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-̂HYPERCYCLIC RINGS 

S. K. JAIN AND D. S. MALIK 

0. Introduction. A ring R is called g-hypercyclic (hypercyclic) if each 
cyclic ring ^-module has a cyclic quasi-injective (injective) hull. A ring R 
is called a goring if each cyclic right ^-module is quasi-injective. 
Hypercyclic rings have been studied by Caldwell [4], and by Osofsky [12]. 
A characterization of gorings has been given by Koehler [10]. The object 
of this paper is to study ^-hypercyclic rings. For a commutative ring R, R 
can be shown to be ^-hypercyclic ( = gc-ring) if R is hypercyclic. 
(Theorems 4.2 and 4.3). Whether a hypercyclic ring (not necessarily 
commutative) is ^-hypercyclic is considered in Theorem 3.11 by showing 
that a local hypercyclic ring R is ^-hypercyclic if and only if the Jacobson 
radical of R is nil. However, we do not know if there exists a local 
hypercyclic ring with nonnil radical [12]. Example 3.10 shows that 
a ^-hypercyclic ring need not be hypercyclic. A characterization of 
local ^-hypercyclic rings is given in Theorem 3.9 by showing that local 
g-hypercyclic rings are precisely gorings. The structure of a semi-
perfect ^-hypercyclic ring is given in Theorem 5.7 whence it follows as a 
consequence that if R is a semi-perfect ^-hypercyclic ring then each cyclic 
right i^-module is a finite direct sum of indecomposable quasi-injective 
modules. Finally, a characterization of right or left perfect g-hypercyclic 
(hypercyclic) rings is given in Section 6. Our results depend upon a 
number of lemmas. Lemma 5.1 regarding the quasi-injective hull of A © B, 
where B contains a copy of the injective hull E(A) of A, though 
straightforward, is also perhaps of interest by itself, besides being a key 
lemma in the proof of our Theorem 5.5. We also make use of Koehler's 
characterization of gorings as those which are direct sum of rings each of 
which is semisimple artinian, or a rank 0 duo maximal valuation ring. 

1. Notation and definitions. All rings considered have unity and unless 
otherwise stated all modules are unital right modules. If M is a module, 
then E(M) (q.i.h. (M) ) will denote the injective hull (quasi-injective hull) 
of M. An idempotent e of a ring R is called primitive if the module eR is 
indecomposable. / will denote the Jacobson radical of the ring 
R. S(RR) (S(RR) ) will denote the right (left) socle of R. Let X Q R, 
then rR(X) (lR(X)) will denote the right (left) annihilator of X in R. 

Received September 7, 1983. 

452 

https://doi.org/10.4153/CJM-1985-027-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-027-5


<7-HYPERCYCLIC RINGS 453 

N c ' M will denote that TV is a large submodule of M. 
R is called right (left) duo if every right (left) ideal of R is a twosided 

ideal of R. R is a right (left) valuation ring if right (left) ideals of R are 
linearly ordered. R is called a right (left) bounded ring if every non-zero 
right (left) ideal of R contains a non-zero twosided ideal of R. R is called a 
duo (valuation, bounded) ring if R is both right and left duo (valuation, 
bounded). 

A module M is called local if M has a unique submodule. A ring R is 
called semi-perfect if R/J is artinian and idempotents modulo / can be 
lifted, or equivalently every finitely generated module has a projective 
cover. R is called right (left) perfect if every right (left) /^-module has a 
projective cover, or equivalently, R/J is artinian and every non-zero right 
(left) /^-module has a maximal submodule. R is called uniserial if R is an 
artinian principal ideal ring. An .R-module M is said to have finite 
Azumaya diagram (A.D) [5] if 

k 

M = ® 2 Mt, 
/ = i 

where each i^-submodule Mt has a local endomorphism ring. 

2. Preliminary results. 
n 

LEMMA 2.1. Let M be quasi-injective. If E(M) = © 2 Kt is a direct 
i=\ 

sum of submodules Kt, then 

n 

M = 0 2 (M n Kt). 
1 = 1 

Proof See ( [7], Theorem 1.1). 

The following is a well known equivalence between mod-/?, the category 
of right .R-modules and mod-i^, the category of right i^-modules, where 
Rn is the n X n matrix ring over R. 

