝑅), with equality only if 𝑤(𝑣1) = 𝑤(𝑣2) and
𝑤(𝑣1, 𝑢) = 𝑤(𝑣2, 𝑢) for any third vertex u. Because R is extremal, it follows that any 𝑣1, 𝑣2 ∈ 𝑉 (𝑅)
with 𝑤(𝑣1, 𝑣2) = 1/2 must satisfy these conditions. This implies that 𝑉 (𝑅) may be partitioned into
𝐵1 ∪ · · · ∪ 𝐵𝑎 such that vertices within each part have the same weights, and edges have weight 1/2 if
they lie within some part 𝐵𝑖 and weight 1 otherwise.

Lastly, we show that if R is extremal and𝑉 (𝑅) admits such a partition 𝐵1∪· · ·∪𝐵𝑎 then 𝑎+𝑏 = 𝑡−1,
where 𝑏 = |𝑉 (𝑅) | ≥ 𝑠. If 𝑎 + 𝑏 ≥ 𝑡 then we may form a weighted t-clique (𝑆1, 𝑆2) by setting 𝑆1 = 𝑉 (𝑅)
and letting 𝑆2 contain one vertex from each of 𝐵1, . . . , 𝐵𝑡−𝑏 . If 𝑎 + 𝑏 ≤ 𝑡 − 2 then we claim that R is not
extremal. Choose a vertex 𝑣 ∈ 𝐵1 and let 𝑅′ be the weighted graph obtained from R by replacing v with
two vertices 𝑣1, 𝑣2 of weight 𝑤 (𝑣)

2 , setting 𝑤(𝑣1, 𝑣2) = 1/2 and 𝑤(𝑣𝑖 , 𝑢) = 𝑤(𝑣, 𝑢) for 𝑢 ∈ 𝑉 (𝑅) − {𝑣}
and 𝑖 ∈ [2]. We note that 𝑅′ is K𝑡 -free: 𝑅′

>1/2 is 𝐾𝑎+1-free, so for any weighted clique (𝑆1, 𝑆2) in 𝑅′,
we have |𝑆1 | + |𝑆2 | ≤ |𝑉 (𝑅′) | + 𝑎 = 𝑏 + 1 + 𝑎 ≤ 𝑡 − 1. Moreover, it is clear that 𝑑𝐾𝑠 (𝑅′) > 𝑑𝐾𝑠 (𝑅),
contradicting the extremality of R. It follows that 𝑎 + 𝑏 = 𝑡 − 1, as desired.

3.3. Proof of (A3) and (A4) for 𝑎 = 2

We first prove (A3) and (A4) for weighted graphs R satisfying (A2) with 𝑎 = 2 parts. For convenience, we
introduce the following notation. Given positive integers 𝑃,𝑄 and real numbers 𝑝, 𝑞 ∈ (0, 1) satisfying
𝑝𝑃+𝑞𝑄 = 1, let 𝑅(𝑝, 𝑃; 𝑞, 𝑄) denote the (𝑃+𝑄)-vertex weighted graph satisfying (A2) with parameters
𝑎 = 2, |𝐵1 | = 𝑃, and |𝐵2 | = 𝑄, such that 𝑤(𝑣1) = 𝑝 and 𝑤(𝑣2) = 𝑞 for any vertex 𝑣1 ∈ 𝐵1 or 𝑣2 ∈ 𝐵2.

In Lemmas 3.3, 3.5 and 3.8 below, we show that if 𝑅 = 𝑅(𝑝, 𝑃; 𝑞, 𝑄) does not satisfy (A3) or
(A4) then there is another weighted graph 𝑅′ on 𝑃 + 𝑄 vertices such that 𝑅′

> 1
2

is also bipartite and
𝑑𝐾𝑚 (𝑅′) > 𝑑𝐾𝑚 (𝑅) for all m in the range 2 ≤ 𝑚 ≤ 𝑃 + 𝑄. This is a slightly stronger statement than
necessary to handle the 𝑎 = 2 case, but it will prove necessary when we consider 𝑎 ≥ 3 in the next
subsection.

Lemma 3.3. Let 𝑃,𝑄 be positive integers and 𝑝, 𝑞 ∈ (0, 1) real numbers such that 𝑝𝑃 + 𝑞𝑄 = 1.
If 𝑃 ≥ 𝑄 + 1 and (𝑃 − 1)𝑝 > 𝑄𝑞, then there exists a weighted graph 𝑅′ with 𝑃 + 𝑄 vertices such that
𝑅′
> 1

2
is bipartite and 𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) < 𝑑𝐾𝑚 (𝑅′) for all 2 ≤ 𝑚 ≤ 𝑃 +𝑄.

Proof. Set 𝑅 = 𝑅(𝑝, 𝑃; 𝑞, 𝑄) and let u be a vertex in R with weight p. Let 𝑅′ be the graph obtained
from R by changing the weights of all edges incident to u: if (𝑢, 𝑣) has edge weight 𝑤 ∈ { 1

2 , 1} in R,
then we assign it the weight 3

2 − 𝑤 in 𝑅′. It is clear that 𝑅′
> 1

2
is a complete bipartite graph with parts of

size 𝑃 − 1 and 𝑄 + 1.
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Fix m with 2 ≤ 𝑚 ≤ 𝑃 +𝑄. We verify that 𝑑𝐾𝑚 (𝑅, 𝑢) < 𝑑𝐾𝑚 (𝑅′, 𝑢). We have that

𝑑𝐾𝑚 (𝑅, 𝑢) = 𝑚!
∑

𝑥+𝑦=𝑚−1

(
𝑃 − 1
𝑥

) (
𝑄

𝑦

)
𝑝𝑥+1𝑞𝑦

(
1
2

) (𝑥2)+(𝑦2)+𝑥
,

𝑑𝐾𝑚 (𝑅′, 𝑢) = 𝑚!
∑

𝑥+𝑦=𝑚−1

(
𝑃 − 1
𝑥

) (
𝑄

𝑦

)
𝑝𝑥+1𝑞𝑦

(
1
2

) (𝑥2)+(𝑦2)+𝑦
.

Let 𝑀 (𝑥, 𝑦) =
(𝑃−1
𝑥

) (𝑄
𝑦

)
𝑝𝑥+1𝑞𝑦 . If 𝑥 ≥ 𝑦 then

𝑀 (𝑥, 𝑦)
𝑀 (𝑦, 𝑥) =

𝑝𝑥−𝑦

𝑞𝑥−𝑦

𝑥−𝑦∏
𝑖=1

𝑃 − 𝑦 − 𝑖

𝑄 + 1 − 𝑦 − 𝑖
≥ 𝑝𝑥−𝑦

𝑞𝑥−𝑦

(
𝑃 − 1
𝑄

) 𝑥−𝑦
≥ 1,

with equality only if 𝑥 = 𝑦. This in turn implies that

𝑀 (𝑥, 𝑦)
(

1
2

) 𝑥
+ 𝑀 (𝑦, 𝑥)

(
1
2

) 𝑦
≤ 𝑀 (𝑥, 𝑦)

(
1
2

) 𝑦
+ 𝑀 (𝑦, 𝑥)

(
1
2

) 𝑥
for any 𝑥, 𝑦, again with equality only if 𝑥 = 𝑦. Thus,

2𝑑𝐾𝑚 (𝑅, 𝑢) = 𝑚!
∑

𝑥+𝑦=𝑚−1

(
1
2

) (𝑥2)+(𝑦2) (
𝑀 (𝑥, 𝑦)

(
1
2

) 𝑥
+ 𝑀 (𝑦, 𝑥)

(
1
2

) 𝑦)
< 𝑚!

∑
𝑥+𝑦=𝑚−1

(
1
2

) (𝑥2)+(𝑦2) (
𝑀 (𝑥, 𝑦)

(
1
2

) 𝑦
+ 𝑀 (𝑦, 𝑥)

(
1
2

) 𝑥)
= 2𝑑𝐾𝑚 (𝑅′, 𝑢).

To conclude the proof, we observe that 𝑑𝐾𝑚 (𝑅 − 𝑢) = 𝑑𝐾𝑚 (𝑅′ − 𝑢), and thus

𝑑𝐾𝑚 (𝑅) = 𝑑𝐾𝑚 (𝑅, 𝑢) + 𝑑𝐾𝑚 (𝑅 − 𝑢) < 𝑑𝐾𝑚 (𝑅′, 𝑢) + 𝑑𝐾𝑚 (𝑅′ − 𝑢) = 𝑑𝐾𝑚 (𝑅′). �

Next, we handle (A3) in the case that (𝑃 − 1)𝑝 ≤ 𝑄𝑞. To help us bound 𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) in this
case, we shall write it in terms of the following quantities. Given integers 𝑚, 𝑟 with 0 ≤ 𝑟 ≤ 𝑚/2, define

𝑁𝑚,𝑟 (𝑝, 𝑃; 𝑞, 𝑄) = 𝑟! ·
(
𝑃

𝑟

)
𝑝𝑟 · 𝑟! ·

(
𝑄

𝑟

)
𝑞𝑟

∑
𝑥+𝑦=𝑚,
𝑥,𝑦≥𝑟

(
𝑃 − 𝑟

𝑥 − 𝑟

)
𝑝𝑥−𝑟

(
𝑄 − 𝑟

𝑦 − 𝑟

)
𝑞𝑦−𝑟

=
∑

𝑥+𝑦=𝑚,
𝑥,𝑦≥𝑟

(
𝑃

𝑥

)
𝑝𝑥

(
𝑄

𝑦

)
𝑞𝑦

𝑥!𝑦!
(𝑥 − 𝑟)!(𝑦 − 𝑟)! .

Intuitively, 𝑁𝑚,𝑟 should be thought of as counting copies of 𝐾𝑚 in 𝑅(𝑝, 𝑃; 𝑞, 𝑄) with r labeled vertices
in each part. We now show that 𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) is a positive linear combination of these quantities.

