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¢-HYPERCYCLIC RINGS

S. K. JAIN AND D. S. MALIK

0. Introduction. A ring R is called g-hypercyclic (hypercyclic) if each
cyclic ring R-module has a cyclic quasi-injective (injective) hull. A ring R
is called a gc-ring if each cyclic right R-module is quasi-injective.
Hypercyclic rings have been studied by Caldwell [4], and by Osofsky [12].
A characterization of gc-rings has been given by Koehler [10]. The object
of this paper is to study g-hypercyclic rings. For a commutative ring R, R
can be shown to be g-hypercyclic (= gc-ring) if R is hypercyclic.
(Theorems 4.2 and 4.3). Whether a hypercyclic ring (not necessarily
commutative) is g-hypercyclic is considered in Theorem 3.11 by showing
that a local hypercyclic ring R is g-hypercyclic if and only if the Jacobson
radical of R is nil. However, we do not know if there exists a local
hypercyclic ring with nonnil radical [12]. Example 3.10 shows that
a g-hypercyclic ring need not be hypercyclic. A characterization of

local g-hypercyclic rings is given in Theorem 3.9 by showing that local
g-hypercyclic rings are precisely gc-rings. The structure of a semi-
perfect g-hypercyclic ring is given in Theorem 5.7 whence it follows as a
consequence that if R is a semi-perfect g-hypercyclic ring then each cyclic
right R-module is a finite direct sum of indecomposable quasi-injective
modules. Finally, a characterization of right or left perfect g-hypercyclic
(hypercyclic) rings is given in Section 6. Our results depend upon a
number of lemmas. Lemma 5.1 regarding the quasi-injective hull of A @ B,
where B contains a copy of the injective hull E(4) of A4, though
straightforward, is also perhaps of interest by itself, besides being a key
lemma in the proof of our Theorem 5.5. We also make use of Koehler’s
characterization of gc-rings as those which are direct sum of rings each of
which is semisimple artinian, or a rank 0 duo maximal valuation ring.

1. Notation and definitions. All rings considered have unity and unless
otherwise stated all modules are unital right modules. If M is a module,
then E(M) (q.1.h. (M) ) will denote the injective hull (quasi-injective hull)
of M. An idempotent e of a ring R is called primitive if the module eR is
indecomposable. J will denote the Jacobson radical of the ring
R. S(Rp) (S(gxR)) will denote the right (left) socle of R. Let X € R,
then rgx(X) (/x(X)) will denote the right (left) annihilator of X in R.
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N C’ M will denote that N is a large submodule of M.

R is called right (left) duo if every right (left) ideal of R is a twosided
ideal of R. R is a right (left) valuation ring if right (left) ideals of R are
linearly ordered. R is called a right (left) bounded ring if every non-zero
right (left) ideal of R contains a non-zero twosided ideal of R. R is called a
duo (valuation, bounded) ring if R is both right and left duo (valuation,
bounded).

A module M is called local if M has a unique submodule. A ring R is
called semi-perfect if R/J is artinian and idempotents modulo J can be
lifted, or equivalently every finitely generated module has a projective
cover. R is called right (left) perfect if every right (left) R-module has a
projective cover, or equivalently, R/J is artinian and every non-zero right
(left) R-module has a maximal submodule. R is called uniserial if R is an
artinian principal ideal ring. An R-module M is said to have finite
Azumaya diagram (A.D) [5] if

where each R-submodule M, has a local endomorphism ring.

2. Preliminary results.

h
LEMMA 2.1. Let M be quasi-injective. If E(M) = @ 2 K; is a direct

i=1

sum of submodules K,, then
M=® 2 (MnK).
i=1
Proof. See ([7], Theorem 1.1).

The following is a well known equivalence between mod-R, the category
of right R-modules and mod-R,,, the category of right R, -modules, where
R, is the n X n matrix ring over R.

LEMMA 2.2. Let
n
F=2 x;R
i=1
be a free R-module with free basis {x,|]1 = i = n}. Then Mp — Homg(F,

M) is a category isomorphism between mod-R and mod-R,, with inverse

NRH‘—_)N®R"F-
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LeEMMA 2.3. Let R/J be artinian, I a right ideal of R,

k
R/I =0 2 M,

i=1
Then k = composition length of R/J.

Proof. See ([12], Lemma 1.8).

LemMMA 2.4. Let I be a two-sided ideal of R and let E be an injective
R-module. Then

0:pl = {x € E|xI = 0}
is injective as an R/I-module.
Proof. See ([13], Proposition 2.27).
LEMMA 2.5. Let R be semiperfect and q-hypercyclic. Then Ry is
self-injective.

