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We find the optimally time-dependent (OTD) orthogonal modes about a time-varying flow
generated by a strong gust vortex impacting a NACA 0012 airfoil. This OTD analysis
reveals the amplification characteristics of perturbations about the unsteady base flow and
their amplified spatiotemporal structures that evolve over time. We consider four time-
varying laminar base flows in which a vortex with a strength corresponding to the gust ratio
G of {−1, −0.5, 0.5, 1} impinges on the leading edge of the airfoil at an angle of attack
of 12◦. In these cases, the impingement of the strong gust vortex causes massive separation
and the generation of large-scale vortices around the airfoil within two convective time
units. As these flow structures develop around the airfoil on a short time scale, the airfoil
experiences large transient vortical lift variations in the positive and negative directions
that are approximately five to ten times larger than the baseline lift. The highly unsteady
nature of these vortex–airfoil interactions necessitates an advanced analytical technique
capable of capturing the transient perturbation dynamics. For each of the considered
gust ratios, the OTD analysis identifies the most amplified region to perturbations, the
location of which changes as the wake evolves differently. For interactions between a
moderate positive vortex gust (G = 0.5) and the airfoil, the area where perturbations
are amplified transitions from the leading-edge vortex (LEV) sheet to the forming LEV.
Later, this most amplified structure becomes supported in the airfoil wake directly behind
the trailing edge. In contrast, a strong vortex gust (G = ±1) encountered by the airfoil
shows the most amplified OTD mode to appear around the core of the shed vortices. This
study provides an analysis technique and fundamental insights into the broader family of
unsteady aerodynamic problems.
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1. Introduction
Flying in a gusty environment is challenging because wings can experience massive
flow separation and violent transient force fluctuations. One critical gust parameter is
the relative velocity between the gust and the free stream, often referred to as the gust
ratio G (Jones 2020). The gust ratio indicates how strong a gust is; a larger-amplitude
gust is likely to incite more intense flow efforts on a flying body. In nature, the profile
and strength of aerodynamic disturbances can vary significantly depending upon the
environment of interest. For these reasons, previous studies have considered transient
gusts, including streamwise gusts, transverse gusts and vortex gusts. Among these various
types of gusts, a spanwise vortex-gust elicits perhaps the most fluctuations in lift. When
such a gust interacts with an airfoil, the resulting dynamics is transient and nonlinear,
posing considerable challenges in understanding the unsteady flow behaviour. However,
it is crucial to understand such effects that large-amplitude vortex gusts pose on flying
bodies.

Unsteady aerodynamic models have been developed to capture the dominant effects
of gust–airfoil interaction. For small-amplitude gust encounters where attached flow is
assumed around the airfoil, linear thin airfoil theory and its extensions have been used to
build theoretical models for both discrete (von Kármán & Sears 1938; Sears 1941) and
periodic (Atassi 1984) gust disturbances. In fact, linear aerodynamic models such as the
Küssner model have been known to be effective for a variety of disturbances, including
cases where gust-induced flow separation occurs (Küssner 1936; Badrya et al. 2021).
However, linear models become less accurate when the gust ratio is larger than 0.5 or
when the angle of attack is higher than 20◦ in which case nonlinear effects are significant.
While advancements in theoretical and analytical models have been made, characterizing
the detailed transient gust–airfoil interactions in a global manner remains elusive due to
the high dimensionality of the full-order problem.

To capture the dynamics of global flow fields, modal analysis is a useful tool that
extracts dominant features of high-dimensional flows. For example, proper orthogonal
decomposition (Lumley 1967; Aubry et al. 1988) identifies spatially energetic modes,
and dynamic mode decomposition (Schmid 2010) extracts spatial structures that are
associated with the spectral content of flow dynamics. Modal analysis can also reveal
the stability and transition characteristics of fluid flows. Global stability analysis
(Theofilis 2011) reveals the dominant stability modes from the linearized Navier–Stokes
equations about a given steady state. The linear eigenvalues found from the global stability
analysis provide information about the growth or decay rates of perturbations with respect
to the base flow. Based on an energy measure for the time-dependent response of the
flow (Schmid 2007), the non-modal analysis framework can evaluate energy amplification
by analysing the harmonic response from harmonic forcing inputs (Farrell & Ioannou
1993) and formulate an initial-value problem to examine the transient energy growth
over a finite time interval (Blackburn, Barkley & Sherwin 2008). Resolvent analysis
(Trefethen et al. 1993; Jovanović & Bamieh 2005) is a method for understanding the
response of a dynamical system to external forcing or perturbations. The response and
forcing modes obtained from the resolvent analysis reveal the most amplified perturbation
structures and how they are excited by external forcing. The resolvent analysis was
extended for turbulent flows by treating the nonlinearity in the perturbation equation as
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forcing (McKeon & Sharma 2010). The coherent structures identified by resolvent analysis
provide physical interpretations in wall turbulence (Moarref et al. 2013) and turbulent
cavity flows (Gómez et al. 2016). These modal techniques can provide fundamental
behaviour of the flow response, which can help us understand turbulent flows and
implement flow control (Yeh & Taira 2019; Liu et al. 2021).

Although the aforementioned modal analysis techniques offer valuable insights into
the characterization of complex fluid flows (Taira et al. 2017; Unnikrishnan 2023), the
majority of these methods are built on the assumption of a time-invariant base flow.
These analysis techniques require careful generalization for analysing unsteady base flows.
To address this issue, optimally time-dependent (OTD) mode decomposition (Babaee
& Sapsis 2016) has been developed, where linear stability analysis can be performed
for perturbation growth around arbitrarily time-dependent base flows. In particular, the
OTD analysis is applied to the instantaneously linearized dynamics, and an evolution
equation is derived for a set of orthonormal time-dependent modes. It has been shown
that the OTD modes converge exponentially fast to the dominant eigenvectors associated
with the largest finite-time Lyapunov exponents (Babaee et al. 2017). The OTD mode
decomposition is closely related to dynamical low-rank approximation (Koch & Lubich
2007) and dynamically orthogonal decomposition (Sapsis & Lermusiaux 2009). The
OTD method uncovers the time-dependent orthonormal modes that capture the dominant
transient amplification of perturbations with respect to time-varying base flows, hence
serves as a powerful tool to characterize the perturbation dynamics of various unsteady
flows (Kern, Hanifi & Henningson 2022; Donello, Carpenter & Babaee 2022; Beneitez
et al. 2023; Amiri-Margavi & Babaee 2024; Kern et al. 2024).

In this study, we employ OTD mode analysis to investigate vortex–airfoil interactions,
where the vortex gust ratio magnitude exceeds 0.5. The complexity of such interactions,
characterized by strong nonlinearities, transient dynamics and high-dimensional flow
structures, demands a method that can adaptively capture perturbation dynamics of the
evolving flow field. The OTD modes, which are found at each time step, offer a dynamic
approach for dimensionality reduction and reveal the optimal timing and locations of
critical perturbation amplifications. This makes OTD mode analysis particularly suited for
studying the violent aerodynamic phenomena associated with large vortex gusts, where
traditional methods fall short in capturing the essential dynamics.