Lemma 3.4. Fix a positive integer m. There exist constants 𝑐𝑟 > 0 for 0 ≤ 𝑟 ≤ 
𝑚/2� such that

𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) =

𝑚/2�∑
𝑟=0

𝑐𝑟𝑁𝑚,𝑟 (𝑝, 𝑃; 𝑞, 𝑄)

for any 𝑃,𝑄, 𝑝, 𝑞.
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Proof. Observe that each 𝑁𝑚,𝑟 is a linear combination of the
⌊
𝑚
2
⌋
+ 1 polynomials{(

𝑃

𝑥

) (
𝑄

𝑚 − 𝑥

)
𝑝𝑥𝑞𝑚−𝑥 +

(
𝑃

𝑚 − 𝑥

) (
𝑄

𝑥

)
𝑝𝑚−𝑥𝑞𝑥 : 0 ≤ 𝑥 ≤ 𝑚

2

}
,

with nonzero coefficient if and only if 𝑥 ≥ 𝑟 . Thus, {𝑁𝑚,𝑟 : 0 ≤ 𝑟 ≤ 𝑚/2} is a basis for the space of all
linear combinations of these polynomials, which includes the 𝐾𝑚-density

𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) = 𝑚! ·
∑

𝑥+𝑦=𝑚

(
𝑃

𝑥

) (
𝑄

𝑦

)
𝑝𝑥𝑞𝑦2𝑥𝑦−(

𝑚
2 ) = 𝑚!

2(
𝑚
2 )

·
∑

𝑥+𝑦=𝑚

(
𝑃

𝑥

) (
𝑄

𝑦

)
𝑝𝑥𝑞𝑦2𝑥𝑦 .

It follows that there exist real numbers 𝑐𝑟 such that

𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) =

𝑚/2�∑
𝑟=0

𝑐𝑟𝑁𝑚,𝑟 (𝑝, 𝑃; 𝑞, 𝑄).

Moreover, by setting the coefficients of the rth term equal to each other, we conclude that

𝑚!
2(

𝑚
2 )

· 2𝑟 (𝑚−𝑟 ) =
𝑟∑
𝑖=0

𝑟!(𝑚 − 𝑟)!
(𝑟 − 𝑖)!(𝑚 − 𝑟 − 𝑖)!𝑐𝑖 (3.2)

for each 𝑟 ≤ 𝑚/2.
We show that the coefficients 𝑐𝑟 are positive by induction on r. Clearly, 𝑐0 > 0 by (3.2) when 𝑟 = 0.

Now, suppose 𝑐𝑖 > 0 for all 𝑖 < 𝑟 . By (3.2), we have

𝑟∑
𝑖=0

𝑟!(𝑚 − 𝑟)!
(𝑟 − 𝑖)!(𝑚 − 𝑟 − 𝑖)!𝑐𝑖 = 2𝑟 (𝑚−𝑟 ) · 𝑚!

2(
𝑚
2 )

=
𝑚!

2(
𝑚
2 )

2𝑚−2𝑟+12(𝑟−1) (𝑚−𝑟+1)

= 2𝑚−2𝑟+1
𝑟−1∑
𝑖=0

(𝑟 − 1)!(𝑚 − 𝑟 + 1)!
(𝑟 − 1 − 𝑖)!(𝑚 − 𝑟 + 1 − 𝑖)!𝑐𝑖 .

We claim that

2𝑚−2𝑟+1 (𝑟 − 1)!(𝑚 − 𝑟 + 1)!
(𝑟 − 1 − 𝑖)!(𝑚 − 𝑟 + 1 − 𝑖)! >

𝑟!(𝑚 − 𝑟)!
(𝑟 − 𝑖)!(𝑚 − 𝑟 − 𝑖)!

for each 𝑖 < 𝑟 . Indeed, it suffices to show that

2𝑚−2𝑟+1 𝑟 − 𝑖

𝑚 − 𝑟 + 1 − 𝑖
≥ 1 >

𝑟

𝑚 − 𝑟 + 1
,

which, recalling that 𝑟 ≤ 𝑚/2, follows from the inequalities 2𝑚−2𝑟+1 ≥ 𝑚 − 2𝑟 + 2 and 𝑟−𝑖
𝑚−𝑟+1−𝑖 =

𝑟−𝑖
𝑚−2𝑟+1+(𝑟−𝑖) ≥ 1

𝑚−2𝑟+2 . Hence,

𝑟∑
𝑖=0

𝑟!(𝑚 − 𝑟)!
(𝑟 − 𝑖)!(𝑚 − 𝑟 − 𝑖)!𝑐𝑖 = 2𝑚−2𝑟+1

𝑟−1∑
𝑖=0

(𝑟 − 1)!(𝑚 − 𝑟 + 1)!
(𝑟 − 1 − 𝑖)!(𝑚 − 𝑟 + 1 − 𝑖)!𝑐𝑖 >

𝑟−1∑
𝑖=0

𝑟!(𝑚 − 𝑟)!
(𝑟 − 𝑖)!(𝑚 − 𝑟 − 𝑖)!𝑐𝑖 ,

which implies 𝑐𝑟 > 0. �

Using Lemma 3.4, we handle (A3) in the case that (𝑃 − 1)𝑝 ≤ 𝑄𝑞.
Lemma 3.5. Let 𝑃,𝑄 be positive integers with 𝑃 ≥ 𝑄 + 2 and let 𝑝, 𝑞 ∈ (0, 1) be real numbers such
that 𝑃𝑝 + 𝑄𝑞 = 1. Set 𝑃′ = 𝑃 − 1, 𝑄 ′ = 𝑄 + 1, and choose 𝑝′, 𝑞′ ∈ (0, 1) such that 𝑃′𝑝′ = 𝑃𝑝 and
𝑄 ′𝑞′ = 𝑄𝑞. If (𝑃−1)𝑝 ≤ 𝑄𝑞 then 𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑄)) < 𝑑𝐾𝑚 (𝑅(𝑝′, 𝑃′; 𝑞′, 𝑄 ′)) for all 2 ≤ 𝑚 ≤ 𝑃+𝑄.

https://doi.org/10.1017/fms.2025.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.29


Forum of Mathematics, Sigma 15

Proof. Set 𝑅 = 𝑅(𝑝, 𝑃; 𝑞, 𝑄) and 𝑅′ = 𝑅(𝑝′, 𝑃′; 𝑞′, 𝑄 ′), and fix m with 2 ≤ 𝑚 ≤ 𝑃 + 𝑄. For
convenience, we write 𝑁𝑚,𝑟 (𝑅) = 𝑁𝑚,𝑟 (𝑝, 𝑃; 𝑞, 𝑄) and 𝑁𝑚,𝑟 (𝑅′) = 𝑁𝑚,𝑟 (𝑝′, 𝑃′; 𝑞′, 𝑄 ′).

By Lemma 3.4, it suffices to compare 𝑁𝑚,𝑟 (𝑅) and 𝑁𝑚,𝑟 (𝑅′). We begin with some preliminary
inequalities. Let 𝑝− = min{𝑝′, 𝑞′} and 𝑝+ = max{𝑝′, 𝑞′}.

Claim 3.6. We have the following inequalities.

(1) For any 0 < 𝑟 ≤ |𝑄 |, we have (1 − 𝑟
𝑃 ) (1 − 𝑟

𝑄 ) < (1 − 𝑟
𝑃′ ) (1 − 𝑟

𝑄′ ).
(2) 𝑝 ≤ 𝑝− ≤ 𝑝+ < 𝑞.
(3) For any 0 < 𝑟 ≤ |𝑄 |, we have (𝑃 − 𝑟)𝑝 + (𝑄 − 𝑟)𝑞 < (𝑃′ − 𝑟)𝑝′ + (𝑄 ′ − 𝑟)𝑞′.

Proof of claim.
(1) Because 𝑃 ≥ 𝑄 + 2, we have(

1 − 𝑟

𝑃′

) (
1 − 𝑟

𝑄 ′

)
−

(
1 − 𝑟

𝑃

) (
1 − 𝑟

𝑄

)
=

(
1 + 𝑟2 − (𝑃 +𝑄)𝑟

(𝑃 − 1) (𝑄 + 1)

)
−

(
1 + 𝑟2 − (𝑃 +𝑄)𝑟

𝑃𝑄

)
=

(
𝑟2 − (𝑃 +𝑄)𝑟

) ( 1
𝑃𝑄 + 𝑃 − 1 −𝑄

− 1
𝑃𝑄

)
> 0.

(2) Using the relation (𝑃 − 1)𝑝 ≤ 𝑄𝑞, it follows that 𝑝 < 𝑃
𝑃−1 𝑝 = 𝑝′ ≤ 𝑃𝑄

(𝑃−1)2 𝑞 < 𝑞 and that
𝑞 > 𝑄𝑞

𝑄+1 = 𝑞′ ≥ (𝑃−1) 𝑝
𝑄+1 ≥ 𝑝.

(3) First, observe that

𝑝 + 𝑞 − 𝑝′ − 𝑞′ = 𝑝 + 𝑞 − 𝑃

𝑃 − 1
𝑝 − 𝑄

𝑄 + 1
𝑞 =

𝑞

𝑄 + 1
− 𝑝

𝑃 − 1
> 0

because 𝑝 ≤ 𝑄𝑞/(𝑃 − 1) < 𝑞. Thus,

(𝑃′ − 𝑟)𝑝′ + (𝑄 ′ − 𝑟)𝑞′ − (𝑃 − 𝑟)𝑝 − (𝑄 − 𝑟)𝑞 = (𝑃′𝑝′ +𝑄 ′𝑞′ − 𝑃𝑝 −𝑄𝑞) + 𝑟 (𝑝 + 𝑞 − 𝑝′ − 𝑞′) > 0

if 𝑟 > 0. �

We now compare 𝑁𝑚,𝑟 (𝑅) and 𝑁𝑚,𝑟 (𝑅′).