Proof. Let I be a right ideal of R such that R/I is the quasi-injective hull
of R. Let ¢:R — R/I be the embedding. Since R/I contains a copy of R,
R/1 is injective. Let ¢(R) = B/I. Then B/1 <’ R/I. Hence B C’ R. Since
R = B/I, B/I is projective. Thus B = I © K for some Kz S Bg. Now

Therefore E(R) = E(K). But then / @ K C’ R implies
ER) = E(I)® E(K) = E() ® E(R).

Since E(R) = R/I, E(R) is a finite direct sum of indecomposable
modules, by Lemma 2.3. Thus E(R) has finite Azumaya-Diagram [5].
Therefore, E(R) = E(R) ® E(I) implies E(I) = 0. Hence I = 0. Thus R
is self-injective.

LEMMA 2.6. Let R be g-hypercyclic. Then every homomorphic image of R
is also q-hypercyclic.

_ Proof. Let 4 be a twosided ideal of R. Let R = R/A. Let R/I be a cyclic
R-module, where I = I/A. But R/I = R/I. Since A C I, A annihilates
R/I. Let R/K be the quasi-injective hull of R/I as an R-module. Then

R
== EndR(E(B)) R
K 1)1

Then it follows that 4 annihilates R/K. Thus R/K may be regarded as an
R-module. Since R/K is quasi-injective as an R-module, R/K is
quasi-injective as an R-module. Since 4 is a twosided ideal and annihilates
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R/K, A C K. Hence
R _R K

K A 4

Clearly R/K is the quasi-injective hull of R/I as an R-module. Hence R is
g-hypercyclic.

LEMMA 2.7. Let R be a finite direct sum of rings, {R|1 =i = n}. Then R
is g-hypercyclic if and only if each R; is g-hypercyclic for all i, 1 =i = n.

Proof. This is straightforward.

3. Local g-hypercyclic rings. In this section we study local g-hypercyclic
rings and show that over such rings every cyclic module is quasi-injective.
Throughout this section unlesss otherwise stated R will denote a local
g-hypercyclic ring.

LEMMA 3.1. If I is a right ideal of R, then E(R/I) is indecomposable.

Proof. Let q.i.h. (R/I) = R/A. Since R/A is indecomposable, E(R/I) is
indecomposable.

LEMMA 3.2. Right ideals of R are linearly ordered.
Proof. Let A and B be right ideals of R. Suppose

B
# 0, # 0
ANB ANB
Then
A B R
C

ANB ANB ANB

Hence

e

By Lemma 3.1, E(

) is indecomposable. Hence either

A B
=0 or =0
ANB ANB

Thus either 4 € Bor B € A.

LEMMA 3.3. Left ideals of R are linearly ordered.
Proof. This follows by ([8], Theorem 1) and Lemma 3.2.
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LEMMA 3.4. Let I be a non-zero right ideal of R. If q.i.h. (R/I) = R, then
R/1 is injective.

Proof. Let ¢:R/I — R be the embedding. Let ¢(1 + I) = x. Then
R/I = xR. Let A = xR. Then R is quasi-injective hull of 4. Thus

R = Endg(R)A = RA = RxR.

Therefore, x & J, and hence x is a unit. Thus 4 = R. Hence R/I is
injective.
LEMMA 3.5. Let I be a non-zero right ideal of R such that R/I is

quasi-injective. Suppose S(xrR) = 0. Then I contains a non-zero twosided
ideal of R.

Proof. Since R is local, rg(J) = S(xR) = 0. We may assume that  # J.
Let x € Jand x & I. Then I € xR. By linear ordering on right ideals
either x ' € Tor I ¢ x ™ 'I. Suppose x'I C I. Define

xR R

I I

by ¢(xa + I) = a + I. Since x 1 c I, ¢ is well defined. Then ¢ can be
extended to f:R/I — R/I. Let f(1 + I) = ¢t + I. Then

1+ 1 =¢(x+1)=f(x+1I)=1tx+L

Therefore 1 — tx € 1. Since tx € J, 1 — txis a unit. Thus I = R. Hence
I c x I Let

y=xa € xl,a € 1.

Sincea € I C x_ll, xa € I. Thus xI C I. Hence forallx € J, x & I,
xI € I. ThusJI c I. If JI = 0O then

I Ccrp(J)=0.

Since I is non-zero, JI # 0. Therefore JI is a non-zero twosided ideal of R
contained in 1.