LEMMA 2.2. Let 

n 

F = 2 xtR 
1 = 1 

be a free R-module with free basis {xt\\ = i = n}. Then MR —> Hom^(F, 
M) is a category isomorphism between mod-7? and mod-Rn with inverse 

NRn -» N ®K F. 
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LEMMA 2.3. Let R/J be artinian, I a right ideal of R, 

k 

R/I = e 2 MZ. 

Then k = composition length of R/J. 

Proof See ( [12], Lemma 1.8). 

LEMMA 2.4. Let I be a two-sided ideal of R and let E be an injective 
R-module. Then 

0:EI = [x G E\xl = 0} 

is injective as an R/I-module. 

Proof See ( [13], Proposition 2.27). 

LEMMA 2.5. Let R be semiperfect and q-hypercyclic. Then RR is 
self-injective. 

Proof. Let / be a right ideal of R such that R/I is the quasi-injective hull 
of R. Let <j>:R —> R/I be the embedding. Since R/I contains a copy of R, 
R/I is injective. Let <t>(R) = B/L Then B/I C R/I. Hence B C R. Since 
R ~ B/I, B/I is projective. Thus B = I ® K for some KR Q BR. Now 

B I® K 
R = - = = K. 

I I 

Therefore E(R) = E(K). But then I ® K Q' R implies 

E(R) = E(I) 0 E(K) = E(I) 0 E(R). 

Since E(R) = R/I, E(R) is a finite direct sum of indecomposable 
modules, by Lemma 2.3. Thus E(R) has finite Azumaya-Diagram [5]. 
Therefore, E(R) = E(R) ® E(I) implies E(I) = 0. Hence 1 = 0. Thus R 
is self-injective. 

LEMMA 2.6. Let R be q-hyper cyclic. Then every homomorphic image of R 
is also q-hyper cyclic. 

Proof. Let A be a twosided ideal of R. Let R = R/A. Let R/I be a cyclic 
^-module, where / = I/A. But R/I = R/I. Since 4̂ c /, A annihilates 
R/I. Let R/K be the quasi-injective hull of R/I as an .R-module. Then 

£ = -.(*(?))£ 
Then it follows that 4̂ annihilates R/K. Thus 7̂ /AT may be regarded as an 
#-module. Since R/K is quasi-injective as an i^-module, R/K is 
quasi-injective as an R-module. Since A is a twosided ideal and annihilates 

https://doi.org/10.4153/CJM-1985-027-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-027-5


4-HYPERCYCLIC RINGS 455 

R/K, A c K. Hence 

R R K 

K = A À 

Clearly R/K is the quasi-injective hull of RII as an 7?-module. Hence R is 
g-hypercyclic. 

LEMMA 2.7. Le/ i? Z?e a finite direct sum of rings, {Rj\l = i = n}. Then R 
is q-hyper-cyclic if and only if each Rt is q-hypercyclic for all /, 1 = / = n. 

Proof This is straightforward. 

3. Local g-hypercyclic rings. In this section we study local g-hypercyclic 
rings and show that over such rings every cyclic module is quasi-injective. 
Throughout this section unlesss otherwise stated R will denote a local 
g-hypercyclic ring. 

LEMMA 3 A. If I is a right ideal of R, then E(R/I) is indecomposable. 

Proof. Let q.i.h. (R/I) = R/A. Since R/A is indecomposable, E(R/I) is 
indecomposable. 

LEMMA 3.2. Right ideals of R are linearly ordered. 

Proof Let A and B be right ideals of R. Suppose 

A „ B „ 

A n B 
T- U. 

A n B 

Then 

A © 
A 

B R 
r-viz 

A n B A n B ~ A n B 

Hence 

\A n B> \A n BJ \A n B/ 

By Lemma 3.1, E 

( — ) 
is indecomposable. Hence either 

^ B 
- 0 or = 0. 

A n B A n B 
Thus either A Q B or B Q A. 

LEMMA 3.3. Left ideals of R are linearly ordered. 

Proof. This follows by ( [8], Theorem 1) and Lemma 3.2. 
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LEMMA 3.4. Let I be a non-zero right ideal ofR. 7/*q.i.h. (R/I) = R, then 
R/I is injective. 