By capturing the evolving flow structures and identifying regions of sensitivity at precise
moments in time, OTD mode analysis enables the possibility of designing highly effective,
time-varying flow control strategies. This dynamic approach to flow manipulation is
critical for optimizing aerodynamic performance and mitigating adverse flow effects. For
example, Blanchard & Sapsis (2019b) proposed a strategy for identifying the optimal
control domain using a criterion derived from the OTD modes. They demonstrated that
OTD-based control can successfully alleviate the flow unsteadiness by guiding flow
trajectories towards the desired fixed point.

The current study is organized as follows. We start § 2 by presenting the methodology
of OTD analysis. The model problem of vortex–airfoil interactions and the related physics
are described in § 3. In § 4, the amplifications of perturbations for four vortex–airfoil
interaction cases are examined with the OTD analysis. Finally, the conclusions are
presented in § 5.

2. Methodology: OTD mode analysis
Our objective is to find the dominant transient amplification mechanisms of non-
periodic time-dependent flows using the OTD mode analysis (Babaee & Sapsis 2016).
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To identify the transient amplification of perturbations about an unsteady vortex gust–
airfoil interactions, we consider the flow state q(t) to be comprised of the base flow
trajectory q̄(t) and perturbation q′(t),

q(t) = q̄(t) + q′(t) ∈R
n. (2.1)

Here, it is assumed that the flow domain is spatially discretized, and n is the degree of
the freedom of the discretized flow, i.e. the number of grid points times the number of
state variables (ρ, ρu, ρv, ρw, e). We substitute this flow expression into the Navier–
Stokes equations to derive the linear evolution equation for the perturbation q′(t) about
an arbitrary trajectory q̄(t). With the assumption that the perturbation magnitude is small,
we find that

dq′(t)
dt

= Lq̄(t)q′(t). (2.2)

The time-varying linear operator Lq̄(t) ∈R
n×n is derived about the unsteady base state

q̄(t). For convenience, we drop the subscript from Lq̄(t) and denote it as L(t).
In this paper, we take the base state q̄(t) to be the unsteady flow produced by a gust

vortex impinging on an airfoil. Through the present analysis, we aim to identify the
dominant temporary evolving spatial structures susceptible to amplification during the
vortex–airfoil interaction. The dynamics of the unsteady base flows will be discussed in
§ 3.2.

Now, we consider a collection of d initial perturbations

Q′(t0) ≡ [q′
1(t0), q′

2(t0), . . . , q′
d(t0)] ∈R

n×d

and evolve them over time using linear equation (2.2) such that

dQ′(t)
dt

= L(t)Q′(t). (2.3)

The aim here is to take the collection of perturbation trajectories Q′(t) that dynamically
evolve about the time-varying base state q̄(t) and determine the dominant modes that
capture their time-varying amplification characteristics. To approximate the perturbations
Q′(t) in a reduced-order subspace, we take a low-rank approximation (Babaee & Sapsis
2016; Ramezanian, Nouri & Babaee 2021) as

Q′(t) ≈ Ur (t)Yr (t)
T, (2.4)

where

Ur (t) ≡ [u1(t), u2(t), . . . , ur (t)] ∈R
n×r (2.5)

is a set of r time-dependent orthonormal basis vectors, and

Yr (t) ≡ [y1(t), y2(t), . . . , yr (t)] ∈R
d×r (2.6)

is the reduced-order coefficient matrix. The full-order perturbation dynamics can be
approximated properly with an appropriate choice of r basis vectors and their coefficients.

To derive the evolution equations for Ur (t) and Yr (t), we trace the perturbation
dynamics by substituting (2.4) into the linearized equation (2.3):

d
(
Ur YT

r

)
dt

= Ur
dYT

r

dt
+ dUr

dt
YT

r =LUr YT
r . (2.7)

Strictly speaking, d(Ur YT
r )/dt �= LUr YT

r due to the OTD low-rank approximation error.
The evolution equations for Ur (t) and Yr (t) can be obtained via a variational principle

1006 A18-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.9


Journal of Fluid Mechanics

according to Donello et al. (2022), which involves minimizing the residual

F

(
dYr

dt
,

dUr

dt

)
=

∥∥∥∥∥Ur
dYT

r

dt
+ dUr

dt
YT

r − LUr YT
r

∥∥∥∥∥
F

, (2.8)

subject to the orthonormality constraints of OTD modes. In (2.8), ‖ · ‖F is the matrix
Frobenius norm. The first-order optimality conditions of the above minimization principle
yield the OTD evolution equations. The individual evolution equations for Ur and Yr can
alternatively be found via the Galerkin projection of (2.7) onto Ur and Yr and enforcing
the orthonormality condition of the time-dependent modes UT

r Ur = I. Taking the time
derivative of the orthonormality condition leads to

UT
r

dUr

dt
+ dUT

r

dt
Ur = 0, (2.9)

where we, henceforth, denote Φ = UT
r dUr/dt ∈R

r×r . In order to satisfy (2.9), Φ needs
to be a skew-symmetric matrix, i.e. ΦT = −Φ. The evolution equation for Yr (t) can be
found via projecting (2.7) onto Ur . This is accomplished by multiplying both sides of that
equation with UT

r from the left-hand side, which yields

dYT
r

dt
= (

UT
r LUr − Φ

)
YT

r , (2.10)

where the orthonormality constraints, UT
r Ur = I and Φ = UT

r dUr/dt are utilized.
Similarly, the evolution equation for Ur (t) can be found projecting (2.7) onto Yr , which
can be performed by multiplying that equation onto Yr from the right-hand side. This
results in

dUr

dt
= LUr − Ur

(
UT

r LUr − Φ
)
, (2.11)

where (2.10) is utilized for dYT
r /dt and the two sides of the equations are multiplied

by (YT
r Yr )

−1. With these equations, we can evolve the time-dependent basis and the
coefficient matrix given the time-varying linear operator L(t) and the initial conditions.

To further simplify (2.11) and (2.10), we can choose Φ = 0. The choice of the skew-
symmetric matrix Φ is not unique. With different choices of Φ, it can be proven that one
OTD subspace is equivalent to another OTD subspace after being rotated by an orthogonal
rotation matrix (Babaee & Sapsis 2016; Blanchard & Sapsis 2019a). When we choose a
simple choice of Φ = 0, we have

dUr

dt
= (

I − Ur UT
r

)
LUr , (2.12)

where I − Ur UT
r is the orthogonal projector onto the complement of subspace Ur (Donello

et al. 2022). In this case, we arrive at the closed form of OTD evolution equations of

dUr

dt
= LUr − Ur

(
UT

r LUr
)

(2.13)

and

dYT
r

dt
= (

UT
r LUr

)
YT

r . (2.14)

Based on the above time-dependent equations, we can evolve Ur (t) and Yr (t)T given the
initial conditions Ur (t0) and Yr (t0)T. Here, the choice of initial condition is also not
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unique. However, the time-dependent modes from two different initial conditions span
the same OTD subspace when one initial condition can be transformed into another one
(Babaee et al. 2017).