LEMMA 3.6. R is left bounded or R is right bounded.

Proof. Case 1. If Soc(zR) # 0, then by linear ordering on left ideals,
Soc(zR) is a non-zero twosided ideal contained in each left ideal and
hence R is left bounded.

Case 2. Soc(zR) = 0.

Let I be a nonzero right ideal of R. If R is the quasi-injective hull of
R/I, then R/I is quasi-injective by Lemma 3.4. Hence [/ contains a
non-zero twosided ideal (Lemma 3.5).

Let R/A be the quasi-injective hull of R/I, for some non-zero right ideal
A of R. Then by Lemma 3.5 4 contains a non-zero twosided ideal,
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say B. Let ¢:R/I — R/A be the embedding and let ¢(1 + I) = x + A. Let
a € B. Then

dlat+ I)=xa+ A=A

Therefore a € I. Thus B C I. Therefore I contains a non-zero ideal B.
Hence R is right bounded.

LemMma 3.7. J is nil.
Proof. Let a € J. Suppose a" # 0 for any positive integer n. Let
S = {d"In> 0}.

By Zorn’s lemma there exists an ideal P of R maximal with respect to the
property that P N S = ¢. Then P is prime. Hence R/P is a prime local
g-hypercyclic ring. Thus R/P is either left bounded or right bounded.
Then it follows that R/P is a domain. Since R/P is also local and
g-hypercyclic ring, R/P is self-injective and hence a division ring.
Therefore P is a maximal ideal of R. Thus P = J, a contradiction. Hence J
is nil.
LeEMMA 3.8. R is duo.

Proof. It suffices to show that for 0 # y € R,yR = Ry. Let0 # y € R.
Suppose yr & Ry. By linear ordering on left ideals Ry & Ryr. Therefore

y = xyr for some x € R.
If x € J then x" = 0 for some n. Then
yo=xyr=xyrr =...=x"y" =0,
which is a contradiction. Thus x is a unit. Hence
xyr =y =yr=x_'y € Ry,
which is again a contradiction. Thus yR € Ry. By symmetry Ry € yR.
Hence Ry = yR.
We now prove the main result of this section.
THEOREM 3.9. Let R be a local ring. Then R is g-hypercyclic if and only if
R is a qc-ring.

Proof. Let R be g-hypercyclic and let 4 be a non-zero right ideal of R.
Then by Lemma 3.8, 4 is a twosided ideal of R. But then by Lemma 2.6,
R/A is a self-injective ring. Thus R/A4 is a quasi-injective R-module,
proving that R is a gc-ring. The converse is obvious.

The following example shows that a g-hypercyclic ring need not be
hypercyclic.
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Example 3.10. Let F be a field, x an indeterminant over F. Let

W = {{a}|{a;} is a well ordered sequence of nonnegative real
numbers }.

Let

[ee]
T = {2 ax%la, € F, {o;} € W}.

i=0

Then T is a local, commutative ring and

J(T) = {Z ax® € Tlay > 0}.

i=0
Let

T
xJ(T)y
Then as shown in [4], R is a commutative local hypercyclic ring. Then R is
g-hypercyclic (Theorem 4.3). But R/S, where S is the socle of R, is not

hypercyclic. Since R/S is a homomorphic ring of R, R/S is g-hypercyclic by
Lemma 2.6. Note that R/S is a commutative local ring with zero socle.

A ring has rank 0 if every prime ideal is a maximal ideal. A valuation
ring is called maximal if every family of pairwise solvable congruences of
the form x = x,(K,) (each x, € R, each K, is an ideal of R) has a
simultaneous solution [9].

We now give a necessary and sufficient condition for a local hypercyclic
ring to be g-hypercyclic. In the next section we will show that a
commutative hypercyclic ring is always g-hypercyclic.

THEOREM 3.11. Let R be local and hypercyclic. Then the following
conditions are equivalent.

(1) J is nil.

(i1) R is g-hypercyclic.

Proof. (i) = (ii). By [12], R is duo, valuation, and self-injective. But then
R is maximal. Thus R is a gc-ring [10], and hence g-hypercyclic. (ii) = (i)
follows from Lemma 3.7.

Remark. 3.12. It is not known whether there exists a semi-perfect (or
equivalently local) hypercyclic ring with a non-nil radical ([12], p. 339).

4. Commutative g-hypercyclic rings. We begin with

LEmMMma 4.1. Let R be commutative and q-hypercyclic. Then R is
self-injective.
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Proof. This is obvious.