Proof. Let <j>:R/I -> R be the embedding. Let cj>(\ + I) = x. Then 
R/I = xR. Let A = xR. Then R is quasi-injective hull of A. Thus 

R = EndR(R)A = RA = RxR. 

Therefore, x £ J, and hence x is a unit. Thus A = R. Hence R/I is 
injective. 

LEMMA 3.5. Let I be a non-zero right ideal of R such that R/I is 
quasi-injective. Suppose S(RR) = 0. Then I contains a non-zero twosided 
ideal of R. 

Proof Since R is local, rR(J) = S(RR) = 0. We may assume that / ¥= J. 
Let x e / and x £ I. Then / ç xR. By linear ordering on right ideals 
either x~]I c / or / c x~xI. Suppose x~]I c / . Define 

xR R 

I I 

by <j>(xa -\- I) = a + I. Since x~ I c I, <j> is well defined. Then </> can be 
extended to f R/I -» R/I. Le t / (1 + / ) = / + /. Then 

1 + / = <j>(x + / ) = f(x + / ) = tx + / . 

Therefore 1 — ta e / . Since ta e J, 1 — ta is a unit. Thus I = R. Hence 
/ c x~xI. Let 

jy = x# e x/, a ^ I. 

Since a ^ I a x~lI, xa ^ I. Thus xf c / . Hence for all x e / , x £ /, 
xi c / . Thus / / c / . If / / = 0 then 

/ c rR(J) = 0. 

Since / is non-zero, / / ¥= 0. Therefore JI is a non-zero twosided ideal of R 
contained in / . 

LEMMA 3.6. R is left bounded or R is right bounded. 

Proof Case 1. If S o c ( ^ ) =£ 0, then by linear ordering on left ideals, 
Soc(RR) is a non-zero twosided ideal contained in each left ideal and 
hence R is left bounded. 

Case 2. Soc(RR) = 0. 
Let / b e a nonzero right ideal of R. If R is the quasi-injective hull of 

R/I, then R/I is quasi-injective by Lemma 3.4. Hence / contains a 
non-zero twosided ideal (Lemma 3.5). 

Let R/A be the quasi-injective hull of R/I, for some non-zero right ideal 
A of R. Then by Lemma 3.5 A contains a non-zero twosided ideal, 
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say B. Let <t>:R/I -> R/A be the embedding and let <j>(\ + / ) = JC + A. Let 
Û G 5 . Then 

<#a + / ) = xa + A = A. 

Therefore a e / . Thus B a I. Therefore / contains a non-zero ideal B. 
Hence R is right bounded. 

LEMMA 3.7. / w w7. 

Proof. Let a ^ J. Suppose an ¥= 0 for any positive integer «. Let 

S = { a > > 0}. 

By Zorn's lemma there exists an ideal P of R maximal with respect to the 
property that P n S = <J>. Then P is prime. Hence R/P is a prime local 
#-hypercyclic ring. Thus R/P is either left bounded or right bounded. 
Then it follows that R/P is a domain. Since R/P is also local and 
g-hypercyclic ring, R/P is self-injective and hence a division ring. 
Therefore P is a maximal ideal of R. Thus P = J, a contradiction. Hence / 
is nil. 

LEMMA 3.8. R is duo. 

Proof. It suffices to show that for 0 ¥= y ^ R,yR = Ry. Let 0 ¥= y G R. 
Suppose yr £ Ry. By linear ordering on left ideals Ry Ç Ryr. Therefore 

y = xyr for some x G R. 

If x G / then xn = 0 for some «. Then 

y = xyr = x yr = . . . = xnyrn = 0, 

which is a contradiction. Thus JC is a unit. Hence 

xyr = y => yr = x~ y £; Ry, 

which is again a contradiction. Thus yR Q Ry. By symmetry Ry Q yR. 
Hence Ry = yR. 

We now prove the main result of this section. 

THEOREM 3.9. Let R be a local ring. Then R is q-hyper-cyclic if and only if 
R is a qc-ring. 