The variational principle introduced in this work differs slightly from the minimization
problem presented in Babaee & Sapsis (2016), though the resulting OTD evolution
equations are identical. Since the evolution equation for Ur is independent of Yr , as is
evident from (2.13) and (2.14), it is possible to formulate a variational principle with
respect to dUr/dt , as shown in Babaee & Sapsis (2016) and obtain an evolution equation
for Ur . The evolution equation for YT

r can be derived by projecting the full-order model
of (2.2) onto Ur . However, in the variational principle presented in (2.8), both dUr/dt and
dYr/dt are control variables and minimizing the functional in (2.8) yields the evolution
equations for Ur and Yr . The variational principle presented in this work has the advantage
of having a simple interpretation. The matrix Ur YT

r is a low-rank approximation of Q′ with
Ur and Yr evolving to minimize the residual due to the low-rank approximation error.

In the above formulation, the time-dependent modes are correlated with each other. We
can perform a rotation so that these modes are independent and ranked by their importance.
To this end, let us consider a correlation matrix C(t) = YT

r (t)Yr (t) ∈R
r×r . The eigenvalue

decomposition of this correlation matrix C(t) yields

C(t)R(t) = R(t)Λ(t), (2.15)

where Λ(t) ≡ diag(λ1(t), λ2(t), . . . , λr(t)) holds the set of eigenvalues and R(t) ∈R
r×r

is composed of the corresponding eigenvectors of C(t). Since C(t) is a symmetric positive
matrix, R(t) is an orthonormal matrix and Λ(t) has all non-negative eigenvalues of λ1 ≥
λ2 ≥ · · · ≥ λr . Here, C(t) is generally a full matrix, which indicates that the coefficients
are correlated.

A linear mapping from the correlated coefficients Yr (t) to the uncorrelated coefficient
matrix Ŷr (t)Σr (t) can be found using the fact that the perturbations Ur YT

r can be
decomposed through a singular value decomposition Ûr (t)Σr (t)Ŷr (t)T. Such a mapping
is realized by performing a matrix rotation and scaling

Ŷr (t) = Yr (t)R(t)Σr
−1(t), (2.16)

where Σr (t) ≡ diag(σ1(t), σ2(t), . . . , σr (t)) holds singular values σi (t) = λi (t)1/2. Thus,
we now have the ranked spatial modes Ûr (t) based on the eigenvalues λi (t):

Ûr (t) = Ur (t)R(t). (2.17)

We will, henceforth, refer to this ranked time-dependent modes Ûr (t) as the OTD modes.
Since the leading mode possesses the largest singular value, the primary amplified
structure of perturbations can be identified from the leading time-dependent mode. As
an illustrative example, we show the OTD modes of three-dimensional Rössler system in
figure 1. The two time-evolving vectors indicate the two dominant amplification directions
of the perturbations.

One of the utilities of the OTD analysis is that it reveals the most amplified initial
perturbation and the corresponding instantaneous amplification factor. The first singular
vector and singular value of the OTD low-rank approximation contain information about
the optimal perturbation. In particular, the most amplified perturbation is represented
as q′∗1

(t) = σ1(t)û1(t) and the optimal initial perturbation that leads to the maximum
amplification at time t is obtained via

q′
01

(t) = Ûr (t0)Σr (t0)Ŷr (t0)
Tŷ1(t). (2.18)
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z

y

q′(t) ≈ uyT

q̄(t)

û2(t)
û1(t)

x

Figure 1. The evolution of the base flow q̄(t) and the OTD modes ui (t) for an example of the Rössler system.
The perturbation q′(t) is captured by the product of OTD modes u(t) and their coefficients y(t).

The amplitude of the optimal perturbation is ‖q′∗1
(t)‖2 = ‖σ1(t)û1(t)‖2 = σ1(t), since

‖û1(t)‖2 = 1. The optimal initial perturbation is also time-dependent as evident from
(2.18). That is, for each choice of t , a different optimal perturbation condition achieves
the maximum amplification at time t and as time evolves, the optimal initial perturbation
q′

01
(t) varies smoothly. The optimal initial perturbation is confined to the space spanned

by the columns of Ûr (t0)Σr (t0)Ŷ
T
r (t0). To obtain the maximum energy amplification,

denoted as g1(t), the amplitude of the perturbation should be normalized with respect
to the amplitude of the initial perturbation

g1(t) ≡ ‖q′∗1
(t)‖2

‖q′
01

(t)‖2 = σ 2
1 (t)

‖q′
01

(t)‖2 . (2.19)

Similarly, the higher-order suboptimal initial perturbations are

q′
0i

(t) = Ûr (t0)Σr (t0)Ŷr (t0)
Tŷi (t), i = 2, 3, . . . , r. (2.20)

The corresponding amplified perturbations are q′∗i
(t) = σi (t)ûi (t) for i = 2, 3, . . . , r .

Therefore, the levels of energy amplification gi (t) are found to be

gi (t) ≡ ‖q′∗i
(t)‖2

‖q′
0i

(t)‖2 = σ 2
i (t)

‖q′
0i

(t)‖2 , i = 2, 3, . . . , r. (2.21)

For each OTD mode Ûi , g1(t) is the maximum possible amplification of the perturbation
energy that can occur in the fluid system over a given time horizon. The higher-order
energy amplification gi (t), i > 1, may also capture important growth. Analysing the
higher-order energy amplifications provides a supplemental understanding of the transient
dynamics of the fluid system. Each singular value σi (t) indicates the magnitude of each
OTD mode, as shown in the SVD form of low-rank approximation of perturbations
Q′(t) ≈ Ûr (t)Σr (t)Ŷr (t)T. On the other hand, gi (t) is a direct indicator of how much
energy is amplified for each OTD mode with respect to the initial perturbation energy.
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DNS domain

Linear operator domain
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q−(τ  = 1)

q steady
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y0

u∞

OTD domain

30

(c) (d)

y/c

x/c

r

(b)

ω

Figure 2. (a) Computational domains of DNS, linear operator and OTD mode analysis for vortex–airfoil
interaction problem. (b) Vorticity fields of steady state (without vortex gust) and time-varying base state at
τ = 1. (c) Parameters of vortex–airfoil interaction problem. (d) Velocity profile of the vortex gust.