THEOREM 4.2. Let R be a commutative ring. Then the following are
equivalent.

(1) R is g-hypercyclic.

(ii) R is a gc-ring.

Proof. This is similar to the proof of the Theorem 3.9.

THEOREM 4.3. Let R be a commutative hypercyclic ring. Then R is
q-hypercyclic.

Proof. Let R be hypercyclic. Then by ( [4], Theorem 2.5), R is a finite
direct sum of commutative local hypercyclic rings. So it suffices to show
that a commutative local hypercyclic ring is g-hypercyclic. Let R be
commutative local and hypercyclic. Then by [4], R is valuation and
self-injective, and J is nil. Then by ( [9], Theorem 2.3), R is maximal. Since
J is nil, R has rank 0. Then R is rank 0 maximal valuation ring. Thus R is a
gc-ring [10], proving the theorem.

5. Semi-perfect g-hypercyclic rings.

LeEMMA 5.1. Let A and B be right R-modules. Let B be injective containing
a copy of E(A). Then

qih. (4 ® B) = E(4) © B.
Proof.
qih. (4 ® B) = Endg(E(4) ® B)(4 ® B)

=(HomR(E(A ), E(4)) Hompg(B, E(A) )) (A)
Homg(E(A4), B) Homg (B, B) B

_ (HomR(E(A), E(A)A + Homg(B, E(A))B)
~ \Homg(E(4), B)A + Homg(B, B)B

- (Eg")) = E(4) ® B.

The above lemma gives another proof of an interesting result of
Koehler.

CoRrROLLARY 5.2. ([11]). If the direct sum of any two quasi-injective
modules is quasi-injective, then every quasi-injective module is injective.

Proof. Let M be a quasi-injective right R-module. By Lemma 5.1
qih. (M ® E(M)) = E(M) ® E(M).

Then M © E(M) = E(M) © E(M). Therefore M = E(M), proving M is
injective.
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The proof of the next lemma is exactly similar to Osofsky’s ([12],
Corollary 1.9).

LEMMA 5.3. Let R be semiperfect and q-hypercyclic and let e be an
idempotent in R. Assume length of eR/eJ = m. Then any independent family
of submodules of a quotient of eR has at most m elements.

Proof. Let {M||1 = i = k} be an independent family of submodules of
eR/el. Then

RS —e)R®(ea§Mi).

el i=1

Therefore E(R/el) is a direct sum of length R/J — m + s terms, where
s = k. Thus q.i.h. (R/el) is a direct sum of length R/J — m + s terms, by
Lemma 2.1. Then Lemma 2.3 gives s = m. Hence k = m.

COROLLARY 5.4. Let R be semi-perfect and q-hypercyclic, & =e € R,
eR/eJ is simple. Then submodules of eR are linearly ordered.

Proof. This follows from Lemma 5.3.

THEOREM 5.5. Let R be a semi-perfect q-hypercyclic ring. Then R is a
finite direct sum of q-hypercyclic matrix rings over local rings.

Proof. R = e R ©...@ ¢,R, where e
idempotents.
We will show that for i # j, either e,R = ejR, or

Homg(e,R, eR) = 0.

» 1 = i = n are primitive

Suppose for some i # j, Homg(¢R, ¢R) # 0. By renumbering, if

necessary, we may assume that i = 1, j = 2. Let a:eyR — ¢,R be a
non-zero R-homomorphism. Then e;R/Ker a embedds in e,R. Since e,R is
indecomposable,

E(e;R/Ker a) = e,yR.
Hence B = ¢;,R @ ... ® ¢,R contains a copy of E(e;R/Ker a). Now
R/Ker a = (e;R)/Ker a X e;R X ... X ¢,R.

Let A = (e;R)/Ker a. Then B is injective and contains a copy of E(4).
Hence

Homg (B, E(A4) )B = E(A).
Since R is g-hypercyclic, for some right ideal I,
R/I = q.ih. (R/Ker a) = qih. (4 X B) = E(4) X B.
Thus R/I = e,R X B. Then R/ is projective. Hence R = I © K for some
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right ideal K. Then
K= R/I = ¢eR X eR X...XeR.
Thus
R=I®K=¢R X eR X...Xe¢R
=1 X eaR X egR X ... X e,R.
Hence by Azumaya Diagram [5],
elR = I X e)R.
Since e;R is indecomposable, I = 0. Consequently, R = K. Then
elR X esR X ... X e,R=e,R X eyR X ... X e,R.
Again by Azumaya Diagram, e;R = e,R. Thus for i # j, either
R = ¢R or Homg(eR, ¢R) = 0.
Set [e,R] = 2 ¢R, e,R = ¢,R. Renumbering if necessary, we may
write
R =[eR]®... ®[eR],t = n
Then for all 1 = k = ¢, [, R] is an ideal. Since for any k, 1 = k = n,
e, R is indecomposable,
Endg(e,R) = erRe,

is a local ring.