Proof. Let R be g-hypercyclic and let A be a non-zero right ideal of R. 
Then by Lemma 3.8, A is a twosided ideal of R. But then by Lemma 2.6, 
R/A is a self-injective ring. Thus R/A is a quasi-injective /^-module, 
proving that R is a goring. The converse is obvious. 

The following example shows that a g-hypercyclic ring need not be 
hypercyclic. 
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Example 3.10. Let F be afield, x an indeterminant over F. Let 

W = { {«/} I {«z} is a well ordered sequence of nonnegative real 
numbers}. 

Let 

T= { 2 <yta 'k e F, {at} e w). 

77ICH 71 w (3 /oca/, commutative ring and 

J(T) = { 2 <yctti' e r|ao > o}. 
=0 

Let 

T 
R = 

xJ(T) 

Then as shown in [4], R is a commutative local hyper cyclic ring. Then R is 
q-hypercyclic (Theorem 4.3). But R/S, where S is the socle of R, is not 
hyper cyclic. Since R/S is a homomorphic ring of R, R/S is q-hypercyclic by 
Lemma 2.6. Note that R/S is a commutative local ring with zero socle. 

A ring has rank 0 if every prime ideal is a maximal ideal. A valuation 
ring is called maximal if every family of pairwise solvable congruences of 
the form x = xa(Ka) (each xa G R9 each Ka is an ideal of R) has a 
simultaneous solution [9]. 

We now give a necessary and sufficient condition for a local hypercyclic 
ring to be ^-hypercyclic. In the next section we will show that a 
commutative hypercyclic ring is always g-hypercyclic. 

THEOREM 3.11. Let R be local and hypercyclic. Then the following 
conditions are equivalent. 

(i) / is nil. 
(ii) R is q-hypercyclic. 

Proof, (i) ^> (ii). By [12], R is duo, valuation, and self-injective. But then 
R is maximal. Thus R is a gc-ring [10], and hence ^-hypercyclic. (ii) => (i) 
follows from Lemma 3.7. 

Remark. 3.12. It is not known whether there exists a semi-perfect (or 
equivalently local) hypercyclic ring with a non-nil radical ( [12], p. 339). 

4. Commutative ^-hypercyclic rings. We begin with 

LEMMA 4.1. Let R be commutative and q-hypercyclic. Then R is 
self-injective. 
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Proof. This is obvious. 

THEOREM 4.2. Let R be a commutative ring. Then the following are 
equivalent. 

(i) R is q-hyper cyclic. 
(ii) R is a qc-ring. 

Proof. This is similar to the proof of the Theorem 3.9. 

THEOREM 4.3. Let R be a commutative hyper cyclic ring. Then R is 
q-hyper cyclic. 

Proof. Let R be hypercyclic. Then by ( [4], Theorem 2.5), R is a finite 
direct sum of commutative local hypercyclic rings. So it suffices to show 
that a commutative local hypercyclic ring is ^-hypercyclic. Let R be 
commutative local and hypercyclic. Then by [4], R is valuation and 
self-injective, and J is nil. Then by ( [9], Theorem 2.3), R is maximal. Since 
J is nil, R has rank 0. Then R is rank 0 maximal valuation ring. Thus R is a 
coring [10], proving the theorem. 

5. Semi-perfect g-hypercyclic rings. 

LEMMA 5.1. Let A and B be right R-modules. Let B be injective containing 
a copy of E(A). Then 

q.i.h. {A® B) = E(A) ® B. 

Proof. 

q.i.h. (A® B) = EndR(E(A) ® B)(A ® B) 

= (HomR(E(A\ E(A)) HomR(B, E(A) )) (A) 
\HomR(E(A), B) HomR(B, B) ) \BI 

= (HomR(E(A), E(A)A + HomR(B, E(A))B\ 
~ \HomR(E(A), B)A + HomR(B, B)B ) 

= (E(^) =E(A)®B. 

The above lemma gives another proof of an interesting result of 
Koehler. 

COROLLARY 5.2. ( [11] ). If the direct sum of any two quasi-injective 
modules is quasi-injective, then every quasi-injective module is injective. 

Proof. Let M be a quasi-injective right i^-module. By Lemma 5.1 

q.i.h. (M 0 E(M) ) = E(M) ® E(M). 

