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ABSTRACT. A numerical model for three-dimensional , time-dependent glacier flow (Campbell a nd 
R asm ussen, 1970) treated the ice as a Newtonia n viscous fluid and related its dynamics to two large-scale bulk 
parameters: the viscosity v determining the ice- to-ice friction, and a basa l friction parameter A determining 
the ice-to-rock friction. The equa tions were solved using the rela ti vely simple fl ow law of Bodvarsson (1955) 
in which the basal shear stress is proportiona l to volume transport. R ecent research suggests that a more 
realistic basal flow law is one in which the basal shear stress to some lower power (1- 3) is either proportional 
to the vertically averaged velocity (Glen, 1958; Nye, 1960, 1963[a] , Cb], Cc], 1965[a] , Cb], Cc]) or to the ratio 
of the vertica lly averaged veloci ty to glacier th ickness (Budd and j enssen, in press) . 

In the present study a generalized flow law incorporating a ll of the a bove bulk basal flow laws is applied 
to the Campbell- Rasmussen momentum equation to form a genera lized two-dimensional transport eq uation, 
which, when combined with the continuity equation, yields a numerica lly tractable set of equations for three­
dimensiona l, time-dependent glacier flow . Solutions of the model are shown for stead y-state flow a nd surge 
advance and recovery for a typical valley glacier bed for powers I , 2, a nd 3 for each of the basal flow laws for a 
s teady-state cl imate input and a given ice-to-ice viscosity parameter. 

R EsuME. Comparaison enlre lrois lois d'eco1llemenl act1leliement proposees darls 1In modele de glacier a Irois dimensions 
dependanl du temps. Un modele numerique a trois dimensions pour un ecoulement de glacier fonction d u 
temps (Campbell et R asmussen, 1970) traitait la glace comme un fluide visq ueux Newtonien et rapportait sa 
dynamique a deux parametres d 'ensemble a grande echelle: la viscosite v representant le frottement glace­
glace et un parametre de frottement basa l A representant le frottement glace-rocher. On resolvait les 
equa tions en utilisant la loi d 'ecoulement rela ti vement simple de Bodvarsson ( 1955 ) d ans laquelle l'effort de 
cisaillement basal est proportional au volume transporte. Des recherches recen tes suggerent qu 'une loi 
d'ecoulement basal plus rea liste serait celle selon laquelle l'effort de cisa illement a la base a une puissance 
inferieure (1- 3) est proportionnelle soit a la vitesse moyenne le long d 'une verticale (Glen, 1958; Nye, 1960, 
1963[a] , Cb] , Cc], 1965[a] , Cb], Cc]) soit au rapport entre la vitesse moyen ne le long d'une verticalle a 
l'epaisseur du glacier (Budd et j enssen, sous presse). 

Dans la presente etude, une loi d 'ecoulement generale englobant toutes les lois d'ecoulement d'ensemble 
c i-dessus es t a ppliquee a l'equa tion d es momen ts d e Campbell- Rasmussen pour former une equa tion generale 
du tra nsport a deux dimensions qui, combinee avec l'equa tion de contin uite foumit un sys teme d 'equation 
tra itable numeriquement pour l'ecoulemen t tridimensionnel du glacier en fonction du temps. O n montre 
les solutions de ce modele pour un ecoulement permanent et pour un episode d 'avance et de retrait a pres une 
crue d a ns une vallee glaciaire typique avec des puissances de I , 2 et 3 pour chacune des lois d'ecoulement a 
la base sous un climat cons tant et une valeur don nee du parametre viscosite glace-glace. 