Claim 3.7. We have 𝑁𝑚,𝑟 (𝑅) ≤ 𝑁𝑚,𝑟 (𝑅′) for any 0 ≤ 𝑟 ≤ 
𝑚/2�. Moreover, the inequality is strict
when 𝑟 > 0.

Proof of claim. By Claim 3.6(1),

𝑟! ·
(
𝑃

𝑟

)
𝑝𝑟 · 𝑟! ·

(
𝑄

𝑟

)
𝑞𝑟 = (𝑃𝑝)𝑟 (𝑄𝑞)𝑟

𝑟−1∏
𝑖=0

(
1 − 𝑖

𝑃

) (
1 − 𝑖

𝑄

)
≤ (𝑃′𝑝′)𝑟 (𝑄 ′𝑞′)𝑟

𝑟−1∏
𝑖=0

(
1 − 𝑖

𝑃′

) (
1 − 𝑖

𝑄 ′

)
= 𝑟! ·

(
𝑃′

𝑟

)
(𝑝′)𝑟 · 𝑟! ·

(
𝑄 ′

𝑟

)
(𝑞′)𝑟 ,

with equality only if 𝑟 = 0. It remains to show that∑
𝑥+𝑦=𝑚−2𝑟
𝑥,𝑦≥0

(
𝑃 − 𝑟

𝑥

)
𝑝𝑥

(
𝑄 − 𝑟

𝑦

)
𝑞𝑦 ≤

∑
𝑥+𝑦=𝑚−2𝑟
𝑥,𝑦≥0

(
𝑃′ − 𝑟

𝑥

)
(𝑝′)𝑥

(
𝑄 ′ − 𝑟

𝑦

)
(𝑞′)𝑦 . (3.3)

Set 𝑋 = (𝑝, 𝑝, . . . , 𝑝︸�������︷︷�������︸
𝑃−𝑟

, 𝑞, 𝑞, . . . , 𝑞︸�������︷︷�������︸
𝑄−𝑟

) and 𝑋 ′ = (𝑝′, 𝑝′, . . . , 𝑝′︸����������︷︷����������︸
𝑃−𝑟−1

, 𝑞′, 𝑞′, . . . , 𝑞′︸����������︷︷����������︸
𝑄−𝑟+1

). Letting 𝜎 be the (𝑚 − 2𝑟)th

elementary symmetric function
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𝜎(𝑦1, . . . , 𝑦𝑃+𝑄−2𝑟 ) :=
∑

1≤𝑖1< · · ·<𝑖𝑚−2𝑟 ≤𝑃+𝑄−2𝑟
𝑦𝑖1 · · · 𝑦𝑖𝑚−2𝑟 ,

we may rewrite (3.3) as 𝜎(𝑋) ≤ 𝜎(𝑋 ′).
Let Y be the (𝑃 + 𝑄 − 2𝑟)-tuple obtained via the following process. Set 𝑌 = 𝑋 initially and repeat

the following transformation, which will never decrease 𝜎(𝑌 ).

(∗) If there exist indices 𝑖, 𝑗 such that 𝑌𝑖 < 𝑝− and 𝑌 𝑗 > 𝑝+, set 𝜀 = min{𝑝− −𝑌𝑖 , 𝑌 𝑗 − 𝑝+}, and replace
𝑌𝑖 and 𝑌 𝑗 with 𝑌𝑖 + 𝜀 and 𝑌 𝑗 − 𝜀, respectively.

Each iteration increases the number of coordinates equal to 𝑝− or 𝑝+, so the process will terminate in
at most 𝑃 + 𝑄 − 2𝑟 steps. Moreover, recalling that 𝑝 ≤ 𝑝− ≤ 𝑝+ < 𝑞, we observe that the final tuple Y
either takes the form

𝑌 = (𝑌1, . . . , 𝑌𝑃−𝑟 , 𝑝+, . . . , 𝑝+) with 𝑌𝑖 ≤ 𝑝− for all 𝑖 ≤ 𝑃 − 𝑟, or (Case 1)
𝑌 = (𝑝−, . . . , 𝑝−, 𝑌𝑃−𝑟+1, . . . , 𝑌𝑃+𝑄−2𝑟 ) with 𝑌𝑖 ≥ 𝑝+ for all 𝑖 > 𝑃 − 𝑟. (Case 2)

Let 𝑋 ′′ = (𝑝−, . . . , 𝑝−, 𝑝+, . . . , 𝑝+) be the result of sorting 𝑋 ′ in increasing order, and let 𝑘 ∈ {𝑃−𝑟 −1,
𝑄 − 𝑟 + 1} be the number of occurrences of 𝑝−. In case 1, we have 𝑌𝑖 ≤ 𝑋 ′′

𝑖 for each i, implying 𝜎(𝑌 ) ≤
𝜎(𝑋 ′′). In case 2, let y be the average value of {𝑌𝑘+1, . . . , 𝑌𝑃+𝑄−2𝑟 } and let 𝑌 ′ = (𝑝−, . . . , 𝑝−, 𝑦, . . . , 𝑦)
be the result of replacing all but the first k terms of Y with y. By Lemma 3.2, 𝜎(𝑌 ) ≤ 𝜎(𝑌 ′). Moreover,
sum(𝑌 ′) = sum(𝑋) < sum(𝑋 ′′) by Claim 3.6(3). Because 𝑋 ′′ is obtained from 𝑌 ′ by replacing each y
with 𝑝+, it follows that 𝑦 < 𝑝+ and 𝜎(𝑌 ′) < 𝜎(𝑋 ′′). Thus, we have 𝜎(𝑋) ≤ 𝜎(𝑌 ) ≤ 𝜎(𝑋 ′′) = 𝜎(𝑋 ′)
in both cases, completing the proof that 𝑁𝑚,𝑟 (𝑅) ≤ 𝑁𝑚,𝑟 (𝑅′). �

Combining Lemma 3.4 and Claim 3.7, we have that

𝑑𝐾𝑚 (𝑅) =

𝑚/2�∑
𝑟=0

𝑐𝑟𝑁𝑚,𝑟 (𝑅) <

𝑚/2�∑
𝑟=0

𝑐𝑟𝑁𝑚,𝑟 (𝑅′) = 𝑑𝐾𝑚 (𝑅′). �

Lastly, we turn our attention to (A4). If 𝑃 > 𝑄, this is an immediate consequence of Lemma 3.3; it
remains to handle the 𝑃 = 𝑄 case.

Lemma 3.8. Let P be a positive integer and 𝑝, 𝑞 ∈ (0, 1) real numbers such that 𝑝𝑃 + 𝑞𝑃 = 1.
If 𝑝 ≠ 𝑞, then there exists a weighted graph 𝑅′ with 2𝑃 vertices such that 𝑅′

> 1
2

is bipartite and
𝑑𝐾𝑚 (𝑅(𝑝, 𝑃; 𝑞, 𝑃)) < 𝑑𝐾𝑚 (𝑅′) for all 2 ≤ 𝑚 ≤ 2𝑃.

Proof. Set 𝑅 = 𝑅(𝑝, 𝑃; 𝑞, 𝑃) and let u and v be vertices in R with weights p and q, respectively. Let 𝑅′

be the graph obtained from R by setting the weights of both u and v to 𝑝+𝑞
2 = 1

2𝑃 .
Observe that 𝑑𝐾𝑚 (𝑅 − {𝑢, 𝑣}) = 𝑑𝐾𝑚 (𝑅′ − {𝑢, 𝑣}). Set

𝑓 (𝑥, 𝑦) = 𝑚!
(
𝑃 − 1
𝑥

) (
𝑃 − 1
𝑦

) (
1
2

) (𝑥2)+(𝑦2)
.

We have that

𝑑𝐾𝑚 ((𝑅′ − 𝑣), 𝑢) + 𝑑𝐾𝑚 ((𝑅′ − 𝑢), 𝑣) − 𝑑𝐾𝑚 ((𝑅 − 𝑣), 𝑢) − 𝑑𝐾𝑚 ((𝑅 − 𝑢), 𝑣)

=
∑

𝑥+𝑦=𝑚−1
𝑓 (𝑥, 𝑦)𝑝𝑥𝑞𝑦

[
𝑝 + 𝑞

2

((
1
2

) 𝑥
+

(
1
2

) 𝑦)
−

(
𝑝

(
1
2

) 𝑥
+ 𝑞

(
1
2

) 𝑦)]
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=
∑

𝑥+𝑦=𝑚−1
𝑓 (𝑥, 𝑦)𝑝𝑥𝑞𝑦

( 𝑞 − 𝑝

2

) ((1
2

) 𝑥
−

(
1
2

) 𝑦)
=

∑
𝑥+𝑦=𝑚−1,

𝑥<𝑦

𝑓 (𝑥, 𝑦)𝑝𝑥𝑞𝑥 (𝑞𝑦−𝑥 − 𝑝𝑦−𝑥)
( 𝑞 − 𝑝

2

) ((1
2

) 𝑥
−

(
1
2

) 𝑦)
> 0

because 𝑞 − 𝑝 and 𝑞𝑦−𝑥 − 𝑝𝑦−𝑥 both have the same sign. Additionally,

𝑑𝐾𝑚 (𝑅′, {𝑢, 𝑣}) − 𝑑𝐾𝑚 (𝑅, {𝑢, 𝑣}) =
∑

𝑥+𝑦=𝑚−2
𝑓 (𝑥, 𝑦)𝑝𝑥𝑞𝑦

(
1
2

) 𝑥+𝑦 [( 𝑝 + 𝑞

2

)2
− 𝑝𝑞

]
> 0.