Then M ® E(M) = E(M) ® E(M). Therefore M = E(M), proving M is 
injective. 

https://doi.org/10.4153/CJM-1985-027-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-027-5


460 S. K. JAIN AND D. S. MALIK 

The proof of the next lemma is exactly similar to Osofsky's ( [12], 
Corollary 1.9). 

LEMMA 5.3. Let R be semiperfect and q-hypercyclic and let e be an 
idempotent in R. Assume length ofeR/eJ = m. Then any independent family 
of submodules of a quotient of eR has at most m elements. 

Proof Let {Mt\\ ^ i' = k) be an independent family of submodules of 
eRI el. Then 

- 2 (i - e)R® (© 2 M). 
el V z=i / 

Therefore E(R/eI) is a direct sum of length R/J — m + s terms, where 
s =" k. Thus q.i.h. (R/el) is a direct sum of length R/J — m + s terms, by 
Lemma 2.1. Then Lemma 2.3 gives s ^ m. Hence k â m. 

COROLLARY 5.4. Let R be semi-perfect and q-hypercyclic, e = e e R, 
eRIeJ is simple. Then submodules of eR are linearly ordered. 

F roof. This follows from Lemma 5.3. 

THEOREM 5.5. Let R be a semi-perfect q-hypercyclic ring. Then R is a 
finite direct sum of q-hypercyclic matrix rings over local rings. 

Proof. R = exR © . . . © enR, where ei9 1 ^ i ^ n are primitive 
idempotents. 

We will show that for / ^ /*, either e:R = e,R, or 

H o m ^ O ^ , ejR) = 0. 

Suppose for some / ¥= j , Hom/?(ezi^, ejR) ¥= 0. By renumbering, if 
necessary, we may assume that / = 1,7 = 2. Let a\exR —> e2R be a 
non-zero i^homomorphism. Then exR/Kcr a embedds in e2R. Since e2R is 
indecomposable, 

E(exR/Ker a) = e2R. 

Hence B = e2R © . . . © enR contains a copy of E(exR/Ker a). Now 

#/Ker a = ( e ^ / K e r a X e2R X . . . X enR. 

Let A = (exR)/Ker a. Then B is injective and contains a copy of E(A). 
Hence 

HomR(B, E(A))B = E(A). 

Since R is g-hypercyclic, for some right ideal / , 

R/I = q.i.h. (jR/Ker a) = q.i.h. (A X B) = E(A) X B. 

Thus R/I = e2R X B. Then R/I is projective. Hence R = I © K for some 
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right ideal K. Then 

K = R/I = e2R X e2R X . . . X enR. 

Thus 

R = I ® K =* exR X e2R X . . . X enR 

= I X e2R X e2R X ...X enR. 

Hence by Azumaya Diagram [5], 

exR = I X e2R. 

Since exR is indecomposable, 7 = 0. Consequently, R = K. Then 

exR X e2R X . . . X enR = e2R X e2R X . . . X enR. 

Again by Azumaya Diagram, exR = e2R. Thus for i # j , either 

etR = ejR or HomR(etR, ejR) = 0. 

Set [ekR] = 2 etR, etR = ekR. Renumbering if necessary, we may 
write 

R = [exR]@...®[etRl t ^ n. 

Then for all 1 ^ k ^ t, [ekR] is an ideal. Since for any k, \ tk k tk n, 
ekR is indecomposable, 

Endf lO^) = ekRek 

is a local ring. 
Thus [ekR] = © 2 / ^ is t r i e «^ X «^ matrix ring over the local ring 

ekRek where nk is the number of etR appearing in © 2 / ^ - That the 
matrix ring is ^-hypercyclic follows from Lemma 2.7. 

We now proceed to study g-hypercyclic rings which are matrix rings 
over local rings. 

THEOREM 5.6. Let S = Tn be the n X n q-hyper'cyclic matrix ring over a 
local ring T. Then T is q-hyper cyclic. 