ZUSAMMENFASSUNG. Vergleich dreier moderner FliessgesetzeJiir ein dreidimensionales, zeitabhiingiges Gletschermodeli. 
Ein numerisches Modell fill' dreidimensionales, zeita bhangiges Gletscherfliessen (Campbell und Rasmussen, 
1970) behandelte das Eis als eine Newton'sche viskose FlLissigkeit und beschrieb seine Bewegung mit Hilfe 
zweier makroskopischer Massenparameter: der Viskositat v, welche die Eis-zu-Eis-Reibung bes timmt, und 
einem Grundreibungsparameter A, del' die Eis-zu-Fels-Reibung bestimmt. Die Gleichungen wurden mit dem 
rela tiv einfachen Fliessgesetz von Bodvarsson (1955) gelost, in dem die Scherspannung am Un tergrund 
proportional zum Massentransport ist. Neuere Untersuchungen deuten da rauf hin, d ass in einem realisti­
scheren Gesetz fur das Fliessen am U ntergrund eine gewisse niedrige Potenz (1- 3) der Scherspannung 
proportional entweder zur vertikalen Durchschnittsgeschwindigkeit (Glen, 1958; Nye, 1960, 1963[a] , Cb] , Cc], 
1965[a], Cb], Cc]) od er zum Verhaltnis von vertikaler Durchschnittsgeschwindigkeit und Gletscherdicke 
(Budd und jenssen, im Druck) angenommen werden sollte. 

In del' vorliegenden Untersuchung wird ein allgemeines Fliessgesetz, das a lle oben genannten Fliessge­
setze fur M assen am Untergrund einschliesst, a uf die Campbell- Rasmussen'sche Momentengleichung 
angewandt; daraus ergibt sich eine allgemeine zweidimensionale Transportgleichung, die in Verbindung mit 
del' Kontinuita tsgleichung ein numerisch losbares Gleichungssystem fur ein dreidimensionales zeitabhangiges 
Gletscherfliessen liefer t. Losungen des Modells werden fur stationares Fliessen sowie fur einen a usbruch­
artigen Vorstoss und dessen Regeneration in einem typischen Talgletscherbett mit d en Potenzen 1, 2 und 3 
in j edem del' drei Fliessgesetze unter del' Annahme stationarer Klimaverhaltnisse und mit einem gegebenen 
Eis-zu-Eis-Viskositatsparameter aufgezeigt. 

INTRODUCTION 

Because of the structural complexity of glaciers and ice caps, direct measurements of them 
are necessary in order to reach a quantitatively pertinent flow law. As Lliboutry (1970) has 
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pointed out, the measurements "are by no means simple since three distinct problems must be 
solved simultaneously (ice flow law, boundary conditions at the bottom, dynamic problem), 
and only the whole solution may be checked by field data". In an effort to construct a model 
which could be used to relate solutions of three-dimensional, time-dependent glacier flow to 
observations, Camp bell and Rasmussen (1970) assumed a viscous flow law for ice, a simple 
(Bodvarsson, 1955) basal flow law for the bottom boundary condition, and generated a 
system in which solutions could be obtained for any given glacier whose bedrock topography 
and mass balance are known. 

Both the ice and basal flow laws were simple compared with existing flow laws (Glen, 
1955, 1958 ; Lliboutry, 1968 ; Nye, 1960, 1963[a] , [b] , [c] , 1965[a] , [b] , [c] ; W eertman, 1957, 
1964, 1969) and were chosen so as to render the equations mathematically tractable for 
numerical solution. Although the flow laws used were simple, the model was more complex 
than many existing models in that it was three-dimensional and time-dependent, it included 
the effect of longitudinal and lateral stress gradients, and it partitioned the ice viscosity from 
the basal friction allowing them to be parameterized independently. Although the solutions 
obtained were for an ideally smooth bedrock topography and mass balance versus altitude 
curve, the equilibrium profiles for selected sets of the ice and basal friction parameters 
resembled those ofreal glaciers. Campbell and Rasmussen (1969) further applied the model 
to glacier waves, surges, and surge recoveries, and again found solutions that resembled the 
behavior of real glaciers. At the time this model was developed the authors were aware that 
although the solutions resembled the behavior of real glaciers, the model would not be quanti­
tatively accurate until a more complex flow law, one in keeping with the findings of the above 
named authors, was incorporated into it. Their modus operandi was to get the simpler model 
working and then go on to more complex ones. 