Combining the preceding inequalities, we conclude that

𝑑𝐾𝑚 (𝑅) = 𝑑𝐾𝑚 (𝑅 − {𝑢, 𝑣}) + 𝑑𝐾𝑚 ((𝑅 − 𝑣), 𝑢) + 𝑑𝐾𝑚 ((𝑅 − 𝑢), 𝑣) + 𝑑𝐾𝑚 (𝑅, {𝑢, 𝑣})
< 𝑑𝐾𝑚 (𝑅′ − {𝑢, 𝑣}) + 𝑑𝐾𝑚 ((𝑅′ − 𝑣), 𝑢) + 𝑑𝐾𝑚 ((𝑅′ − 𝑢), 𝑣) + 𝑑𝐾𝑚 (𝑅′, {𝑢, 𝑣}) = 𝑑𝐾𝑚 (𝑅′)

for any integer 2 ≤ 𝑚 ≤ 2𝑃. �

3.4. Proof of (A3) and (A4) for all a

Using the results of the prior subsection, we prove (A3) and (A4) for all a. Suppose R is an extremal
K𝑡 -free weighted graph satisfying (A1) and (A2) with parts 𝐵1, . . . , 𝐵𝑎. Given indices 𝑖 ≠ 𝑗 , we may
regard 𝑅[𝐵𝑖 ∪ 𝐵 𝑗 ] as a scaled-down version of some weighted graph 𝑅0 = 𝑅(𝑝, |𝐵𝑖 |; 𝑞, |𝐵 𝑗 |), where
the weights of vertices in 𝐵𝑖 and 𝐵 𝑗 are 𝛼𝑝 and 𝛼𝑞 respectively, for some 𝛼 ≤ 1.

Without loss of generality, suppose |𝐵𝑖 | ≥ |𝐵 𝑗 |. We claim that |𝐵𝑖 | ≤ |𝐵 𝑗 | + 1 and that 𝑝 ≤ 𝑞.
Indeed, if |𝐵𝑖 | ≥ |𝐵 𝑗 | + 2 then Lemma 3.3 or Lemma 3.5 yields a weighted graph 𝑅′

0 on |𝐵𝑖 | + |𝐵 𝑗 |
vertices such that (𝑅′

0)> 1
2

is bipartite and 𝑑𝐾𝑚 (𝑅′
0) > 𝑑𝐾𝑚 (𝑅0) for all 2 ≤ 𝑚 ≤ |𝐵𝑖 | + |𝐵 𝑗 |. Note that

𝑑𝐾𝑚 (𝑅0) = 𝑑𝐾𝑚 (𝑅′
0) for all other m: this value is 1 if 𝑚 = 1 and 0 if 𝑚 > |𝐵𝑖 | + |𝐵 𝑗 |. If 𝑝 > 𝑞, then

Lemma 3.3 (if |𝐵𝑖 | > |𝐵 𝑗 |) or Lemma 3.8 (if |𝐵𝑖 | = |𝐵 𝑗 |) provides a weighted graph 𝑅′
0 with the same

properties.
Let 𝑅′ be the weighted graph obtained from R by replacing 𝑅[𝐵𝑖 ∪ 𝐵 𝑗 ] with a scaled-down copy of

𝑅′
0. That is, the vertex weights of 𝑅′ [𝐵𝑖 ∪ 𝐵 𝑗 ] are those of 𝑅′

0 multiplied by 𝛼, and the edge weights
of 𝑅′ [𝐵𝑖 ∪ 𝐵 𝑗 ] are exactly those of 𝑅′

0. We verify that 𝑅′ is K𝑡 -free. Suppose (𝑆1, 𝑆2) is a weighted
clique in 𝑅′. Because

(
𝑅′

0
)
>1/2 is bipartite, 𝑆2 contains at most two vertices of 𝐵𝑖 ∪ 𝐵 𝑗 ; additionally, 𝑆2

contains at most one vertex from each other part 𝐵𝑘 . Hence |𝑆1 | + |𝑆2 | ≤ |𝑉 (𝑅) | + 𝑎 = 𝑏 + 𝑎 = 𝑡 − 1, so
𝑅′ is K𝑡 -free. However, because

𝑑𝐾𝑚 (𝑅[𝐵𝑖 ∪ 𝐵 𝑗 ]) = 𝛼𝑚𝑑𝐾𝑚 (𝑅0) and 𝑑𝐾𝑚 (𝑅′ [𝐵𝑖 ∪ 𝐵 𝑗 ]) = 𝛼𝑚𝑑𝐾𝑚 (𝑅′
0),

we have that

𝑑𝐾𝑠 (𝑅) =
𝑠∑

𝑚=0

(
𝑠

𝑚

)
𝛼𝑚𝑑𝐾𝑚 (𝑅0) · 𝑑𝐾𝑠−𝑚 (𝑅 − (𝐵𝑖 ∪ 𝐵 𝑗 ))

<
𝑠∑

𝑚=0

(
𝑠

𝑚

)
𝛼𝑚𝑑𝐾𝑚 (𝑅′

0) · 𝑑𝐾𝑠−𝑚 (𝑅 − (𝐵𝑖 ∪ 𝐵 𝑗 )) = 𝑑𝐾𝑠 (𝑅′).

Thus, if the parts (𝐵𝑖 , 𝐵 𝑗 ) do not satisfy (A3) or (A4) then 𝑑𝐾𝑠 (𝑅) < 𝑑𝐾𝑠 (𝑅′), contradicting the
extremality of R.
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3.5. Proof of (A5)

Suppose that R is an extremal K𝑡 -free weighted graph satisfying (A1) and thus (A2)–(A4) with parts
𝐵1, . . . , 𝐵𝑎. Without loss of generality, suppose 𝐵1 has maximal cardinality among all parts 𝐵𝑖 . We
assume that 𝑟 = |𝐵1 | satisfies 𝑟 ≥ 𝑠 + 1 (if 𝑎 = 1) or 𝑟 ≥ 𝑠 (if 𝑎 ≥ 2) and derive a contradiction.

Let p be the weight of each vertex in 𝐵1; by (A4), it follows that all vertices of R have weight at least
p. Let 𝑅′ be the graph obtained from R by replacing two vertices 𝑢, 𝑣 ∈ 𝐵1 with a new vertex 𝑣′ of
weight 2𝑝 and setting 𝑤(𝑣′, 𝑢′) = 1 for any 𝑢′ ∈ 𝑉 (𝑅′) \ {𝑣′}. We observe that 𝑅′ is K𝑡 -free. Indeed, if
(𝑆1, 𝑆2) is a weighted clique configuration in 𝑅′ then 𝑆2 may contain at most one vertex from each of
the sets {𝑣′}, 𝐵1 − {𝑢, 𝑣}, 𝐵2, . . . , 𝐵𝑎. It follows that |𝑆1 | + |𝑆2 | ≤ |𝑉 (𝑅′) | + (𝑎 + 1) = |𝑉 (𝑅) | + 𝑎, which
is 𝑡 − 1 by (A2). To conclude the proof of (A5), we show that 𝑑𝐾𝑠 (𝑅) < 𝑑𝐾𝑠 (𝑅′) if R does not satisfy
(A5), contradicting the extremality of R.

Set 𝐵′ = (𝐵1 − {𝑢, 𝑣}) ∪ {𝑣′} ⊆ 𝑉 (𝑅′) and for each 0 ≤ 𝑚 ≤ 𝑠 set

𝑓𝑚 =
𝑑𝐾𝑚 (𝑅[𝐵1])

𝑚!
, 𝑔𝑚 =

𝑑𝐾𝑚 (𝑅′ [𝐵′])
𝑚!

, and ℎ𝑚 =
𝑑𝐾𝑚 (𝑅 − 𝐵1)

𝑚!
=
𝑑𝐾𝑚 (𝑅′ − 𝐵′)

𝑚!
.

Recalling that |𝐵1 | = 𝑟 ≥ 𝑠 ≥ 3, we have

𝑓𝑚 =

(
𝑟

𝑚

)
𝑝𝑚

(
1
2

) (𝑚2 )
, and

𝑔𝑚 =

(
𝑟 − 2
𝑚

)
𝑝𝑚

(
1
2

) (𝑚2 )
+

(
𝑟 − 2
𝑚 − 1

)
(2𝑝)𝑝𝑚−1

(
1
2

) (𝑚−1
2 )

=

[(
𝑟 − 2
𝑚

)
+ 2𝑚

(
𝑟 − 2
𝑚 − 1

)]
𝑝𝑚

(
1
2

) (𝑚2 )
.

For any 1 ≤ 𝑚 ≤ 𝑟 − 1, observe that(
𝑟 − 2
𝑚

)
+ 2𝑚

(
𝑟 − 2
𝑚 − 1

)
−

(
𝑟

𝑚

)
=

(
𝑟 − 1
𝑚

)
+ (2𝑚 − 1)

(
𝑟 − 2
𝑚 − 1

)
−

((
𝑟 − 1
𝑚

)
+

(
𝑟 − 1
𝑚 − 1

))
=

(
2𝑚 − 1 − 𝑟 − 1

𝑟 − 𝑚

) (
𝑟 − 2
𝑚 − 1

)
≥ (2𝑚 − 1 − 𝑚)

(
𝑟 − 2
𝑚 − 1

)
≥ 0,

with equality if and only if 𝑚 = 1. Recalling that 𝑓0 = 𝑔0 = 1, we conclude that 𝑓𝑚 ≤ 𝑔𝑚 for all
0 ≤ 𝑚 ≤ 𝑟 − 1 with equality if and only if 𝑚 < 2. If 𝑟 ≥ 𝑠 + 1, then this inequality holds for all
2 ≤ 𝑚 ≤ 𝑠 ≤ 𝑟 − 1, and we conclude that

𝑑𝐾𝑠 (𝑅) =
𝑠∑

𝑚=0

(
𝑠

𝑚

)
𝑑𝐾𝑚 (𝑅[𝐵1])𝑑𝐾𝑠−𝑚 (𝑅 − 𝐵1) =

𝑠∑
𝑚=0

𝑠! 𝑓𝑚ℎ𝑠−𝑚

<
𝑠∑

𝑚=0
𝑠!𝑔𝑚ℎ𝑠−𝑚 =

𝑠∑
𝑚=0

(
𝑠

𝑚

)
𝑑𝐾𝑚 (𝑅′ [𝐵′])𝑑𝐾𝑠−𝑚 (𝑅′ − 𝐵′) = 𝑑𝐾𝑠 (𝑅′).