Thus [e,R] = ® X,e,R is the n, X n, matrix ring over the local ring
e,Re, where n, is the number of ¢,R appearing in © XeR. That the
matrix ring is g-hypercyclic follows from Lemma 2.7.

We now proceed to study g-hypercyclic rings which are matrix rings
over local rings.

THEOREM 5.6. Let S = T, be the n X n q-hypercyclic matrix ring over a
local ring T. Then T is g-hypercyclic.

Proof. Let e be a primitive idempotent of S and let eS/el be a quotient
of eS. Since S is g-hypercyclic,

eS S
Ai.h. (——) = —
d el A

for some right ideal 4 of S. But since submodules of eS are linearly
ordered, S/A is indecomposable. Thus S/4 = fS/fK, ([2], Lemma 27.3),
for some primitive idempotent f of S, which may be chosen to be e by
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itself. Thus S/4 = eS/eB for some right ideal B of S. Since category
isomorphism (Lemma 2.2) takes T to eS, every quotient of T has
quasi-injective hull a quotient of T, proving that T is a g-hypercyclic
ring.

THEOREM 5.7. Let R be a semi-perfect and q-hypercyclic ring. Then R is a
finite direct sum of matrix rings over local qc-rings.

Proof. Combine Theorems 5.5, 5.6 and 3.9.

We are unable to show if, in general, the n X n matrix ring S over a
local g-hypercyclic ring is again g-hypercyclic. However we will show in
the next section that the result is true if S is a perfect ring. In the following
theorem we prove that each cyclic S-module is a finite direct sum of
indecomposable quasi-injective modules and generalise this to the case
when S is any semi-perfect g-hypercyclic ring in Theorem 5.9.

THEOREM 5.8. Let S = T, be the n X n matrix ring over a local
q-hypercyclic ring. Then every cyclic S-module is a direct sum of
indecomposable quasi-injective S-modules.

Proof. Let I be a right ideal of S. Let e € S be a primitive idempotent
of §. Since the category isomorphism (Lemma 2.2) takes T to eS every
quotient of eS is quasi-injective. Let

k
§:®2M,-,

i=1

where the M, are indecomposable S-modules. Since S is semi-perfect and
M; indecomposable,

M; = (¢,S)/(e;A),

where e; is a primitive idempotent of S. Thus S/I is a direct sum of
indecomposable quasi-injective S-modules.

THEOREM 5.9. Let R be a semi-perfect and q-hypercyclic ring. Then every
cyclic R module is a direct sum of indecomposable quasi-injective R-
modules.

Proof. Combine Theorems 5.7 and 5.8.

6. Perfect g-hypercyclic rings. A ring R is called right (left) perfect if
every right (left) R-module has a projective cover. A theorem of Bass [3]
states that the following conditions on a ring R are equivalent.

(1) R is right perfect.

(i1) R satisfies minimum conditions on principal left ideals.

(1i) R/J 1is artinian and every right R-module has a maximal
submodule.
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LEMMA 6.1. Let R be a local right perfect and q-hypercyclic ring. Then R
is hypercyclic.

Proof. By Theorem 3.9, R is a gc-ring and hence R is duo. Let I be a
nonzero right ideal of R. Then R/[ is quasi-injective and indecomposable,
and hence E = E(R/I) is indecomposable.

First we show that the submodules of E are linearly ordered. Let aR and
bR be submodules of E. Let A = rg(a). Since ideals of R are linearly
ordered either

rr(a) € rg(b) or rg(b) S rg(a).

To be specific let A = rgp(a) S rg(b). Let E’ = 0:p4. Then aR, bR C F'.
By Lemma 2.4, E’ is injective as an R/A module. Hence E’ is
quasi-injective as an R-module. Since £’ € FE and E is injective and
indecomposable, £’ is indecomposable as an R-module and hence £’ is
indecomposable as an R/A-module. Let R = R/A. Then E' = Eg(R), the
injective hull of R as an R-module. Hence E’ = R/A. Since submodules
of R/A are linearly ordered, submodules of E’ are linearly ordered. Thus
aR C bR or bR € aR. Hence submodules of E are linearly ordered. But
then £ must be local, since R is right perfect. Hence E is cyclic. Therefore
R is hypercyclic, proving the theorem.