The problem facing the authors was in what way the first model ought to be improved­
should they adopt a more complex ice viscosity, or a more complex basal friction ? Various 
measurements of temperate glacier ice, for example those of Col beck (unpublished ), suggest 
that at the stresses normally found in temperate glaciers, the Newtonian viscous approxima­
tion for ice flow is acceptable, whereas considerable controversy exists over the mechanisms of 
basal flow. Therefore, it was decided to compare solutions, using the same idealized valley 
glacier and mass balance to which the earlier model was applied, for three models incorpora­
ting different basal flow laws : the Bodvarsson law used in the earlier model, a vertically 
integrated form of Glen's (1955) flow law used extensively by Nye (1960, 1963[a] , [b] , [c] ) 
and others, which for the sake of simplicity we will refer to throughout the text as the Glen 
law, and another form of Glen's law, involving certain assumptions concerning the stress 
distribution, used by Budd (1969), Nye, and others, which again for the sake of simplicity we 
will refer to as the Budd law, because in the literature he has most frequen tly used it. 

These flow laws, which involve three parameters, are in turn coupled with the Campbell 
and R asmussen momentum equation, obtained by vertically integrating the Navier- Stokes 
equation, which adds one more parameter to the problem, the ice-to-ice viscosity v. Each of 
these momentum equations is then solved simultaneously with the continuity equation. The 
greater part of thi s study involved variation of parameters associated with basal fri ction . The 
value of v we used ( IQIS cm 2/s) proved to be the optimum value in our earlier studies and is 
close to the value obtained by Raymond (1971[a] , [b] ) in his study of the Athabasca 
Glacier. 

The influence of each of the three basal flow parameters was first studied by modelling a 
steady-state valley glacier and noting how the glacier shape and flow varied for the equilibrium 
solution for each set of parameters. Then the effect on non-steady behavior was examined by 
depressing the basal friction parameter to five per cent of its initial steady-state value for a 
period of one year, thereby inducing a glacier surge. Finally the basal fri ction parameter was 
restored to its initial value and the recovery of each glacier was studied for one hundred years. 
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MATHEMATICAL MODEL 

As shown by Campbell and Rasmussen ( 1970), the Navier- Stokes equation, from which 
inertial and acceleration terms have been omitted, may be written 

\1p 
- _ + g+ v\1lV 

p 

where V = ui+ vj+ wk is the velocity vector, v is the kinem atic viscosity, g = gx i+ gyj + gz k 
is the gravity vector (with magnitude g), p is the pressure, p the density. If Equation ( I) is 
applied to a glacier and \1 ' is the two-dimensional Laplacian operator, and the coordinate 
system is chosen so that the z-axis is normal to the bed of the glacier , then Equation (1) may 
be written in component form as 

I op 1 OTx l 
- - ;;:-+ gX + v\1lu - - - = 0 , 

p ox p oz 

J 1 op 1 OTy 
- - - + g, + v\1'v- - - = 0, 

p oy y p oz 

where T X and T y are the shearing components parallel to the bed , and the velocity component 
w normal to the bed has been neglected. 

The hydrostatic equation (3) may be integrated vertically, yielding the hypsometric 
equation 

p = pgz(h - z ) +Pa 
where h is the glacier thickness, measured normal to the bed, and pa is the atmospheric pressure. 

A volume transport vector Q = Q,xi+ Q.yj may be defined as 
h 

l Q = J V d z 
I 0 

Q, ~ fo dZ J 
(5) 

h 

where Q.x = f u d z and 

0 

Term by term, the x-component equation (2) may be integrated vertically to produce a 
transport equation. By using Equation (4), the first term may be integrated as follows: 

h h 

f : op d z = .: ! f pgz (h-z) d z = : ~ ( pgZhl) = gzh oh. 
p ox p ox p ox 2 ox 

o 0 

The gravity term can be integrated directly : 
h 

f gx d z = gxh. 
o 

Assuming v to be independent of z, the horizontal viscous term is integrated, 
h h 

f v\1lu d z = v\1l f U d z = v\1l Q.X' 

o o 
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Since the shearing stress vanishes at Z = h, the vertical viscous term is integrated, 

h 

f ~ chx dz = 7"X I = 7"x' 

P oz P z- o P 
o 

where 7"/ is the shearing stress at the bed. 
The vertical integration of the y-component equation (2) leads, then, to the component 

form of the transport equation: 

(6) 

If the transport equation is to be applied to an arbitrarily shaped glacier bed, it may 
conveniently be transformed so that h is measured along the Earth-vertical. This facilitates 
the plotting of computation results, and accumulation or ablation is specified in this direction. 
The transformation is accomplished by invoking the relation 

gz 
h (normal) = g h (vertical) 0= ch(vertical) ' 

The symbol h in Equations (4)-(6) indicates h (normal) ; in all appearances hereafter it indicates 
h (vertical) , and the relevant coordinate system is that in which z is measured along the Earth­
vertical , positive upward, with x andy in the Earth-horizontal plane. 