3. Model problem

3.1. Problem set-up
The OTD modes identify the transient amplification of a time-varying flow. With
strong vortex–airfoil interactions exhibiting violent transient flow features, OTD mode
analysis can be useful for capturing the perturbation dynamics. We study the transient
amplifications of the complex interactions between a vortical gust and the NACA 0012
airfoil, as shown in figure 2. The base flow considered in OTD mode analysis is the flow
disturbed by a vortex gust. Direct numerical simulations (DNS) of flows with and without
a gust vortex-impingement are performed with the compressible flow solver CharLES
(Khalighi et al. 2011a,b; Bres et al. 2017). Before interacting with a vortex gust, the two-
dimensional flow is steady over an airfoil at an angle of attack of 12◦ for a chord-based
Reynolds number Re ≡ u∞c/ν∞ = 400 and Mach number M∞ ≡ u∞/a∞ = 0.1. Here,
u∞ is the free stream velocity, c is the chord length, ν∞ is the kinematic viscosity and
a∞ is the free stream sonic speed. The DNS domain is shown in figure 2(a), and the
steady-state vorticity field is presented in figure 2(b).

We validate the DNS model without a vortex gust by comparing the time-averaged lift
CL on a NACA0012 airfoil with previous studies (Liu et al. 2012; Kurtulus 2016; Di Ilio
et al. 2018), as shown in figure 3(a). At Re = 1000, the CL from our simulation agrees
well with the references over various angles of attack. The CL from Re = 400 is generally
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CL (Di Ilio et al. Re = 1000)
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τ

Figure 3. (a) Comparison of time-averaged lift coefficient between references and the present study over
different angles of attack. (b) Temporal and spatial convergence of lift history for a NACA0012 airfoil at the
angle of attack 12◦ and Re = 400.

lower than that from Re = 1000. In addition, time convergence and grid convergence are
checked for our DNS results of the flow over a NACA0012 airfoil at α = 12◦ and Re = 400.
The coarse, medium and fine meshes have grid points of 62 566, 74 046 and 194 012,
respectively. Figure 3(b) shows that both time and grid convergence are achieved for the
lift coefficient CL over time. We chose the medium mesh and a Courant–Friedrichs–Lewy
number of a∞�t/�x < 1 in our DNS. For the DNS of vortex–airfoil interactions, the
results from the compressible solver CharLES has been compared with that from the
incompressible solver Cliff. The lift coefficients match with each other with these two
different solvers. In addition, time convergence and grid convergence are achieved for
vortex–airfoil interactions.

A compressible Taylor vortex (Taylor 1918) is introduced upstream of the airfoil, whose
angular velocity is given by

uθ = uθmax
r

R
exp

(
1
2

− r2

2R2

)
, (3.1)

where r is the radial coordinate from the vortex centre, R is the radius of the vortex, uθmax
is the maximum rotational velocity and (x0, y0) is the initial centre position of the vortex,
as shown in figure 2(c,d). Here, the gust ratio is defined as

G ≡ uθmax

u∞
. (3.2)

For the current study, we consider G ∈ {−1, −0.5, 0.5, 1} and R/c = 0.5. Disturbed flows
with moderate (G = ±0.5) and strong (G = ±1) vortices are studied as representative
examples of highly unsteady flow scenarios (Jones, Cetiner & Smith 2022; Zhong et al.
2023). As the initial condition of the simulations, vortices are introduced with their centres
at (x0, y0) = (−3c, 0). We define τ ≡ u∞t/c = 0 as the time the centre of the vortex
arrives at the leading edge of the airfoil placed at (x0, y0) = (0, 0).

To start tracing the transient amplification of the fluid system with the optimal
time-dependent modes, we need to choose an appropriate initial condition for the time-
dependent modes and coefficient matrix. We take the initial guess of the perturbations Q′
from the initial condition matrix

Q′
0 ≡ [q′

τa
, q′

τa+�τ , . . . , q′
τb

] ∈R
n×d , (3.3)
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where q′
τ ≡ qτ − qsteady , and qsteady is the flow state matrix of steady state. When the

airfoil is at an angle of attack of 12◦, a steady flow is achieved in the absence of a vortical
gust. For other flows without a steady state, qsteady can be approximated by taking the
time average of the flow. The initial condition matrix is obtained by stacking d snapshots
within τ ∈ [τa, τb] with a constant time interval �τ . Then, the initial OTD modes and
their coefficients are chosen from the singular value decomposition of the initial condition
matrix Q′

0 as

Q′
0 = UΣVT ≈ Ur (τ0)YT

r (τ0), (3.4)

where U ∈R
n×d and V ∈R

d×d are the left and right singular vectors, respectively. By
choosing the leading r vectors of U as the initial time-dependent modes Ur (τ0), the
coefficient matrix Yr (τ0) can be initialized as the first r vectors of VΣ . Here, the initial
evolution moment is indicated with τ0.

After obtaining the initial OTD modes and their coefficients, we use the fourth-order
Runge–Kutta time-stepping method to solve the OTD evolution (2.13)–(2.14) with the
time-dependent linear operator L(t). To reduce the computational cost, the unsteady base
state q̄(t) obtained from the DNS is interpolated into a smaller domain to extract the linear
operator L(t) (Sun et al. 2017), as shown in figure 2(a). The Dirichlet boundary condition
is applied to the far-field boundary and the airfoil, and the Neumann boundary condition is
set as the outlet boundary condition. With these boundary conditions, we extract the linear
operator L(t) ∈R

n×n in a discrete form. Here, the degrees of the freedom of the discretized
flow n = 428 370. To further reduce the computational cost, we restrict the OTD domain
as the linear operator domain overlapping with the rectangle (x, y)/c ∈ [−4, 8] × [−2, 2].
As all OTD modal structures appear around the airfoil, changing the OTD domain size
does not affect the OTD modes and their coefficients.

In the current study, the initial time for OTD analysis is chosen as τ0 = −1. The
initial condition matrix is formulated by collecting a total of d = 710 flow state vectors
from [τa, τb] = [−1, −0.4], during which time the vortical gust advects from upstream
of the airfoil towards the leading edge of the airfoil. The initial conditions are carefully
selected before the vortex gust interacts with the airfoil. This choice is critical for
analysing the response to upstream disturbances and enabling timely interventions to
suppress the growth of perturbations during the vortex–airfoil interaction. We consider
the overall OTD analysis over τ ∈ [−1, 1]. Additional details on the initial modes are
discussed in appendix A, and discussions on the optimal initial perturbation are presented
in appendix B.

3.2. Flow physics
Vortex–airfoil interactions exhibit strong transient characteristics within a short time.
Previous studies have shown that vortex–body interaction may involve both rapid distortion
of the incident vorticity field and injection of vorticity from the surface of the body
(Rockwell 1998; Eldredge & Jones 2019; Martínez-Muriel & Flores 2020; Qian, Wang &
Gursul 2022; Fukami & Taira 2023). To inform our interpretation of the dominant OTD
modes, we analyse the perturbation evolution during the vortex–airfoil interaction process.
Here, we first analyse the dynamics of the unsteady base flows of the aforementioned
four vortex–airfoil interaction cases. The time evolution of the vorticity fields and the
aerodynamic forces of the vortex–airfoil interaction cases are presented in figure 4. The
lift and drag coefficients are defined as CL = FL/(0.5ρu2∞c) and CD = FD/(0.5ρu2∞c),
respectively, where FL is the lift force and FD is the drag force on the airfoil. Initially, the
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Figure 4. Vorticity fields and aerodynamic forces disturbed by (a) a positive and (b) a negative vortex gust.

vortical disturbance is introduced upstream of the wing. This vortex approaches the airfoil
and produces large transient effects around the airfoil.