Proof. Let e be a primitive idempotent of S and let eS/el be a quotient 
of eS. Since S is g-hypercyclic, 

q.,.h. ( « ! ) s * 
\elt A 

for some right ideal A of S. But since submodules of eS are linearly 
ordered, S/A is indecomposable. Thus S/A = fS/fK, ( [2], Lemma 27.3), 
for some primitive idempotent / of S, which may be chosen to be e by 
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itself. Thus S/A = eS/eB for some right ideal B of S. Since category 
isomorphism (Lemma 2.2) takes T to eS, every quotient of T has 
quasi-injective hull a quotient of T, proving that T is a g-hypercyclic 
ring. 

THEOREM 5.7. Let Rbe a semi-perfect and q-hyper'cyclic ring. Then R is a 
finite direct sum of matrix rings over local qc-rings. 

Proof Combine Theorems 5.5, 5.6 and 3.9. 

We are unable to show if, in general, the n X n matrix ring S over a 
local g-hypercyclic ring is again g-hypercyclic. However we will show in 
the next section that the result is true if S is a perfect ring. In the following 
theorem we prove that each cyclic 5-module is a finite direct sum of 
indecomposable quasi-injective modules and generalise this to the case 
when S is any semi-perfect g-hypercyclic ring in Theorem 5.9. 

THEOREM 5.8. Let S = Tn be the n X n matrix ring over a local 
q-hypercyclic ring. Then every cyclic S-module is a direct sum of 
indecomposable quasi-injective S-modules. 

Proof Let I be a right ideal of S. Let e e S be a primitive idempotent 
of S. Since the category isomorphism (Lemma 2.2) takes T to eS every 
quotient of eS is quasi-injective. Let 

7 = © 2 M, 
1 1 = 1 

where the M- are indecomposable S-modules. Since S is semi-perfect and 
Mz indecomposable, 

M, = (e.Syie.Al 

where et is a primitive idempotent of S. Thus S/I is a direct sum of 
indecomposable quasi-injective S-modules. 

THEOREM 5.9. Let R be a semi-perfect and q-hypercyclic ring. Then every 
cyclic R module is a direct sum of indecomposable quasi-injective R-
modules. 

Proof Combine Theorems 5.7 and 5.8. 

6. Perfect g-hypercyclic rings. A ring R is called right (left) perfect if 
every right (left) .R-module has a projective cover. A theorem of Bass [3] 
states that the following conditions on a ring R are equivalent, 

(i) R is right perfect. 
(ii) R satisfies minimum conditions on principal left ideals. 

(iii) R/J is artinian and every right .R-module has a maximal 
submodule. 
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LEMMA 6.1. Let R be a local right perfect and q-hypercyclic ring. Then R 
is hypercyclic. 

Proof. By Theorem 3.9, R is a goring and hence R is duo. Let / be a 
nonzero right ideal of R. Then R/I is quasi-injective and indecomposable, 
and hence E = E(R/I) is indecomposable. 

First we show that the submodules of E are linearly ordered. Let aR and 
bR be submodules of E. Let A = rR(a). Since ideals of R are linearly 
ordered either 

rR(a) ç rR(b) or rR(b) Q rR(a). 

To be specific let A = r^(a) c rR(b). Let £ ' = 0:#4. Then aR, bR Q E. 
By Lemma 2.4, £"' is injective as an R/A module. Hence E' is 
quasi-injective as an .R-module. Since E' Q E and E is injective and 
indecomposable, Ef is indecomposable as an /^-module and hence E' is 
indecomposable as an R/A -module. Let R = R/A. Then E' = ER(R), the 
injective hull of R as an R-module. Hence E' = R/A. Since submodules 
of R/A are linearly ordered, submodules of E are linearly ordered. Thus 
aR Q bR or bR Q aR. Hence submodules of E are linearly ordered. But 
then E must be local, since R is right perfect. Hence E is cyclic. Therefore 
R is hypercyclic, proving the theorem. 

THEOREM 6.2. Let S = Tn be the n X n matrix ring over a local ring T. 
Let S be right perfect. Then S is q-hypercyclic if and only if T is 
q-hypercyclic. 