The transport equation, so transformed, is 

If tan CCx and tan CCy are the components of the bed's inclination to the horizontal, the gravity 
components are given by 

where 

gx = cg tan CCx, } 
gy = cg tan CCy, 
gz = cg, 

c = ( I + tan2 cc.t + tan2 ccy)- l. 

(8) 

If a functional relationship can be established between Q and 't" , then Equation (7) can be 
solved for Q , presuming h to be known. Suggested forms of this relationship, in which the 
bed friction coefficients A are specified constants, include 

I 

t 
Q = - ('t" )n Bodvarsson, 

A 

V = ~ ('t" )n Glen, (9) 
A 

I 
V jh = - (T')" 

A 
Budd, J 

estimates of the exponent n ranging from I to 3. Setting Q = hV, these may be generalized to 

( 10) 
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by which is m eant 

and 
1 

Q y = A hk I Ty' In sgn (Ty ' ) 

where sgn (x) is + I , 0, - I as x is positive, zero, negative. 
The Bodvarsson law has k = 0, the Glen law has k = I , and the Budd law has k = 2. 

Also A is seen to have the units gn cm k- n- 2 s' - 2n and, therefore, should be denoted Ak(n). 
Substituting for T ' from Equation (6) yields 

(11 ) 

If a(x,y, t ) is the specified mass-balance forcing function , the continuity equation for 
incompressible flow can also be integrated vertically to yield 

oh 1 at = - -;; V· Q + a(x ,y, t ) . (12) 

Equations ( I I) and (12 ) n ow constitute a sys tem of three algebraic equations in three 
unknowns Q.x, Q.y, and h. Assumption of a subglacial geometry determines the x,y distribution 
of tan ax and tan ay and therefore, through Equations (8), of the components of the gravity 
vector. 

Mathematically, then, the glacier is treated as an array of vertical columns of unit area 
and varying height. The ice-to-ice fri ction on the sides of the columns is controll ed by the 
viscosity coefficient v, whereas the ice-to-bed friction is controlled separately by the bed 
fr iction coefficient A. 

NUMERICAL SOLUTION 

Equations ( I I) and (12) are solved by a forward-difference m ethod on a square finite­
difference grid with spacing S, and whose grid points are denoted by standard matrix notation. 
If (x,y) are the coordinates of grid point (i,j ), then (x + S,y) are the coordinates of point 
(i,j+ I), and (x,y - S ) of point (i+ I ,j) . 

Q.x. i. j+t = A:(n) {t[ (ch)t, i + (ch)t, j+,]}k H [(cgxh)t, j+ (cgxh)t, i+' ] + 

p pv + 2S [(c2gzh2)t, j- (c2gzh2)t, i+,] + S2 [Qx. i. j+'i + Q x, i. j-t+ Q x. i- I. j+t + 

+ Q.x. i + J. j+t - 4Q.x. i. j+I]} n, 

Qy. i+L i = AkI(n) {U (ch)t, i + (Ch)i+'. j]}k H [(cgyh)t, j+ (cgyh)i+'. j] + 

P pv + 2S [(c2gzh2)i+l. j-(c2gzh2)t, j] + S2 [Q y. i+t. j+I+ Q y. i+' . j- I+ 

+ Q.y. i - t, j+ Q.y. i + Ji. j - 4Q.y. i+t. j]} n, 

and the continuity equation (12) can be approximated by 

hi. j(t + ~t ) = hi . j et ) + ~t [ai. j - f.- V· Q (t)] 
' . j 

where 
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The equations for Q.x and Q.y are solved by over-relaxation, in about three passes when 
v f= 0, in (exactly) one pass when v = o. The boundary conditions were conveniently 
managed by choosing the solution region to be sufficiently large that the glacier lay wholly 
within it. Then, since h = 0 all around the glacier, and by requiring Q = 0 whenever h = 0, 
it is possible to impose a no-slip boundary condition precisely at the glacier margin without 
specifying the location of the margin in advance. 