The dynamics of a positive (anticlockwise) vortex interacting with a NACA0012 airfoil
is presented in figure 4(a). A positive vortex gust induces lift and drag force increase
as it impinges on the leading edge of the airfoil. Shortly thereafter, the aerodynamic
forces decrease once the centre of the vortex convects past the centre of the airfoil.
When a moderate positive vortex (G = 0.5) first impinges on the airfoil, negative vorticity
generated at the leading edge quickly rolls up into a leading-edge vortex (LEV) above the
airfoil surface, as seen at τ = −0.28. The increase of the negative circulation due to the
growth of the LEV results in a lift augmentation on the airfoil (Dickinson & Götz 1993;
Eldredge & Jones 2019). After the LEV detaches from the LEV sheet around τ = 1, the
vortex advects into the wake. For a strong positive vortex (G = 1) shown in figure 4(a), the
interactions between the vortex and the airfoil generate a large LEV forming a vortex pair
with the gust vortex, which moves far away from the airfoil body. Such a strong interaction
produces four times larger lift and drag fluctuations compared with a moderate vortex–
airfoil interaction with G = 0.5. In addition, a trailing-edge vortex is produced as the
centre of the strong vortex passes over the wing around τ = 1. The shedding of the trailing-
edge vortex is not seen in the moderate positive vortex–airfoil interaction of G = 0.5,
indicating that the G = 1 case has more drastic transient effects on wakes around the
airfoil.

A negative (clockwise) vortex gust induces different effects on wake dynamics and
aerodynamic performance compared with a positive vortex gust. For a moderate negative
vortex case (G = −0.5) shown in figure 4 (b i), the gust vortex does not cause large-
scale flow separations as it convects around the airfoil, but imposes lift variation of
approximately five times the steady-state lift. For a strong negative vortex gust of G = −1,
such a disturbance induces massive flow separation on both sides of the wing, as shown
in figure 4 (b ii). A large positive vortex is formed from the pressure-side roll-up around
τ = 0.4. When the disturbance moves away from the airfoil around τ = 1, the remaining
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effect of the gust vortex is still sufficiently strong to disturb the flow on the suction side
of the airfoil, producing a secondary LEV. Moreover, the airfoil experiences lift reduction
and augmentation that are approximately 10 times larger than the steady-state lift when
interacting with a negative vortex gust.

From these cases, we identify different transient features of the disturbed airfoil wakes
impinged by a gust vortex. We consider these vortex–airfoil interaction cases as the
unsteady base flows and examine the perturbation dynamics of each of these base flows
using the OTD mode analysis below.

4. The OTD mode analysis
Given the time-varying base flows studied in § 3.2, the OTD mode analysis is performed
to reveal the transient flow structures that may be amplified throughout the vortex–airfoil
interactions. The OTD modes reveal regions where perturbations can undergo amplifi-
cation with respect to the time-varying base flow. Four interaction scenarios involving a
moderate positive vortex (G = 0.5), a strong positive vortex (G = 1), a moderate negative
vortex (G = −0.5) and a strong negative vortex (G = −1) are examined. Verification of
numerical calculations for the OTD modes is provided in appendix B.

Let us first examine the case of moderate positive vortex (G = 0.5), which advects over
the airfoil and induces a new vortex roll-up above the airfoil. Given the transient variations
of the unsteady base flow, we now investigate when and where perturbations can possibly
be amplified through the lens of the OTD modes. We present the leading three time-
dependent modes in the order of their singular values σi (τ ). The vorticity fields and the
top three time-dependent vorticity modes over time are shown in figure 5(a). The temporal
evolution of the leading three singular values is depicted in figure 5(b), and the leading
three levels of energy amplification are shown in figure 5(c).

Around τ = −0.5, the vortical gust advects towards the leading edge of the airfoil. The
primary amplified region, highlighted by dominant spatial modes, appears around the top
boundary layer near the leading edge of the airfoil. At the same time, the secondary
amplified region emerges to coincide with the core of the vortical disturbance, shown
upstream of the leading three OTD modes. Additionally, streamwise oscillations in the
model structures appear for the higher-order modes 2 and 3. Therefore, during the period
when the vortex approaches the airfoil, the primary amplified structure stems from the
boundary layer near the leading edge of the airfoil and the subdominant sensitive regions
correlate with the advection of the baseline vortical disturbance.

After the vortical gust impinges on the airfoil, the boundary layer separates and rolls up
into an LEV. Around τ = 0, modes 1 and 2 identify the amplification of perturbations
colocated and corotating with the LEV, as indicated above the suction side of the
airfoil in figure 5(a). During the LEV formation, perturbations can experience maximum
amplification along the core of the LEV. As the centre of the vortical disturbance nears the
half-chord position around the airfoil at τ = 0.5, the LEV grows and moves towards the
trailing edge of the airfoil. During this time, the most amplified region extends and shifts
in the streamwise direction while rotating with the core of the LEV. By τ = 1, the LEV in
the base flow has detached from the airfoil. During this time, the primary OTD mode still
follows the advection and rotation of the LEV, while the wake region behind the trailing
edge of the airfoil becomes increasingly important due to the trailing-edge vortex sheet
roll-up. This shows the transition of the most amplified flow structure from the LEV to the
wake behind the airfoil.

By examining the singular values and energy amplifications, we identify the evolution
of each OTD mode over time. Temporal changes of the corresponding singular values
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Figure 5. (a) Vorticity fields of the time-varying base flow and the top three OTD vorticity modes, (b) the
leading three singular values and (c) the leading three energy amplifications for G = 0.5.

and energy amplifications gi (t) are presented in figures 5(b) and 5(c). The first OTD
mode aligns with the most amplified direction during the evolution, associated with a
large singular value of O(100). In figure 5(c), the maximum possible energy amplification
g1(t) and the suboptimal energy amplifications g2(t) and g3(t) have an increasing trend
before τ = 0. The increasing energy amplifications indicate that the perturbations can
undergo a large transient growth as the LEV is forming. After the LEV detaches from
the airfoil body around τ = 0.5, the optimal and suboptimal energy amplifications become
twice their initial values, which uncovers that the perturbations can experience large
amplification in the trailing-edge wakes. Later, at τ = 1, the third OTD mode shows
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Figure 6. (a) Vorticity fields of the time-varying base flow and the top three OTD vorticity modes, (b) the
leading three singular values and (c) the leading three energy amplifications for G = 1.

growth in energy. This third OTD mode exhibits finer flow structures, indicative of its
role in capturing more localized and higher-frequency dynamics within the flow field.
As the interaction progresses, the observed increase in the energy growth of this mode
suggests an amplification of these finer structures, likely driven by the development of
small-scale instabilities and the transfer of energy from larger to smaller scales within the
vortex–airfoil interaction.