Now, suppose 𝑟 = 𝑠 and 𝑎 ≥ 2. We observe that ℎ1 =
∑

𝑣 ∈𝑉 (𝑅)−𝐵1 𝑤(𝑣) ≥ |𝑉 (𝑅) − 𝐵1 |𝑝 ≥ 𝑝, so

𝑓𝑠−1ℎ1 + 𝑓𝑠ℎ0 = 𝑠𝑝𝑠−1
(

1
2

) (𝑠−1
2 )

ℎ1 + 𝑝𝑠
(

1
2

) (𝑠2)
≤

(
𝑠 ·

(
1
2

)𝑠−2
+

(
1
2

)2𝑠−3
)
𝑝𝑠−1

(
1
2

) (𝑠−2
2 )

ℎ1

< (2𝑝)𝑝𝑠−2
(

1
2

) (𝑠−2
2 )

ℎ1 = 𝑔𝑠−1ℎ1 ≤ 𝑔𝑠−1ℎ1 + 𝑔𝑠ℎ0.
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Once again, we conclude

𝑑𝐾𝑠 (𝑅) =
𝑠∑

𝑚=0
𝑠! 𝑓𝑚ℎ𝑠−𝑚 <

𝑠∑
𝑚=0

𝑠!𝑔𝑚ℎ𝑠−𝑚 = 𝑑𝐾𝑠 (𝑅′).

Thus, if R does not satisfy (A5) then 𝑑𝐾𝑠 (𝑅′) > 𝑑𝐾𝑠 (𝑅), contradicting the extremality of R. This
completes the proof of Theorem 3.1.

4. Eventual periodicity and counterexamples to Conjecture 1.2

In this section, we prove Theorem 1.3, providing conditions under which Conjecture 1.2 does and does
not hold. Applying Theorem 2.4, we may reduce this to a problem about weighted graphs.

Say a weighted graph R admits a (𝑏, 𝑎)-partition if it has b vertices and satisfies the five conditions
(A1)–(A5) of Theorem 3.1, with a being the number of parts in (A2). Theorem 1.4 shows that 𝜚𝑠 (𝐾𝑡 ) is
the maximum 𝐾𝑠-density of a weighted graph R admitting a (𝑏, 𝑎)-partition with 𝑎 = 𝑡 − 1− 𝑏 parts for
some 𝑏 < 𝑡; such R are inherently K𝑡 -free. From (A2), we have 𝑏 ≥ 𝑠; additionally, because R cannot
have fewer vertices than parts, we have 𝑏 ≥ 
𝑡/2�. Conjecture 1.2 hypothesizes that the optimal density
is attained when b matches one of these lower bounds.

Conjecture 4.1 (Conjecture 1.2, rephrased in terms of weighted graphs). Fix integers 𝑠, 𝑡 with 3 ≤ 𝑠 ≤
𝑡 −2. The maximum 𝐾𝑠-density of a weighted graph admitting a (𝑏, 𝑡 −1− 𝑏)-partition is attained when
𝑏 = max{𝑠, 
𝑡/2�}.

For 𝑡 ≥ 2𝑠, Conjecture 4.1 hypothesizes that the extremal K𝑡 -free weighted graphs follow an
alternating pattern as depicted in Table 1. For odd t, the conjectural extremal construction is the complete
balanced weighted graph 𝐾𝑤


𝑡/2� , which has 𝑏 = 
𝑡/2� vertices with weight 1/𝑏 each and has all
(𝑏
2
)

edge weights equal to 1. For even t, the conjectural extremal construction has 𝑏 = 𝑡/2 vertices divided
into one part of size 2 and 𝑏 − 2 parts of size 1. That is, all edges have weight 1 except for one edge of
weight 1/2 within the part of size 2.

The proof of Theorem 1.3 is divided into three subsections. In Section 4.1, we show that Conjecture 4.1
holds if 𝑡 > 𝑠2(𝑠 − 1)/2 + 𝑠 + 1, implying that the extremal constructions do eventually follow the
aforementioned alternating pattern. In Section 4.2, we show that Conjecture 4.1 holds if 𝑠 = 3, 4 or if
𝑡 = 𝑠 + 2. Lastly, in Section 4.3, we provide counterexamples to Conjecture 4.1 for 𝑠 = 5 as well as for
any sufficiently large s.

4.1. Eventual Periodicity

We first show that Conjecture 4.1 holds when t is sufficiently large as a function of s.

Lemma 4.2. Fix integers 𝑠, 𝑡 with 3 ≤ 𝑠 ≤ 𝑡 − 2. Suppose R is a weighted graph admitting a (𝑏, 𝑎)-
partition into 𝐵1 ∪ · · · ∪ 𝐵𝑎 for some 𝑎, 𝑏 satisfying 𝑎 + 𝑏 = 𝑡 − 1.

(1) Suppose t is odd with 𝑡 > 𝑠2(𝑠 − 1)/2. Set 𝑟 = (𝑡 − 1)/2 and let 𝐾𝑤
𝑟 be the complete balanced

weighted graph on r vertices. We have 𝑑𝐾𝑠 (𝑅) ≤ 𝑑𝐾𝑠 (𝐾𝑤
𝑟 ) with equality if and only if 𝑅 = 𝐾𝑤

𝑟 .
(2) Suppose t is even with 𝑡 > 𝑠2(𝑠 − 1)/2 + 𝑠. If 𝑑𝐾𝑠 (𝑅) = 𝜋𝑠 (K𝑡 ) then 𝑎 − 1 of the parts 𝐵𝑖 must have

cardinality 1, and the last part must have cardinality 2.

Proof. We first prove (1). Suppose 𝑡 > 𝑠2(𝑠 − 1)/2 is odd. Let 𝑅0 be the weighted graph obtained from
R by changing all edges weights of 1/2 into 0 and let 𝑅1 be the weighted graph obtained from R by
changing all edge weights of 1/2 into 1. We claim that

𝑑𝐾𝑠 (𝑅) ≤
𝑑𝐾𝑠 (𝑅0) + 𝑑𝐾𝑠 (𝑅1)

2
.
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Indeed, if vertices 𝑣1, . . . , 𝑣𝑠 ∈ 𝑉 (𝑅) induce 𝑚 ≥ 1 edges of weight 1/2 in R, then the product of their
edge weights is

(
1
2

)𝑚
≤ 1

2 in R and is 1 in 𝑅1.
We have 𝑑𝐾𝑠 (𝐾𝑤

𝑟 ) = 𝑠!
(𝑟
𝑠

) 1
𝑟 𝑠 . Write 𝑤(𝐵𝑖) =

∑
𝑣 ∈𝐵𝑖

𝑤(𝑣) for the total weight of vertices in 𝐵𝑖 . By
Lemma 3.2, we have

𝑑𝐾𝑠 (𝑅0) = 𝑠!
∑

1≤𝑖1< · · ·<𝑖𝑠≤𝑎
𝑤(𝐵𝑖1) · · ·𝑤(𝐵𝑖𝑠 ) ≤ 𝑠!

(
𝑎

𝑠

)
1
𝑎𝑠

, and

𝑑𝐾𝑠 (𝑅1) =
∑

𝑣1 ,...,𝑣𝑠 ∈𝑉 (𝑅)
distinct

𝑤(𝑣1) · · ·𝑤(𝑣𝑠) ≤ 𝑠!
(
𝑏

𝑠

)
1
𝑏𝑠

.

Thus, setting 𝑓 (𝑥) = 𝑠!
(𝑥
𝑠

)
𝑥−𝑠 = (1 − 1

𝑥 ) · · · (1 − 𝑠−1
𝑥 ), it suffices to show that 𝑓 (𝑎)+ 𝑓 (𝑏)

2 ≤ 𝑓 ( 𝑎+𝑏2 ) =
𝑑𝐾𝑠 (𝐾𝑤

𝑟 ).
First, observe that

𝑓 ′(𝑥) =
𝑠−1∑
𝑖=1

𝑖

𝑥2

∏
1≤ 𝑗<𝑠,
𝑗≠𝑖

(
1 − 𝑗

𝑥

)
and that

𝑓 ′′(𝑥) =
𝑠−1∑
𝑖=1

(
− 2𝑖
𝑥3

∏
1≤ 𝑗<𝑠,
𝑗≠𝑖

(
1 − 𝑗

𝑥

)
+

∑
1≤ 𝑗<𝑠,
𝑗≠𝑖

𝑖 𝑗

𝑥4 ·
∏

1≤𝑘<𝑠,
𝑘≠𝑖, 𝑗

(
1 − 𝑘

𝑥

))

=
𝑠−1∑
𝑖=1

(
− 2𝑖
𝑥3 +

∑
1≤ 𝑗<𝑠,
𝑗≠𝑖

𝑖 𝑗

𝑥4

(
𝑥

𝑥 − 𝑗

)) ( ∏
1≤ 𝑗<𝑠,
𝑗≠𝑖

(
1 − 𝑗

𝑥

))

=
𝑠−1∑
𝑖=1

2𝑖
𝑥3

(
− 1 +

∑
1≤ 𝑗<𝑠,
𝑗≠𝑖

𝑗

2(𝑥 − 𝑗)

) ( ∏
1≤ 𝑗<𝑠,
𝑗≠𝑖

(
1 − 𝑗

𝑥

))
.