Proof. Let T be ^-hypercyclic. Then T is right perfect local and 
^-hypercyclic. Thus by Theorem 6.1, T is hypercyclic. Further, by 
Theorem 3.9, T is a goring. Since T is hypercyclic, by ( [12], Theorem 
1.17), S is hypercyclic. Let e e S be a primitive idempotent. Then as 
before, the category isomorphism (Lemma 2.2) takes T to eS. Hence 
quotients of eS are quasi-injective and each quotient has injective hull a 
quotient of eS. Let I be a right ideal of S. By Theorem 5.8, 

ï k 
S-=®^ Mi9 
1 i = i 

where for all 1 ^ i ^ k, Mt are indecomposable and quasi-injective. 
Then 

Mt = (e.SVie.A) 

for some primitive idempotent et e S. Hence 

E(Mt) = EKetSyteiA)] = (e^Viefi) for all 1 ^ i ^ k. 

Since S is right perfect and hypercyclic, submodules of (eiS)/(eiB) are 
linearly ordered. Hence for all 1 = i: = k, submodules of E(Mt) are 
linearly ordered. Let 
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H = q.i.h. (S/I). 

Then 

k 

H = 0 2 ( # n £(M,)). 
1 = 1 

Let K; = H C) E(Mt). Then submodules of ^ are linearly ordered for all 
I ^ i ^ k. But then since S is right perfect, for all 1 S * S fc, ^ is cyclic. 
Therefore, 

*,- = (fiSWP) 
where / G S is a primitive idempotent, 1 ^ / = fc. Thus 

k 

H s e 2 (/-svc/;/)). 
i = i 

Then # is isomorphic to a quotient of S, proving that S is 
g-hypercyclic. 

The converse follows from Theorem 5.6. 

THEOREM 6.3. Let R be right perfect. Then R is q-hyper'cyclic if and only if 
R is a finite direct sum of matrix rings over local qc-rings. 

Proof Combine Theorems 5.5 and 6.2. 

THEOREM 6.4. Let R be right perfect and local. Then the following are 
equivalent. 

(i) R is hyper cyclic. 
(ii) R is q-hyper cyclic. 

Proof, (i) => (ii). Then R is valuation. Let / b e a non-zero right ideal 
of R. Then E(R/I) = R/A for some right ideal A of R. Let 

X = q.i.h. (R/I). 

Since the submodules of R/A and hence those of X are linearly ordered, 
and R is right perfect, X is local. Thus X is a cyclic module, proving that 
R is a g-hypercyclic ring, 

(ii) => (i) is Theorem 6.1. 

THEOREM 6.5. Let R be right perfect. Then the following are equivalent. 
(i) R is hypercyclic. 

(ii) R is q-hyper cyclic. 

Proof, (i) =^> (ii). Let R by hypercyclic. Then by ( [12], Theorem 1.18), 

t 

R = © 2 MH{Tt), 
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where Mn{Ti) is the ni Xnt matrix ring over a local hypercyclic ring Tt. 
Since R is right perfect, Tt is right perfect. Thus Tt is local right perfect 
and hypercyclic, and hence ^-hypercyclic. Then by Theorem 6.2, Mn(Tt) is 
^-hypercyclic, proving that R is g-hypercyclic. 

(ii) =̂> (i). Proceed as in (i) =» (ii) and use Theorem 6.4. 

LEMMA 6.6. Let R be q-hyper cyclic. Then R is left perfect if and only if R 
is right perfect. 

Proof. If R is right (or left) perfect ring then by Theorem 5.7, 

k 

R=®2X/r,), 
i=\ 

where Mn(Ti) are nt X ni matrix rings over local right (or left) perfect 
qc-rings Tt. Since Tt

9s are duo, R is left perfect if and only if R is right 
perfect. 

THEOREM 6.7. The following conditions on a ring R are equivalent: 
(i) R is right perfect and hypercyclic. 

(ii) R is left perfect and hypercyclic. 
(iii) R is uniserial. 
(iv) R is right perfect and q-hyper cyclic. 
(v) R is left perfect and q-hyper cyclic. 

Proof, (ii) <̂> (iii) => (i) is a theorem of Caldwell ( [4], Theorem 1.5). 
(i) =̂> (ii). By Theorem 6.4, R is ^-hypercyclic. Then by Lemma 6.6, R is 

left perfect. 
(i) <=> (iv) is Theorem 6.5. 
(iv) <̂> (v) is Lemma 6.6. 
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