THEOREM 6.2. Let S = T, be the n X n matrix ring over a local ring T.
Let S be right perfect. Then S is q-hypercyclic if and only if T is
q-hypercyclic.

Proof. Let T be g-hypercyclic. Then T is right perfect local and
g-hypercyclic. Thus by Theorem 6.1, T is hypercyclic. Further, by
Theorem 3.9, T is a gc-ring. Since T is hypercyclic, by ( [12], Theorem
1.17), S is hypercyclic. Let e € S be a primitive idempotent. Then as
before, the category isomorphism (Lemma 2.2) takes T to eS. Hence
quotients of eS are quasi-injective and each quotient has injective hull a
quotient of eS. Let I be a right ideal of S. By Theorem 5.8,

k
§=®2M,,

i=1
where for all 1 = i = k, M, are indecomposable and quasi-injective.
Then
M, = (¢,S)/(e;A)
for some primitive idempotent e; € S. Hence
EWM;) = E[(¢S)/(e;A)] = (e;S)/(e;B) forall 1 =i = k.

Since S is right perfect and hypercyclic, submodules of (e;S)/(e;B) are
linearly ordered. Hence for all 1 = i = k, submodules of E(M;) are
linearly ordered. Let
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H = q.i.h. (S8/1).
Then

k
H=® X(HnN EM,)).

i=1

Let K, = H N E(M,). Then submodules of K; are linearly ordered for all
1 = i = k. But then since S is right perfect, for all 1 =i = k, K; is cyclic.
Therefore,

K; = (/:$)/(}:D)

where f; € S is a primitive idempotent, 1 = i = k. Thus
k
H=® X(fS)/(fD).
i=1

Then H is isomorphic to a quotient of S, proving that § is
g-hypercyclic.
The converse follows from Theorem 3.6.

THEOREM 6.3. Let R be right perfect. Then R is g-hypercyclic if and only if
R is a finite direct sum of matrix rings over local gc-rings.

Proof. Combine Theorems 5.5 and 6.2.

THEOREM 6.4. Let R be right perfect and local. Then the following are
equivalent.

(1) R is hypercyclic.

(i1) R is g-hypercyclic.

Proof. (i) = (ii). Then R is valuation. Let I be a non-zero right ideal
of R. Then E(R/I) = R/A for some right ideal A of R. Let

X = q.ih. (R/]).

Since the submodules of R/A and hence those of X are linearly ordered,
and R is right perfect, X is local. Thus X is a cyclic module, proving that
R is a g-hypercyclic ring.

(i) = (1) is Theorem 6.1.

THEOREM 6.5. Let R be right perfect. Then the following are equivalent.
(1) R is hypercyclic.
(i1) R is g-hypercyclic.

Proof. (i) = (ii). Let R by hypercyclic. Then by ( [12], Theorem 1.18),

t
R=® X M, (T),

i=1
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where M, (T;) is the n; X" n; matrix ring over a local hypercyclic ring 7.
Since R is right perfect, T; is right perfect. Thus 7; is local right perfect
and hypercyclic, and hence g-hypercyclic. Then by Theorem 6.2, M, (T}) is
g-hypercyclic, proving that R is g-hypercyclic. '

(i1) = (i). Proceed as in (i) = (ii) and use Theorem 6.4.

LEMMA 6.6. Let R be g-hypercyclic. Then R is left perfect if and only if R
is right perfect.

Proof. If R is right (or left) perfect ring then by Theorem 5.7,

k
R =0 ZM,(T),

i=1

where M, (T;) are n; X n; matrix rings over local right (or left) perfect
gc-rings T,. Since T;’s are duo, R is left perfect if and only if R is right
perfect.

THEOREM 6.7. The following conditions on a ring R are equivalent:
(i) R is right perfect and hypercyclic.

(ii) R is left perfect and hypercyclic.

(iii) R is uniserial.

(iv) R is right perfect and q-hypercyclic.

(V) R is left perfect and q-hypercyclic.

Proof. (ii) < (iii) = (i) is a theorem of Caldwell ( [4], Theorem 1.5).

(1) = (ii). By Theorem 6.4, R is g-hypercyclic. Then by Lemma 6.6, R is
left perfect.

(i) < (iv) is Theorem 6.5.

(iv) & (v) is Lemma 6.6.
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