Now, let us consider the impact of vortex strength on the transient amplification of
perturbations. In the case of a disturbed flow with a strong positive vortical gust of G = 1,
the vorticity field undergoes prominent transient fluctuations, as shown in figure 6(ai).
The dominant three spatial time-dependent modes are also presented. Around τ = −0.5,
the strong vortex induces drastic deformation of the vortex sheet around the leading edge
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of the airfoil. During this time, the primary and secondary modes exhibit substantial
amplification potential of perturbations in a localized region concentrated on the core
of the vortex roll-up. Shortly after τ = 0, the strong dipole (vortex pair) forms over the
airfoil surface. The core of the negative LEV emerges as the most amplified region shown
in modes 1 and 2. Mode 3 highlights a thin region between the positive vortex and the
negative vortex in the LEV pair, suggesting that the stretching of vortex filaments within
the LEV can lead to the growth of perturbations.

Later, when the vortex pair detaches from the airfoil after τ = 0.5, all three dominant
OTD modes identify the vortex pair as the most amplified flow structure. Concurrently, a s-
mall positive vortical structure in the base flow emerges at the trailing edge around τ = 0.5.
The amplified region behind the trailing edge suggests that a secondary amplification of
the perturbations is associated with the formation of a trailing-edge vortex. From the
analysis of the OTD modes over time, we find that the most amplified flow structures
follow the vortices induced during the interaction between the strong vortical gust and
the airfoil. The LEV pair, being a focal point of energy concentration, coincides with
the maximum amplification regions of the OTD modes. The dominant singular values
and the energy amplifications over time are shown in figure 6(b–c). Across all three
modes, singular values exhibit a steady increase from τ = −1 to 1. The optimal energy
amplification is approximately seven times its initial value, revealing that perturbations
can be continuously amplified during the interaction between the vortex and the wing.
The second and third energy growths are non-monotonic, suggesting that the higher-order
modes have different temporal growth rates compared with the first mode.

In contrast, when encountering a negative vortical gust, the dynamics of perturbations
differ from those cases of positive vortex–airfoil interactions. We employ OTD mode
analysis for the unsteady base flow concerning interactions between an airfoil and a
moderate vortical gust (G = −0.5). Despite inducing significant lift and drag fluctuations
on the airfoil, a moderate negative gust does not lead to large vortex shedding upon
impingement, as visualized in figure 7(a). Regarding the perturbation amplification, the
primary OTD mode only exhibits a gradual change in the most amplified flow structures.
The amplified regions identified by mode 1 are associated with the deformation of the
wakes from τ = −0.5 to 1.

The time evolution of the amplified regions in modes 2 and 3 exhibits different
perturbation dynamics from mode 1. Before τ = −0.5, modes 2 and 3 do not exhibit any
prominent features in spatially sensitive areas. As the moderate negative vortex interacts
with the airfoil around τ = 0, the boundary layer separates from the pressure side of the
airfoil and becomes highlighted by OTD modes 2 and 3. Subsequently, as the vortical gust
advects downstream after τ = 0.5, a compact amplified area from the bottom side vortex
sheet roll-up is captured in the second and third modes. This result suggests that the second
and third modes are more sensitive to localized disturbances and transient phenomena.
This underscores the importance of higher-order modes in providing a comprehensive
understanding of the vortex–airfoil interaction, particularly in capturing the nuanced flow
features that govern the local perturbation behaviour.

The corresponding singular values and perturbation amplifications are shown in
figure 7(b–c). The leading singular value σ1 = O(100) remains fairly flat during its
evolution, corresponding to the gradual changes of the leading OTD mode. On the
other hand, the secondary energy amplification g2(t) shows a spike around τ = −0.1,
as depicted in figure 7(c). The large energy amplification of mode 2 indicates that the
perturbations can grow large when the bottom side vortex sheet starts to roll up. The
ability of the second mode to detect and amplify during the onset of roll-up underscores
its importance in tracking the timing of transient perturbation amplification. Eventually all
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Figure 7. (a) Vorticity fields of the time-varying base flow and the top three OTD vorticity modes, (b) the
leading three singular values and (c) the leading three energy amplifications for G = −0.5.

three energy amplifications become lower than 1 at τ = 1, suggesting a loss of coherent
structures and a decrease in the energy of the OTD modes.

Let us now consider the interactions between a strong negative vortical gust (G = −1)
and an airfoil, which inherently include high levels of unsteadiness and nonlinearity. As
visualized in figure 8(a), a large vortex pair is generated from the pressure side of the
airfoil around τ = 0 during the violent interaction. After the vortex pair detaches from the
airfoil body around τ = 1, a smaller LEV is generated from the vortex sheet roll-up on
the suction side of the airfoil. The three dominant modes in general highlight the most
amplified region following the large vortex pair below the airfoil, shown in figure 8(a).
Modes 1–3 have similar modal structures with notable features about the positive vortex.
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Figure 8. (a) Vorticity fields of the time-varying base flow and the top three OTD vorticity modes, (b) the
leading three singular values and (c) the leading three energy amplifications for G = −1.

The most amplified structures coincide with the motion and rotation of the vortex pair that
is generated around τ = 0. In addition, a secondary sensitive region is found to be related
to the subsequent vortex roll-up above the airfoil, as indicated by the emerging spatial
structures about the LEV around τ = 1.

In figure 8(b,c), the variations of the three leading singular values and energy
amplifications show that the amplification of perturbations generally becomes larger over
−1 ≤ τ ≤ 1. In this case, the interaction between the strong negative vortex and the
airfoil gives rise to a high level of perturbation amplifications. The suboptimal energy
amplification g2(t) exhibits one peak around τ = −0.1, as shown in the figure 8(c). During
this time, both the positive and negative vorticity on the bottom side of the airfoil are
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highlighted by OTD mode 2. This result suggests that the perturbations can be amplified
both in the LEV and the strong disturbance vortex. Later when the LEV convects into the
wake near the airfoil trailing edge, the optimal energy amplification g1(t) becomes four
times its initial value during evolution, as presented in figure 8(c). The increasing trend of
energy growth indicates a substantial amplification of perturbations.

The uncovering of optimal time-dependent modes offers valuable insights for
understanding transient amplification in response to perturbations about unsteady flows.
By leveraging the most amplified structures discovered by OTD mode analysis, we can
pinpoint the most amplified regions subject to time-varying perturbations. For a moderate
positive vortex–airfoil interaction case (G = 0.5), OTD modes unveil complex transitions
of amplified flow structures from the LEV sheet to the forming LEV, with a secondary
sensitive region as the wakes behind the airfoil. On the other hand, the leading amplified
structures evolve slowly when the airfoil encounters a moderate negative vortical gust
(G = −0.5). When the airflow is disturbed by a strong vortex (G = ±1), OTD modes
expose a direct correlation between shedding vortex trajectory and transient amplification
of perturbations.

