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Abstract

A simple model for a problem in combustion theory has multiple steady state solutions
when a parameter is in a certain range. This note deals with the initial value problem
when the initial temperature takes the form of a hot spot. Estimates on the extent and
temperature of the spot for the steady state solution to be super-critical are obtained.

1. Introduction

A simple model for a problem in combustion theory is (see [3])

aa—f —V2T + S exp(aT/(a + T)) inD X {£:1>0), (1)

T(x, 0) = h(x) and T=0 ondD, 2)
.where T, x and ¢ are respectively the dimensionless temperature, spatial and
time variables, § a parameter and a is a constant with magnitude greater than 4
(see [7]). This problem has been considered by a number of authors, [3], [4] and
[S] among others. It is known that when & is within a certain range, say
0 < §, <8 <8, equation (1) has two stable steady state solutions: a sub-criti-
cal solution in which the temperature is of order one, and a super-critical
solution in which the temperature is exponentially large. Estimates of §, and 6,
as well as the influence of the initial data on the attainment of super-critical
state were considered in [6], where T was assumed to depend only on the radial
distance r and time ¢, when D is a sphere or a cylinder.
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In this note, we extend the results in [6] for the case where the domain D is a
sphere, and investigate the response of equation (1) to a hot spot when 8, < 8§ <
8.,. In particular, we want to estimate the extent and temperature of the hot spot
for equation (1) to reach a super-critical state.

2. The initial value problem

Let (r, 8, ¥) be spherical coordinates, and the domain described by 0 < r < 1,
0<0<70<y <27 Att =0, let there be a hot spot with extent described
by

A f — <10 ) >

T(x, 0) = Ty(r, 8) = orry— Be<r<r, ,0K80 <we, 0Ky <27
0 elsewhere,

(3)

where B, v are constants, and ¢ = exp(~a). Because of the choice of the location

of the hot spot, we can assume the temperature T to be independent of the angle

Y.

We rewrite equation (1) as an integral equation
T(P,0) = [ G(P, 0, T)T(Q) d¥p

+8 fo ' fDG(P, 0, - T)exp(%%—)) dV ydr, )

where G is the Green’s function for the operator ((3/3t) — V?), with homoge-
neous initial and boundary conditions and P, Q denote the field point and
source point with coordinates (r, 8, ) and (r', 8', ¥'), respectively. We have

1 it (2’1 + I)Jn+l/2(qupr)‘]n+I/Z(krwr’)

2mVrr ;Z(:’ [Jr:+|/2(k..p)]2

X P,(cos 8")exp(~k2,1),
where k,, are the positive zeros of J, | (k). We label the right side of equation
(4) as F(T) and define the iteration scheme
T,,, = F(T) forj>0.

G(P,Q,1) = P, (cos 8)

Since the non-linear term exp(aT/(a + T)) is bounded, an upper solution T can
be constructed such that T < T for all . Hence the operator F(T) is compact.
The sequence { F(T))|j > 0} therefore has a convergent subsequence converging
to a unique limit. Further, since the derivative of exp(aT/(a + T)) with respect
to T is bounded, the initial value problem (1) and (2), and hence (4), has a
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unique solution (see [2]). To estimate the steady state solution of (1), or (4), we
carry out the following asymptotic analysis for 7 large. In what follows, we write
o(r, 8, 1) = O(x(-)) if there exists a constant 4 such that |p| < A|x] for all values
r, § within the sphere and ¢ > 0. We write x(-) to emphasize that x is a function
of its argument only. If x is a numerical constant, we shall write ¢(r, 8, ¥) =
O(1). If we compare two numerical constants, 4 = O(B) means that A and B
are of comparable magnitude.
Let Z be sufficiently large so that for t — 7 > Z, we have

1 Jl/z(km")ll/z(km”)
2aVrr [.I,’/z(kmr)]2

= OI(P’ Q’ t— T)'

G(P,Q,t — 1)~ exp(—kg,(t — 7))

Here, we note that k;, is the smallest number in the set {k_,}, and ko = 7.
Then, fort — 7 > Z, we have