It follows that 𝑓 ′′(𝑥) < 0 when 𝑥 ≥
(𝑠
2
)
: for 𝑠 = 3, this can be checked manually, and for 𝑠 ≥ 4, this

follows from the inequality

𝑠−1∑
𝑗=1

𝑗

2(𝑥 − 𝑗) ≤
𝑠−1∑
𝑗=1

𝑗

𝑥
=

(
𝑠

2

)
1
𝑥
≤ 1.

Hence, if 𝑎 ≥
(𝑠
2
)
, Jensen’s inequality implies

𝑑𝐾𝑠 (𝑅) ≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
≤ 𝑓

(
𝑎 + 𝑏

2

)
= 𝑑𝐾𝑠 (𝐾𝑤

𝑟 )

with equality if and only if 𝑎 = 𝑏 = 𝑟 , (i.e., 𝑅 = 𝐾𝑤
𝑟 ). To see that 𝑎 ≥

(𝑠
2
)
, note that (A5) implies

𝑏 ≤ (𝑠 − 1)𝑎, yielding 𝑠𝑎 ≥ 𝑎 + 𝑏 = 𝑡 − 1 ≥ 𝑠
(𝑠
2
)

as desired.
We now prove (2) using (1). Suppose 𝑡 > 𝑠2(𝑠−1)/2+𝑠 is even. Because 𝑡−1 = 𝑎+𝑏 =

∑𝑎
𝑖=1(|𝐵𝑖 | +1)

is odd, there exists some k such that |𝐵𝑘 | + 1 is odd. Scaling 𝑅 − 𝐵𝑘 up by a factor of (1 − 𝑤(𝐵𝑘 ))−1

yields a weighted graph 𝑅0 admitting a (𝑏′, 𝑎′)-partition, where 𝑎′ = 𝑎 − 1 and 𝑏′ = 𝑏 − |𝐵𝑘 |.
Set 𝑡 ′ = 𝑎′ + 𝑏′ + 1 = 𝑡 − |𝐵𝑘 | − 1, which is odd, and set 𝑟 = (𝑡 ′ − 1)/2. Let 𝑅′ be the weighted

graph obtained from R by replacing 𝑉 (𝑅) − 𝐵𝑘 with a set 𝐵′ of r vertices of weight (1 − 𝑤(𝐵𝑘 ))/𝑟
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each, and setting 𝑤(𝑣′, 𝑣) = 1 for each 𝑣′ ∈ 𝐵′ and 𝑣 ∈ 𝑉 (𝑅′) \ {𝑣}. That is, 𝑅′[𝐵′] is a copy
of 𝐾𝑤

𝑟 scaled down by a factor of 1 − 𝑤(𝐵𝑘 ). We note that 𝑅′ is K𝑡 -free. Indeed, if (𝑆1, 𝑆2) is
a weighted clique in 𝑅′, then 𝑆2 contains at most one vertex from 𝐵𝑘 , so |𝑆2 | ≤ 𝑟 + 1. Hence,
|𝑆1 | + |𝑆2 | ≤ |𝑉 (𝑅′) | + 𝑟 + 1 = |𝐵𝑘 | + 2𝑟 + 1 = 𝑡 − 1.

Observe that |𝐵𝑘 | ≤ 𝑠 − 1 by (A5), so 𝑡 ′ > 𝑠2(𝑠 − 1)/2. By part (1), we have

𝑑𝐾𝑚 (𝑅 − 𝐵𝑘 ) = (1 − 𝑤(𝐵𝑘 ))𝑚𝑑𝐾𝑚 (𝑅0) ≤ (1 − 𝑤(𝐵𝑘 ))𝑚𝑑𝐾𝑚 (𝐾𝑤
𝑟 ) = 𝑑𝐾𝑚 (𝑅′[𝐵′])

for all 𝑚 ≤ 𝑠. Equality holds if and only if 𝑅0 = 𝐾𝑤
𝑟 , (i.e., if and only if |𝐵𝑖 | = 1 for each 𝑖 ≠ 𝑘). Hence,

if |𝐵 𝑗 | > 1 for some 𝑗 ≠ 𝑘 , we have

𝑑𝐾𝑠 (𝑅) =
𝑠∑

𝑚=0

(
𝑠

𝑚

)
𝑑𝐾𝑚 (𝑅 − 𝐵𝑘 )𝑑𝐾𝑠−𝑚𝑅[𝐵𝑘 ] <

𝑠∑
𝑚=0

(
𝑠

𝑚

)
𝑑𝐾𝑚 (𝑅′ [𝐵′])𝑑𝐾𝑠−𝑚 (𝑅′ [𝐵𝑘 ]) = 𝑑𝐾𝑠 (𝑅′),

contradicting the assumption that 𝑑𝐾𝑠 (𝑅) = 𝜋𝑠 (K𝑡 ). To complete the proof of (2), we recall that |𝐵𝑘 | is
even and |𝐵𝑘 | ≤ |𝐵𝑖 | + 1 for any 𝑖 ≠ 𝑘 by (A3). Hence, if |𝐵𝑖 | = 1 for all 𝑖 ≠ 𝑘 then |𝐵𝑘 | = 2. �

4.2. The Remaining Positive Results

We now prove Conjecture 4.1 in the remaining cases described in Theorem 1.3. We remark that the
cases 𝑡 = 𝑠 + 2 and 𝑠 = 3 were proven in [6]. However, the proofs of these cases are very straightforward
when framed in terms of weighted graphs, so we present them for completeness.
Lemma 4.3. Fix 𝑠 ≥ 3 and let 𝑡 = 𝑠 + 2. If R is a K𝑡 -free weighted graph R with 𝑑𝐾𝑠 (𝑅) = 𝜋𝑠 (K𝑡 ) of
minimum cardinality, it admits an (𝑠, 1)-partition.

Proof. From Theorem 3.1(A2), R admits a (𝑏, 𝑎) partition for parameters 𝑎 ≥ 1 and 𝑏 ≥ 𝑠 satisfying
𝑎 + 𝑏 = 𝑡 − 1 = 𝑠 + 1. It is immediate that 𝑎 = 1 and 𝑏 = 𝑠. �

In the next two lemmas, we prove Conjecture 4.1 for 𝑡 ≥ 𝑠 + 3 and 𝑠 = 3, 4.
Lemma 4.4. Set 𝑠 = 3 and fix 𝑡 ≥ 𝑠 + 3. Suppose R is a K𝑡 -free weighted graph with 𝑑𝐾𝑠 (𝑅) = 𝜋𝑠 (K𝑡 )
of minimum cardinality. Then R admits a (𝑏, 𝑎)-partition with 𝑏 = max{𝑠, 
𝑡/2�}.
Proof. By Theorem 3.1, R admits a (𝑏, 𝑎)-partition 𝐵1 ∪ · · · ∪ 𝐵𝑎 such that 𝑎 + 𝑏 = 𝑡 − 1. Moreover,
combining (A5) with the inequality 𝑡 ≥ 6, we conclude 𝑎 ≥ 2 and |𝐵𝑖 | ≤ 2 for each i.

To show that 𝑏 = 
𝑡/2� = max{𝑠, 
𝑡/2�} when 𝑡 ≥ 6, it suffices to show that all but at most one of
the parts 𝐵𝑖 have cardinality 1. Equivalently, we must show that R does not contain disjoint edges 𝑢𝑣
and 𝑥𝑦 with 𝑤(𝑢, 𝑣) = 𝑤(𝑥, 𝑦) = 1/2.

Suppose the contrary. We may assume without loss of generality that 𝑑𝐾3 (𝑅, {𝑥, 𝑦}) ≥ 𝑑𝐾3 (𝑅, {𝑢, 𝑣}).
Let 𝑅′ be the graph obtained from R by setting 𝑤(𝑢, 𝑣) = 0 and 𝑤(𝑥, 𝑦) = 1. We observe that
𝑑𝐾3 (𝑅′, {𝑥, 𝑦}) = 2𝑑𝐾3 (𝑅, {𝑥, 𝑦}) and 𝑑𝐾3 (𝑅′, {𝑢, 𝑣}) = 0, so

𝑑𝐾3 (𝑅′) − 𝑑𝐾3 (𝑅) = 𝑑𝐾3 (𝑅′, {𝑥, 𝑦}) + 𝑑𝐾3 (𝑅′, {𝑢, 𝑣}) − 𝑑𝐾3 (𝑅, {𝑥, 𝑦}) − 𝑑𝐾3 (𝑅, {𝑢, 𝑣})
= 𝑑𝐾3 (𝑅, {𝑥, 𝑦}) − 𝑑𝐾3 (𝑅, {𝑢, 𝑣}) ≥ 0.

Moreover, 𝑅′ is K𝑡 -free, as the clique numbers of 𝑅′
> 1

2
and 𝑅′

>0 satisfy

𝜔(𝑅′
> 1

2
) + 𝜔(𝑅′

>0) ≤
(
𝜔(𝑅> 1

2
) + 1

)
+ (|𝑉 (𝑅) | − 1) = (𝑎 + 1) + (𝑏 − 1) < 𝑡.

It follows that 𝑅′ is also an extremal K𝑡 -free weighted graph of minimal cardinality. However, this
contradicts Theorem 3.1(A1), because 𝑅′ contains an edge of weight 0. We conclude that R cannot
contain disjoint edges 𝑢𝑣 and 𝑥𝑦 of weight 1/2. This implies that all but at most one of the parts 𝐵𝑖 have
cardinality 1, which is equivalent to showing that 𝑏 = 
𝑡/2�. �
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Figure 1. The optimizations in the proof of 𝑠 = 4. Red edges have weight 1/2 and black edges have
weight 1.

Lemma 4.5. Set 𝑠 = 4 and fix 𝑡 ≥ 𝑠 + 3. Suppose R is a K𝑡 -free weighted graph with 𝑑𝐾𝑠 (𝑅) = 𝜋𝑠 (K𝑡 )
of minimum cardinality. Then R admits a (𝑏, 𝑎)-partition with 𝑏 = max{𝑠, 
𝑡/2�}.