The energy amplification of OTD modes provides valuable insights into the underlying
dynamics that govern the evolution of perturbations. A monotonic increase in energy
amplification, as seen in g1(t) ofthe G = ±1 cases, indicates a persistent instability
mechanism. This mechanism for these two vortex–airfoil interactions is correlated with
the high intensity of the vorticity of the primary shedding vortex. However, the region with
the highest amplification is not always associated with the largest vorticity magnitude. For
the example of G = −0.5, the highlighted modal structures of all three leading modes
do not collapse on the leading edge of the airfoil where the highest vorticity magnitude
is observed. Diverse transient behaviours are uncovered by the variations of energy
amplification. For example, g1 and g2 exhibit rapid increases followed by decreases, as
shown in figure 5. A rapid increase in energy amplification indicates a highly unstable
region of the flow. The roll-up of the LEV for G = 0.5 corresponds to increasing energy
amplifications. This region is prone to perturbations that can quickly amplify and lead
to significant flow modifications. The subsequent decay suggests that the instability is
transient, energy can be transferred downstream because of the wake formation.

The OTD mode analysis can be used to identify perturbation dynamics for more
complex flows, such as extreme aerodynamic flows and turbulent flows. Capturing the
coherent structures that are receptive to perturbations in a time-evolving manner is critical
in understanding the unsteady flow physics. In addition, OTD mode analysis has the
potential to guide flow control strategies. The OTD modes evolve dynamically, identifying
when and where perturbations are most likely to grow. The OTD modes inform when
the flow is most receptive to perturbations, suggesting that actuators or energy inputs
(e.g. actuation via jets or local forcing) can be applied at the most effective moments
to amplify (or suppress) instabilities. For example, for the G = 0.5 case, when the vortex
is approaching the airfoil, the most amplified region is the leading edge of the airfoil. The
control effects at this moment should focus on the local region around the leading edge.
On the other hand, when the vortex convects to the trailing edge of the airfoil, the trailing
edge can be amplified more compared with the leading edge. A different local forcing near
the trailing edge will be more efficient than the leading edge at this specific moment.

5. Conclusions
Vortex–airfoil interactions involve strong transient features, which are difficult to
characterize with classical methods that are founded on time-invariant or periodic flow.
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Figure 9. Time convergence on the top three singular values of moderate negative vortex–airfoil interaction.

In this study, OTD mode analysis was used to identify the most amplified flow structures
of unsteady base flows of vortex–airfoil interactions. We considered four scenarios of
vortex–airfoil interaction with a moderate positive vortex (G = 0.5), a strong positive
vortex (G = 1), a moderate negative vortex (G = −0.5) and a strong negative vortex
(G = −1). The OTD modes capture the most amplified regions subject to perturbations,
and the singular value variations offer insights into the significance of the OTD modes.
For the vortex–airfoil interaction of G = 0.5, the amplified region transitions from the
LEV sheet to the evolving LEV. In addition, a secondary amplified flow structure near
the trailing-edge wake is revealed by subdominant OTD modes. When a strong positive
vortical gust (G = 1) interacts with an airfoil, perturbations are amplified following the
advection and rotation of the LEV pair generated from the impingement of the strong
vortical gust. For a moderate negative vortex disturbance (G = –0.5), the flowfield
exhibits few dominant vortical structures, and thus, the dominant OTD mode follows
the advection of the wakes around the airfoil and undergoes gradual changes over time.
For the strong negative vortex–airfoil interaction of G = −1, the shedding vortex pair
convecting from the pressure side of the airfoil surface is identified as the most amplified
flow structure subject to perturbations. The findings through the OTD mode analysis for
the present vortex–gust airfoil interactions provide insights into the transient amplification
of perturbations in unsteady flight conditions and hold promising implications for diverse
unsteady flow problems.
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Appendix A. Verification of OTD modes
The OTD modes are obtained by time-integrating the evolution (2.13). In this appendix,
we briefly outline the checks performed to ensure the accuracy of the OTD modes. We first
check the temporal convergence of the top three singular values, as shown in figure 9 for
the case of G = −0.5. Using different time step sizes of �τ = 8.5 × 10−5 and 1.7 × 10−4,
the singular values from the two cases match well with each other over time. Therefore,
we choose �τ = 1.7 × 10−4 as the default time step for finding the OTD modes.

Next, we examine the convergence on the number of OTD modes r . This is studied by
comparing the singular values for different numbers of modes r . For brevity, we present
only positive vortex–airfoil interaction cases in the following analyses. The negative
vortex–airfoil interaction cases exhibit analogous results. As presented in figure 10 for
positive gust cases, the top five singular values over time are shown for r = 5, 15 and
40. The solid lines represent the r = 40 cases, the dashed lines denote the r = 15 cases
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Figure 10. Convergence on the number of OTD modes for the top five singular values of four disturbed flow
cases: (a) G = 0.5, (b) G = 1.
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Figure 11. Cosine similarity of each of the three dominant modes between r = 5 and r = 15 of positive
vortex–airfoil interaction cases.

and the dashed–dot lines are the r = 5 cases. In general, the leading three singular values
of cases with different numbers of modes agree perfectly with each other. However, the
lowest r = 5 cases have discrepancies in the fourth and fifth singular values compared with
cases with a larger number of modes. Hence, we concluded that the singular values exhibit
convergence with 15 modes for positive vortex–airfoil interaction cases.

The convergence check on the number of modes is also performed by comparing the
cosine similarity between modes. Cosine similarity is defined as the inner product of two
vectors, whose absolute value is in the range of [0, 1]. When the absolute cosine similarity
approaches 1, it indicates that the two vectors are similar to each other. For convenience,
we present the absolute value of the cosine similarity between OTD modes below. We
examine the cosine similarity of the dominant three modes betweenthe r = 5 and 15 cases.
Figures 11(a) and 11(b) show the vortex–airfoil interaction cases for positive vortices,
respectively. Among the comparisons of positive vortex cases of G = 0.5 and 1, all three
modes from the r = 5 cases achieve over 99.99 % cosine similarity with the corresponding
modes from r = 15 cases. The high similarity levels demonstrate the high agreement of the
leading three modes extracted from disturbed flow scenarios. With only r = 5 modes, the
top three modes are as accurate as using 15 modes.

Now we investigate the influence of initial evolution time τ0 on the OTD modes,
the leading singular values converge while being insensitive to the choice of the OTD
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Figure 12. The influence of initial time for OTD evolution. For each of the leading three OTD modes, cosine
similarity is checked between modes computed with initial time τ0 = −0.85 and −1 (solid lines), and between
τ0 = −1.12 and −1 (dashed lines). The initial condition matrix is extracted from the flow state snapshots over
[τa, τb] ∈ [−1, −0.4].

initial condition time τ0. Using the same initial condition matrix considering [τa, τb] =
[−1, −0.4], we integrate the initial OTD modes from different initial times of τ0 = −1.12,
−1 and −0.85. The influence of different initial times on the evolution of the leading
three modes is presented in figure 12. The solid lines indicate the comparison of each
of the leading three modes computed with τ0 = −0.85 and −1, and the dashed lines are
computed with τ0 = −1.12 and −1. In the case of G = 0.5, each of the three dominant
modes with different initial evolution moments maintains over 80 % similarity throughout
the entire time span. For the vortex–airfoil interaction cases of G = 1, however, the
similarities start from relatively low values and increase afterward. This indicates that the
observed dominant features converge to the same subset of OTD modes regardless of the
initial evolution moments. Based on these results, we perform the OTD mode evolution
from τ0 = −1, and the initial condition is given by [τa, τb] = [−1, −0.4].