- T(0Q,
T~ 6-[0 ZfDGm(P, Q,t— -r)exp(:x‘:—l;Q(QT—)"_))dVQd'r
4 (XT}(Q, 'r)
+8£_szG(P, Q,t— r)exp Fm dVQdT
t aT}(Q, 7)
= 8‘/(; fDGOI(P’ 0, t — 1)exp W‘S] dVQd'r

+8ft'_ZfD[G(P, Q,1— 1) = Go(P, Q1 — 7)]

aY}(Q’ 7)
X exp m dVQd‘r
4 aT}(Q’ 7)
= 8L fDGm(P, Q,t— T)exp -a—;m dVQd‘r
z aT(Q, 7)
+8]; fDGOI(P’ Q.1 — 1)exp m—"; dVQd‘T

+sf"_sz[G(P, Q.1 = 1) = Goy(P, Q1 — 7)]

aT(Q, 1)

exp
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For ¢t > Z, the second term on the right is O(exp(-7*(t — z))). The third term
on the right is equal to

5 ® (2n + 1)J, +,/2(k r)P,(cos 8)
n=0  2a[J, .y (k)] A

p=1

(1 = exp(-k3, 2))

x[ 7, = xp(%)dngf, @)

where the prime after the summation sigh means that the particular term with
subscript n =0, p = 1 is to be omitted, and 1 — Z <7 < t. To estimate the
above, we observe that for 1 > Z and Z and j sufficiently large, T(Q, 7) will be
close to the steady state. In the steady state, T is governed by the equation

V2T = -§ exp((aT/ (a + T))), (8)
with 7 = 0 at r = 1. Since the Laplacian is an intrinsic quantity not dependent
on the coordinate system used, and since the function exp((aT/(a + T))) does
not depend explicitly on the spatial coordinates, rotation of the axes leaves
equation (8) invariant. In spherical polar coordinates, we must have 37 /90 = 0
on the axis. This condition, together with the freedom to rotate axes, implies that
T(r, 8, 1) is a function of r alone, as ¢ tends to infinity. If we then examine 7 in
terms of its eigenfunction expansion, we can deduce that the leading term is
dominant (see Tam [6]). Thus, we have T(Q, 7) ~ (M /(2r)!/*)J, 5(wr") for some
positive constant M. Because of its sole radial dependence, the asymptotic
analysis of 7, , for the present case is the same as that for the case when T is
assumed to depend only on the radial distance for all 1 > 0, as in [6]. The
following results are therefore included only for the sake of completeness. For
their derivation, the readers are referred to [6]. In approximating T, ,, it was
shown that we can use

o t 1/2('”’)
7_}-4-1 ~—47___r,—.]1/2(7"')fz fDexp(—w )
aT(Q, 1)
—L | av,dr.
Xexp a+Tj(Q,'r) a1
Now suppose, for ¢t > Z, we have
Vo J:/z(’”’") aT(Q, 7)
dv, > K,
o) PlarT(on |

for some j, where K; is independent of 7. Then there exists Z; > Z such that, for
t> Z, we have

0K, 6K,  sin ar
T, >—2— — .
2 gy AT = T
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Using the above representation for 7, ,, we can proceed to consider the next
iteration. Suppose we have

I o(ar’ aT , T
\/; f 1/2( ) ex: 1+|(Q ) dVQ > K;-+1; (9)
2 b vy a+ T,,,(Q,7)
then we will have
dK;
j+1
T,y > m-’l/z("”)-

In this way, we generate a sequence of numbers {K},i =j,j+ 1,....1If, fora

given 8, we have K;,, > K, then the sequence {K;} is monotone increasing.
Since we know the solution for T is bounded, {K;} tends to a limit. If the limit
K, = O(e®), the solution of the initial value problem is super-critical.

To render the integral in (9) tractable, a number of approximations were
made, and we obtained

K, = 4\;? {(4 = 2)e* + (4 +2)},

J

where 4 = av/(amV27r + v) and v = K;8. In Figure 1 we have plotted KX,
against v for a = 20. It is clear that a comparison of K; with K;,; becomes a
comparison of the straight line v/8 with K; . Similar figures can be obtained
for other values of a.

leo‘

IEXXEE S
1x10®

1000 2000 1000

FIGURE 1.