The calculations were performed on a CDC-6400 computer by a modular program 
written in FORTRAN IV. An empirical stability examination showed 

!J.t ~ [0.006 (1 +! tan2 oc))1IAk(n)S2h- (n+k+! ) 

where !J.t is given in days for Ak(n), and h in c.g.s . units but Sin m. The calculation rate is 
given approximately as 

M (I + N ) __ _ 
1 500 time step 

where M is the number of (h > 0) points in the solution region, and N is the average number 
of relaxation passes per time step. For the cases described in this paper, the time step varied 
from 10 to 40 d for steady-state solutions and surge recoveries, and from t to 2 d for surges. 
The calculation rate was about one second per time step. 
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STEADY-STATE SOL UTIONS 

Shown in Figure I are the glacier bed and annual mass balance used in all calculations. 
The glacier bed has a steep (30°) upper slope joined by a short, smooth transition to a shallow 
(8°) lower slope, with a constant, U -shaped transverse cross-section that is symmetric about 
the glacier center-l ine. The annual mass balance, unchanging in time, varies from + 2 m /year 
at the top of the accumulation zone to about - 8 m /year at the terminus, depending on its 
precise position. A 200 m grid spacing was used for all calculations. 

For any rheology (k, n pair) considered , the steady-state solution is strongly dependent on 
the numerical value of the coefficient A. Therefore, to examine the differences between 
rheologies (separately from differences due to variations in the value of A), the A-values were 
chosen so that the glacier volumes of the steady-state solutions were the same for all seven 
rheologies. The value for Ao( I) (Bodvarsson, n = I ) was taken to be 106, as by Campbell and 
Rasmussen (1970), which produced a steady-state volume of 3.375 km3• Shown in Table I 
are the values for the other six rheologies that produce this same steady-state volume. Also 
shown in Table I are the sensitivities of each steady-state volume to unit varia tions both in 
Ak(n) and in v. 

TABLE 1. D E PENDENCE OF STEADY- ST ATE VOLUME ON Ak(n) AND v 

Ak(n) producing Change* in Change* in 
Rheology 3.375 km3 volume per volume per 

sleady-slale 1 % increase I % increase 
Flow law n glacier volu me in Ak(n) in v 

% % 
Bodvarsson (k = 0 ) [ [06 + 0.598 - 0.0433 
Glen (k = [ ) [ [ ·75 X IO 'o + 0 ·494 + 0 .0683 
Glen (k = [ ) 2 3.92 X 10,6 + 0·3 [[ + 0 .0855 
G len (k = [ ) 3 8,52 X IOZZ + 0.303 + 0.0926 
Budd (k = 2) [ 2.40 X [0" + 0·373 + 0.0628 
Budd (k = 2) 2 5.06 X 1020 + 0.237 + 0.0867 
Budd (k = 2) 3 [ .00 X 1027 + 0. [90 + 0.0956 

* Ak(n) value producing 3.375 km3 steady-sta te and v = 10 15 ClnZ! s. 

Figure I gives the steady-state distributions of glacier thickness and volume transport for 
the rheology defined by the use of the Glen fl ow law (k = I) with n = 3. It exhibits the 
familiar pattern of concave transverse cross-sections in the accumulation zone, with converging 
streamlines, and convex transverse cross-sections in the ablation zone with diverging stream­
lines . 

When constrained to have the same volume, the steady-state solutions for the other six 
rheologies have glacier thickness distribu tions so similar that their differences are not readil y 
perceived when plotted at the scale of Figure I. H ence these differences are shown in Figure 2, 

which gives the center-line glacier thickness profil es for each of the seven rheologies. 
At steady-state, Equation (12 ) becomes 

V · Q = ca (x,y) 

which, when integrated over the areal extent of the glacier, gives Q solely as a function of 
a(x,y), independent of any direct influence from Equation ( I I). The slight differences of the 
steady-state Q distributions from rheology to rheology are due only to the differences in the 
areal extent of the seven steady-state solutions which, as shown in Figures 5- 1 I , are quite small. 
Figure I also contains the distribution of Q for the rheology k = I , n = 3. 
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Fig. 2. Steady-state glacier thickness center-line profiles comparing seven different rheologies. 