Proof. By Theorem 3.1, R admits a (𝑏, 𝑎)-partition 𝐵1 ∪ · · · ∪ 𝐵𝑎 such that 𝑎 + 𝑏 = 𝑡 − 1. Combining
(A5) with the inequality 𝑡 ≥ 7, we conclude that 𝑎 ≥ 2 and that each part has cardinality at most 3.
If 𝑡 = 7, then we must have 𝑎 = 2 and 𝑏 = 4, because (A2) implies 𝑏 ≥ 4. Henceforth, we assume
𝑡 ≥ 8 and show that 𝑏 = 
𝑡/2�. Equivalently, we must show that at most one of the parts 𝐵1, . . . , 𝐵𝑎 has
cardinality greater than 1.

Order the parts such that 3 ≥ |𝐵1 | ≥ |𝐵2 | ≥ · · · ≥ |𝐵𝑎 | ≥ |𝐵1 |−1; the last inequality is a consequence
of (A3). Suppose for the sake of contradiction that |𝐵2 | ≥ 2. We split our proof into three cases, based
on |𝐵1 | and |𝐵2 |. In each case, we derive a contradiction by constructing a K𝑡 -free weighted graph with
larger 𝐾𝑠-density than R; these constructions are given in Figure 1.

Case 1: |𝐵1 | = |𝐵2 | = 3. In this case, the six vertices in 𝐵1 and 𝐵2 have the same weight p. Let 𝑅1 be
the weighted graph obtained from R by replacing 𝐵1 ∪ 𝐵2 with a set 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4} of four vertices
with weight 3𝑝/2 each such that 𝑤(𝑐𝑖 , 𝑐 𝑗 ) = 𝑤(𝑐𝑖 , 𝑣) = 1 for any 𝑖, 𝑗 ∈ [4] and 𝑣 ∈ 𝐵3 ∪ · · · ∪ 𝐵𝑎. We
note that (𝑅1)> 1

2
and (𝑅1)>0 have clique numbers satisfying

𝜔((𝑅1)> 1
2
) + 𝜔((𝑅1)>0) ≤

(
𝜔(𝑅> 1

2
) + 2

)
+ (|𝑉 (𝑅) | − 2) = (𝑎 + 2) + (𝑏 − 2) < 𝑡,

so 𝑅1 is K𝑡 -free. Additionally, one computes that

𝑑𝐾0 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑑𝐾0 (𝑅1 [𝐶]) = 1, 𝑑𝐾1 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑑𝐾1 (𝑅1 [𝐶]) = 6𝑝,

𝑑𝐾2 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑝2
(
18 + 12 · 1

2

)
<

(
3𝑝
2

)2
· 12 = 𝑑𝐾2 (𝑅1 [𝐶]),

𝑑𝐾3 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑝3

(
18 · 1

2
+ 2 ·

(
1
2

)3
)
· 3! <

(
3𝑝
2

)3
· 24 = 𝑑𝐾3 (𝑅1 [𝐶]),

𝑑𝐾4 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑝4

(
9 ·

(
1
2

)2
+ 6 ·

(
1
2

)3
)
· 4! <

(
3𝑝
2

)4
· 24 = 𝑑𝐾4 (𝑅1 [𝐶]).

We conclude that

𝑑𝐾4 (𝑅1) − 𝑑𝐾4 (𝑅) =
4∑

𝑚=0

(
4
𝑚

) (
𝑑𝐾𝑚 (𝑅1 [𝐶]) − 𝑑𝐾𝑚 (𝑅[𝐵1 ∪ 𝐵2])

)
𝑑𝐾4−𝑚 (𝑅 − (𝐵1 ∪ 𝐵2)) > 0,

contradicting the extremality of R.
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Case 2: |𝐵1 | = 3 and |𝐵2 | = 2. Let p and q be the weights of vertices in 𝐵1 and 𝐵2 respectively;
by (A4), we have 𝑝 ≤ 𝑞. Let 𝑅2 be the weighted graph obtained from R by replacing 𝐵1 with a set
𝐶 = {𝑐1, 𝑐2} of two vertices with weight 3𝑝/2 each such that 𝑤(𝑐1, 𝑐2) = 𝑤(𝑐𝑖 , 𝑣) = 1 for any 𝑖 ∈ [2]
and 𝑣 ∈ 𝐵2 ∪ · · · ∪ 𝐵𝑎. We note that (𝑅2)> 1

2
and (𝑅2)>0 have clique numbers satisfying

𝜔((𝑅2)> 1
2
) + 𝜔((𝑅2)>0) ≤

(
𝜔(𝑅> 1

2
) + 1

)
+ (|𝑉 (𝑅) | − 1) = (𝑎 + 1) + (𝑏 − 1) < 𝑡,

so 𝑅2 is K𝑡 -free. One computes that

𝑑𝐾0 (𝑅[𝐵1]) = 𝑑𝐾0 (𝑅2 [𝐶]) = 𝑑𝐾0 (𝑅[𝐵2]) = 1,
𝑑𝐾1 (𝑅[𝐵1]) = 𝑑𝐾1 (𝑅2 [𝐶]) = 3𝑝, 𝑑𝐾1 (𝑅[𝐵2]) = 2𝑞,

𝑑𝐾2 (𝑅[𝐵1]) = 𝑝2 · 6 · 1
2
<

(
3𝑝
2

)2
· 2 = 𝑑𝐾2 (𝑅2 [𝐶]), 𝑑𝐾2 (𝑅[𝐵2]) = 𝑞2 · 2 · 1

2
,

𝑑𝐾3 (𝑅[𝐵1]) = 𝑝3 · 6 ·
(

1
2

)3
.

We now claim that

𝑑𝐾𝑚 (𝑅2 [𝐶 ∪ 𝐵2]) − 𝑑𝐾𝑚 (𝑅[𝐵1 ∪ 𝐵2]) =
𝑚∑
𝑟=0

(
𝑚

𝑟

)
(𝑑𝐾𝑟 (𝑅2 [𝐶]) − 𝑑𝐾𝑟 (𝑅[𝐵1]))𝑑𝐾𝑚−𝑟 (𝑅[𝐵2])

is positive for 2 ≤ 𝑚 ≤ 4. This is immediate for 𝑚 = 2. For 𝑚 = 3, 4, only the 𝑟 = 3 term is negative,
and one may check that the sum of the 𝑟 = 2 and 𝑟 = 3 terms is positive via the relations

𝑑𝐾3 (𝑅[𝐵1]) − 𝑑𝐾3 (𝑅2 [𝐶]) =
𝑝

2
(
𝑑𝐾2 (𝑅2 [𝐶]) − 𝑑𝐾2 (𝑅[𝐵1])

)
and 𝑑𝐾0 (𝑅[𝐵2]) ≤ 2

𝑝 𝑑𝐾1 (𝑅[𝐵2]) ≤
(

2
𝑝

)2
𝑑𝐾2 (𝑅[𝐵2]). Thus, 𝑑𝐾𝑚 (𝑅2 [𝐶 ∪ 𝐵2]) > 𝑑𝐾𝑚 (𝑅[𝐵1 ∪ 𝐵2])

for 2 ≤ 𝑚 ≤ 4. It follows that

𝑑𝐾4 (𝑅2) − 𝑑𝐾4 (𝑅) =
4∑

𝑚=0

(
4
𝑚

) (
𝑑𝐾𝑚 (𝑅2 [𝐶 ∪ 𝐵2]) − 𝑑𝐾𝑚 (𝑅[𝐵1 ∪ 𝐵2])

)
𝑑𝐾4−𝑚 (𝑅 − (𝐵1 ∪ 𝐵2)) > 0,

contradicting the extremality of R.
Case 3: |𝐵1 | = |𝐵2 | = 2. In this case, the four vertices in 𝐵1 and 𝐵2 have the same weight p. Moreover,

we have 𝑎 ≥ 3 because 𝑡 ≥ 8. Let 𝑅3 be the weighted graph obtained from R by replacing 𝐵1 ∪ 𝐵2 with
a set 𝐶 = {𝑐1, 𝑐2, 𝑐3} of three vertices with weight 4𝑝/3 each such that 𝑤(𝑐𝑖 , 𝑐 𝑗 ) = 𝑤(𝑐𝑖 , 𝑣) = 1 for any
𝑖, 𝑗 ∈ [3] and 𝑣 ∈ 𝐵3 ∪ · · · ∪ 𝐵𝑎. We note that (𝑅3)> 1

2
and (𝑅3)>0 have clique numbers satisfying

𝜔((𝑅3)> 1
2
) + 𝜔((𝑅3)>0) ≤

(
𝜔(𝑅> 1

2
) + 1

)
+ (|𝑉 (𝑅) | − 1) = (𝑎 + 1) + (𝑏 − 1) < 𝑡,

so 𝑅3 is K𝑡 -free. One computes that

𝑑𝐾0 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑑𝐾0 (𝑅3 [𝐶]) = 1, 𝑑𝐾1 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑑𝐾1 (𝑅3 [𝐶]) = 4𝑝,

𝑑𝐾2 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑝2
(
8 + 4 · 1

2

)
<

(
4𝑝
3

)2
· 6 = 𝑑𝐾2 (𝑅3 [𝐶]),
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𝑑𝐾3 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑝3 · 24 · 1
2
<

(
4𝑝
3

)3
· 6 = 𝑑𝐾3 (𝑅3 [𝐶]),

𝑑𝐾4 (𝑅[𝐵1 ∪ 𝐵2]) = 𝑝4 · 24 ·
(

1
2

)2
.