Graph of X, , | against v for a sphere.
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3. The threshold phenomena

We observe from Figure 1 that, when § is sufficiently small, the straight line
intersects K; ., at one point, where K, = O(1). When § is increased beyond a
certain value, say §, the straight line intersects K, at three points. When § is
further increased to be greater than §, say, the number of intersections is
reduced to one, where K, = O(e®). We derive the following information from
Figure 1. When & > §, the iteration scheme will settle to a steady state solution
which is super-critical, regardless of the initial data. Thus 8 is a threshold value
for the parameter 8. When § is less than 8, the steady state solution is
sub-critical. For 8 between & and §, the initial data plays the deciding role. If we
denote the coordinate of the middle intersection point of v/ with K;,, by
(v*, K*), then, for a given &, if there is a K, for some j, such that 8K; > v*, the
steady state solution will be super-critical. As an illustration, we have obtained a
few numbers graphically for a =20: § = 1.5 X 107, § = 3.53.

& (1731722731 3/2] 2
v*| 99 | 87 | 77 | 64| 51 | 44

With the information obtained in the above, we are now in a position to
answer the question set out in the Introduction. For fixed « and § < 8 < 8, to
see whether a given initial Ty(r, §) leads to a super-critical steady state solution,
we calculate the inner product

aTy(r, 8)
a + To(r, 0)

Vo f 11/2(7"')
2 D \/;

P%=m

If the number so obtained is not less than v*/8, the super-critical state will
result. The inner product is readily calculated if Ty(r, #) is as given in (3). We

have
1T . aTo(r, 8)
K0=\/2'rrfof0rsmwrsmoexp(a—;oT—o(r’—o))drdﬂ
= Vaz [* " sin ar sin 0 drdp
0 Yo
+Var [ fnrsin ar sin0exp( ad )drdﬂ
rog— Be’0 a+ A

2 V2 ad
—2\/; + - exp(a+A)(l—cosve)

X [sin wrg — mrg cos mry — sin w(ry — Be) + w(ro — Pe)cos w(ry — Pe)].
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If we use the fact that B¢ and »e are both small, we have

= \/— “’ Xp +A 2&3

2 '”3"0
X { @rg sin wry — B —2—sm7rro+ 5 COs o] |-

Now, for a = 20, § = 1, v* = 64. Thus, if K, > 64, the steady state solution will
be super-critical. It is perhaps worth noting that if » and 8 are kept sufficient
small, then K; cannot be made to be creater than v*/4, no matter how large A
is. Indeed, for A — oo, we have

K22 L7 262 -2 N mrg
0~ - +? > vBe“L 7wy sin wry — B Tvarro+-—2——cosvrro .

Since K, depends on ry, we make the following calculations to demonstrate this
dependence. To have K; > 64, we need to have

vB%* > 476 ifry= Be
and

vB%3 > 3170 ifry= 1.
Thus, no matter how hot the hot spot is, its extent must be sufficiently large for
the super-critical state to result.

Another point of interest concerns the threshold values of 8. For a = 20, the
steady state solution is super-critical if § > & = 3.53, and subcritical if § < § =
1.57' x 1072, Parks [5] has obtained 8_, = 3.52, so that 6 agrees well with 8, To
assess 6, we note that in [7) Tam showed that, if § < 1.28 X 107 (= §,), then,
regardless of the initial temperature, the steady state upper solution is sub-criti-
cal, and if 8§ < 3.59 X 107 (= §,), the lower solution of the form c(1 — r?)"! is
sub-critical. Thus the value of § lies between & , and 8,, as we would expect. Now
the parameter & is an extinction parameter. Unfortunately, the authors are not
aware of published calculations on its magnitude, so that no comparison can be
made. However, it must be said that the smallness of § has rather serious
implications. A system with a parameter 8 much less than the critical value
(~ 3) can become super-critical if it is subjected to heating by a sufficiently
strong hot spot.

We conclude with the following remarks: (a) For different values of a, the
critical parameters for § can be obtained from the graphs of K, against v, and
the specification of the hot spot which determines sub- or super-criticality
obtained from K,,. (b) Since our analysis leading to the expression K, hinges only
on the assumption of rotational symmetry, that is 7 = T(r, 8, ¢), the result
obtained can also be used for arbitrary T(r, 8).
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