To show that the primary OTD mode shown earlier in figure 5 is not dependent on the
initial condition, let us also consider random noise as the initial condition and evolve the
OTD modes in time for the G = 0.5 case. We use 15 orthonormal random noise vectors as
the initial OTD modes at τ = −1.

As shown in the figure 13, the OTD mode 1 captures very similar structures to the case
shown in the figure 5 when τ > 0. The amplified region starts from the LEV sheet around
τ = −0.5, then evolves with the shedding of the LEV. Later around τ = 1, the region after
the trailing edge of the airfoil is highlighted as the most amplified region. On the other
hand, OTD modes 2 and 3 are filled with random noises evolved from the initial condition.
The noise structures get smoothed out as time increases, and vortical structures similar to
OTD mode 1 are observed near the airfoil.

Compared with the initial modes, which are the singular vectors from the initial
perturbation matrix, random noise as the initial condition yields a worse result in capturing
the perturbation amplification. Although the OTD modes converge to the most amplified
structures subject to perturbations, the convergence requires a large number of initial
condition vectors. Therefore, we infer that a proper set of initial OTD modes can be
selected from the SVD of the initial condition matrix collected around the OTD evolution
starting time.

Appendix B. Most amplified initial perturbation
After acquiring knowledge about transient amplifications from spatial modes, we can
identify which perturbation has the maximum impact on the disturbed flows. This
information is crucial for understanding the underlying mechanisms driving flow
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Figure 13. The evolution of OTD modes with random noise as the initial condition, G = 0.5.

instabilities and transient growth phenomena. The optimal initial perturbation that leads
to the maximum amplification at time τ ∗ is obtained via (2.18). Starting from τ0 to τ ∗, the
most amplified initial perturbation can be written as

q′∗
0 = Ûr (τ0)Σr (τ0)Ŷ

T
r (τ0)ŷ1(τ

∗) ∈R
n, (B1)

which leads to a largest singular value at σ1(τ
∗) by evolving q′∗

0 in OTD subspace from
τ0 to τ ∗. It is important to note that the optimal initial condition determined via B1) is

confined to the space spanned by the columns of Q′
0 ≈ Ûr (τ0)Σr (τ0)Ŷ

T
r (τ0).

To show the most amplified perturbation at different τ0 that arrives at the largest
singular value at τ ∗ = 1, we compare its singular value with the largest singular value from

the evolution of the set of perturbations Q′
r ≡ Ûr (τ0 = −1)Σr (τ0 = −1)Ŷ

T
r (τ0 = −1) in

the OTD subspace. The product of the OTD modes and the associated coefficients
approximates the evolution of the set of perturbations Q′

r , which is referred to as the
baseline case in this section. We present the leading singular value of evolving Q′

r
over time with blue solid lines in figure 14. Starting from four initial conditions at
τ0 = −1, −0.5, 0 and 0.5, the most amplified initial perturbations are identified from

q′∗
0 = Ûr (τ0)Σr (τ0)Ŷ

T
r (τ0)ŷ1(τ

∗ = 1). The singular value variations are shown on the left-
hand side of figure 14. For the vortex–airfoil interaction cases of G = ±0.5, the singular
values from q′∗

0 (τ0 = −1, −0.5, 0) and q′∗
0 (τ0 = 0.5) almost collapse with the leading
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Figure 14. Evolution of the leading singular value subject to different q′∗
0 at τ0 = −1, −0.5, 0, and 0.5 (shown

with circles), τ ∗ = 1 (square). The vorticity fields surrounded by yellow, purple and green dashed boxes indicate
the most amplified initial perturbations at τ0 = −0.5, 0, and 0.5, respectively. Each perturbation is normalized
for visualization.

singular value of evolving the full set of perturbations Q′
r . This result reveals that there

exists one single perturbation that can be amplified the most over time. On the other hand,
it is observed that the most amplified initial perturbations from cases of G = ±1 have
lower singular values than the largest singular value of the baseline case. This suggests that
a strong vortex–airfoil interaction The normalized q′∗

0 subject to different τ0 are shown on
the right-hand side of figure 14. For all interaction cases, they follow a similar shape of
the leading mode û1(t), indicating that the regions in which perturbation is amplified the
most can be captured by the leading OTD mode.

Moreover, figure 15 presents the most amplified perturbations for a fixed τ0 and
different τ ∗. The initial evolution time are the same at τ0 = −1, and the target singular
values are at τ ∗ = τ ∗(σmax ), −0.5, 0 and 0.5. By comparing the difference between
initial perturbations at the same τ0, we are able to identify the key features of the most
dangerous initial perturbation that can be amplified the most over the whole interaction
period. For moderate vortex–airfoil interaction cases as presented in figure 15, the singular
value variations generally have the same trend as the baseline case. This indicates that
the identified q′∗

0 (τ0 = −1) subject to different τ ∗ are similar to each other, which
can also be visualized on the right-hand side of figure 15. For strong vortex–airfoil
interactions, however, the identified q′∗

0 (τ0 = −1) that leads to a largest singular value
of τ ∗ ≥ 0.5 possesses a lower singular value than the baseline case. In figure 15, we
compare normalized q′∗

0 (τ ∗(σmax )) with normalized q′∗
0 (τ ∗ = −0.5). For strong vortex–

airfoil interactions (G = ±1), q′∗
0 (τ ∗(σmax )) has a higher intensity of vorticity at vortex

centre, and q′∗
0 (τ ∗ = −0.5) has a sparsely distributed vorticity region in the upstream. This
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Figure 15. Evolution of the leading singular value subject to different q′∗
0 at τ ∗ = τ ∗(σmax ), −0.5, 0, and

0.5 (denoted as squares) with τ0 = −1. The vorticity fields surrounded by orange, green and grey dashed
boxes indicate the most amplified perturbations at τ ∗ = τ ∗(σmax ), −0.5, and the difference between them,
respectively. Each perturbation is normalized for visualization.

result indicates that a concentrated perturbation on the vortex core upstream is likely to be
amplified more than a sparsely distributed perturbation.

In summary, for a time-varying fluid system, the most amplified initial perturbation
within the initial perturbation subspace evolves dynamically with time. Identifying these
time-dependent, most amplified perturbations through OTD mode analysis highlights the
key structures that have the potential to drive significant deviations from the base flow.
This understanding is invaluable for perturbation amplification analysis of unsteady fluid
systems.
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