We now claim that

𝑑𝐾𝑚 (𝑅3 [𝐶 ∪ 𝐵3]) − 𝑑𝐾𝑚 (𝑅[𝐵1 ∪ 𝐵2 ∪ 𝐵3]) =
𝑚∑
𝑟=0

(
𝑚

𝑟

)
(𝑑𝐾𝑟 (𝑅3 [𝐶]) − 𝑑𝐾𝑟 (𝑅[𝐵1 ∪ 𝐵2]))𝑑𝐾𝑚−𝑟 (𝑅[𝐵3])

is positive for 2 ≤ 𝑚 ≤ 4. This is immediate for 𝑚 = 2, 3. For 𝑚 = 4, only the 𝑟 = 4 term is negative.
By (A4), we have 𝑑𝐾1 (𝑅[𝐵3]) =

∑
𝑣 ∈𝐵3 𝑤(𝑣) ≥ 𝑝, so(

4
3

)
(𝑑𝐾3 (𝑅3 [𝐶]) − 𝑑𝐾3 (𝑅[𝐵1 ∪ 𝐵2]))𝑑𝐾1 (𝑅[𝐵3]) ≥ 4 ·

(
10

27𝑝
𝑑𝐾4 (𝑅[𝐵1 ∪ 𝐵2])

)
· 𝑝

>

(
4
4

)
𝑑𝐾4 (𝑅[𝐵1 ∪ 𝐵2])𝑑𝐾0 (𝑅[𝐵3]),

and thus 𝑑𝐾𝑚 (𝑅3 [𝐶∪𝐵3]) > 𝑑𝐾𝑚 (𝑅[𝐵1∪𝐵2∪𝐵3]) for 2 ≤ 𝑚 ≤ 4. Therefore, setting 𝐵 = 𝐵1∪𝐵2∪𝐵3,
we have

𝑑𝐾4 (𝑅3) − 𝑑𝐾4 (𝑅) =
4∑

𝑚=0

(
4
𝑚

) (
𝑑𝐾𝑚 (𝑅3 [𝐶 ∪ 𝐵3]) − 𝑑𝐾𝑚 (𝑅[𝐵])

)
𝑑𝐾4−𝑚 (𝑅 − 𝐵) > 0,

contradicting the extremality of R. �

4.3. Counterexamples to Conjecture 1.2

We conclude this section by presenting some counterexamples to Conjecture 1.2 when t is slightly larger
than 2𝑠. We begin with two counterexamples in the 𝑠 = 5 case, then use the same ideas to derive a
family of counterexamples for all sufficiently large s and any t with 2𝑠 ≤ 𝑡 ≤ 2.08𝑠.

We first observe that Conjecture 1.2 is not true for 𝑠 = 5 and 𝑡 ∈ {10, 11}, via the counterexamples
pictured in Figure 2.

For the case 𝑠 = 5 and 𝑡 = 10, Conjecture 1.2 hypothesizes that 𝜋𝑠 (K𝑡 ) is attained by a weighted
graph 𝑅1 of order 5 with exactly one edge of weight 1/2, such that the two vertices incident to the edge
of weight 1/2 have the same weight p and the remaining three vertices have the same weight q. Let 𝑅2
be a weighted graph of order 6 in which every vertex has weight 1/6, three disjoint edges have weight
1/2, and all remaining edges have weight 1. It is straightforward to check that 𝑅2 is K10-free and that

𝑑𝐾5 (𝑅2)
𝑑𝐾5 (𝑅1)

≥
(6
5
)
( 1

6 )
5 1

4

max
{
𝑝2𝑞3

2 : 2𝑝 + 3𝑞 = 1
} > 1.

Thus Conjecture 1.2 is not true in the case 𝑠 = 5, 𝑡 = 10.
For the case 𝑠 = 5 and 𝑡 = 11, Conjecture 1.2 hypothesizes that 𝜋𝑠 (K𝑡 ) is attained by the complete

balanced weighted graph 𝐾𝑤
5 , which has 5 vertices of weight 1/5 each and has all edge weights equal

to 1. Let 𝑅′ be a weighted graph of order 6 with two disjoint edges of weight 1/2 and all other edge
weights equal to 1, such that the four vertices incident to the weight-1/2 edges have weight p and the
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Figure 2. Counterexamples to Conjecture 1.2 for 𝑠 = 5 and 𝑡 ∈ {10, 11}. Red edges have weight 1/2
and black edges have weight 1.

remaining two vertices have weight q. It is straightforward to check that 𝑅′ is K11-free. Moreover, if the
parameters 𝑝, 𝑞 are optimized, we have

𝑑𝐾𝑠 (𝑅′)
𝑑𝐾𝑠 (𝐾𝑤

5 ) =
max

{
4𝑝3𝑞2

2 + 2𝑝4𝑞
4 : 4𝑝 + 2𝑞 = 1

}
( 1

5 )5
> 1.

Notably, the inequality holds with 𝑝 = 0.16 and 𝑞 = 0.18. Thus Conjecture 1.2 is also false in the case
𝑠 = 5, 𝑡 = 11.

We now show that a similar construction works if s is sufficiently large.

Lemma 4.6. Conjecture 1.2 is false for all sufficiently large s and any t satisfying 2𝑠 ≤ 𝑡 ≤ 2.08𝑠.

Proof. First suppose t is odd (i.e., 𝑡 = 2𝑟 + 1 for some integer 𝑟 ≥ 𝑠). Conjecture 1.2 hypothesizes that
𝜋𝑠 (K𝑡 ) is attained by the complete balanced weighted graph 𝐾𝑤

𝑟 , which has r vertices of weight 1/𝑟
each and has all edge weights equal to 1. Let 𝑅′ be a weighted graph on (𝑟 +1) vertices with two disjoint
edges of weight 1/2 and all other edge weights equal to 1, such that the four vertices incident to weight-
1/2 edges have weight 3/4𝑟 and the remaining 𝑟 − 3 vertices have weight 1/𝑟 . It is straightforward to
check that 𝑅′ is K𝑡 -free. Moreover, because 𝑠 ≤ 𝑟 ≤ 1.04𝑠, we have

𝑑𝐾𝑠 (𝑅′)
𝑑𝐾𝑠 (𝐾𝑤

𝑟 ) ≥
(𝑟+1
𝑠

)
· ( 1

𝑟 )
𝑠−4( 3

4𝑟 )
4 1

4(𝑟
𝑠

)
( 1
𝑟 )𝑠

=
𝑟 + 1

𝑟 + 1 − 𝑠
· 34

45 ≥ 𝑟 + 1
0.04𝑟 + 1

· 0.079 > 1

if 𝑠 ≤ 𝑟 is sufficiently large.
Next, suppose t is even (i.e., 𝑡 = 2𝑟 for some integer 𝑟 ≥ 𝑠). Conjecture 1.2 hypothesizes that 𝜋𝑠 (K𝑡 )

is attained by a weighted graph 𝑅1 on r vertices with exactly one edge of weight 1/2. By Lemma 3.2,
we have that

𝑑𝐾𝑠 (𝑅1) ≤
∑

𝑣1 ,...,𝑣𝑠 ∈𝑉 (𝑅)
distinct

𝑤(𝑣1) · · ·𝑤(𝑣𝑠) ≤ 𝑠!
(
𝑟

𝑠

) (
1
𝑟

)𝑠
= 𝑑𝐾𝑠 (𝐾𝑤

𝑟 ).

Let 𝑅2 be a weighted graph on (𝑟 + 1) vertices with three disjoint edges of weight 1/2 and all other
edge weights equal to 1, such that the six vertices incident to weight-1/2 edges have weight 5/6𝑟 and
the remaining 𝑟 − 5 vertices have weight 1/𝑟 . It is straightforward to check that 𝑅2 is K𝑡 -free. Moreover,
because 𝑠 ≤ 𝑟 ≤ 1.04𝑠, we have

𝑑𝐾𝑠 (𝑅2)
𝑑𝐾𝑠 (𝑅1)

≥
𝑑𝐾𝑠 (𝑅2)
𝑑𝐾𝑠 (𝐾𝑤

𝑟 ) ≥
(𝑟+1
𝑠

)
· ( 1

𝑟 )
𝑠−6( 5

6𝑟 )
6 1

8(𝑟
𝑠

)
( 1
𝑟 )𝑠

=
𝑟 + 1

𝑟 + 1 − 𝑠
· 56

66 · 1
8
≥ 𝑟 + 1

0.04𝑟 + 1
· 0.041 > 1

if 𝑠 ≤ 𝑟 is sufficiently large. �
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5. Concluding Remarks

In this paper, we combinatorially resolve the generalized Ramsey–Turán problem for cliques, reducing
its determination to a bounded optimization problem about finding the optimal (𝑏, 𝑎)-partition, which
remains an intriguing problem.

Problem 5.1. Given integers 𝑡 − 2 ≥ 𝑠 ≥ 3, which (𝑏, 𝑎)-partition with 𝑎 + 𝑏 = 𝑡 − 1 achieves the
Ramsey–Turán density 𝜚𝑠 (𝐾𝑡 )?

An easier, yet still interesting, problem is the following. By Theorem 1.3, the threshold value of t for
the extremal periodic behavior lies somewhere between 2.08𝑠 and 𝑠3. Which bound is closer to the truth?

For general graphs, an Erdős–Stone–Simonovits type result is still out of reach. For example, we do
not know whether 𝜚2 (𝐾2,2,2) > 0 [16, 33]. In light of this, we wonder the following.

Problem 5.2. Decide if 𝜚3 (𝐾2,2,2,2) > 0 or not.

Another natural future direction is to study RT(𝑛, 𝐾𝑠, 𝐾𝑡 , 𝑓 (𝑛)) for smaller independence numbers
(e.g., when 𝑓 (𝑛) = 𝑛1−𝜀 or when it is the inverse function of the Ramsey function, say 𝑓 (𝑛) =

√
𝑛 log 𝑛).

Note. After this paper was written, we learned that Balogh, Magnan and Palmer [7] independently
proved some related results.
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