S UR GE AND R ECOVERY SO LUTIONS 

Each steady-sta te solution was caused to surge b y carrying out the calcula tion for one year 
with Ak(n) depressed to 0 .05 of the value tha t produced the steady-state solution. Then , Ak(n) 
was restored to its former va lue, and the first 10 0 years of its reversion to steady-sta te was 
examined . 

The reduction of Ak(n) increases the transport for a given basal stress, permitting the 
glacier to fl ow m ore rapidly downhill. H ence, the surge is marked by height fa lls in the upper 
part of the glacier , height rises in the lower part, a nd a slight advance of the terminus. Also, 
since 

J J a(x,y ) dx dy = 0 

over the ex tent of the steady-sta te glacier, its advance appends a region in which the mass­
ba lance is nega tive, resulting in a net loss of glacier mass . 

When the steady-sta te Ak(l1 ) value is res tored , the glacier begins to reassume its steady­
state distribution , bu t in a m ore complicated manner than the simple pa ttern of height 
changes that occurred during the surge. In fact, the glacier continues to lose mass for several 
m ore tens of years. The resum p tion of the steady-state distribution begins at the top and 
proceeds down the glacier. 

Figure 3 shows the variation of glacier mass during both the one-year surge and the 10 0 -

year recovery for each of the seven rheologies. Equation ( J J) m ay be roughly regarded as a 
polynomial in h of degree k+ n, which serves as a crude index characterizing the dynamic 
response of the glacier. The speed of recovery generally increases with k + n. 
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Fig. 3. Variation of glacier mass during surge and recovery comparing seven different rheologies. 

Another indication of differences in dynamic response is given by Figure 4. It shows, for 
each of the seven rheologies, the centerline profile of the down-slope volume transport at the 
end of the one-year surge, while the Ak(n) value is still depressed. The volume transport 
during the surge decreases with k + n. 

Figures 5- 1 I show, each for one or another of the rheologies, the height changes from 
steady-state during surge and recovery. The transient behavior of the height changes along 
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Fig. 1. Down-slope volume transport center-line profiles at the end of one year surge comparing seven different rheologies. 

the glacier center-line is exhibited both during the surge and during the recovery. Also shown 
is the distribution, over the entire glacier, of the net heigh t change at the end of the surge, as 
well as the glacier margin both at steady-state and at the end of the surge. 

The surges follow a relatively simple pa ttern of continuously falling heights in the upper 
part of the glacier , continuously rising heights in the lower part, and a slight continuous 
advance of the terminus. The glacier bed a t the top of the glacier is exposed during the surge 
for rheologies Bodvarsson , n = I , and Glen , n = I. Presuma bly it would also be exposed for 
the other rheologies, were the surge continued for a suffi cient time. T he m agnitude of the 
terminus advance, as well as of the maximum height falls and rises, generally d ecreases with 
k+ n. Also, as k+ n increases, the height rises tend more to a double maximum, one occurring 
a t the base of the steep pa r t of the bed , the other at the terminus. 

The recovery is more complicated than a simple reversal of the pattern of height changes 
taking place during the surge. At steady-state the down-slope transport values in the lower 
part of the ablation zone are in equilibrium with the mass-balance. The excess of m ass here 
at the end of the surge produces higher transport values, which continue to supply m ass to the 
region in advance of the terminus, where the mass ba lance is strongly negative. This results in 
losses of glacier mass until the transport falls below the steady-sta te values, in 45- 65 years 
depending on the rheology. 

A t the end of the surge, the wave formed by the excess of mass at the down-stream end of 
the steep part of the bed and the d eficiency of m ass in the accumulation zone move down the 
glacier with a wave speed of abou t 100 m /year , rapidly diffusing. The mass deficiency part 
of the wave is foll owed by a minor, short-lived positive anomaly at the base of the steep part 
of the bed . When the mass defi ciency passes the terminus, a fter 50- 70 years depending on the 
rheology, the en tire glacier surface is at or below its steady-state position . 
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Fig. 5 . Height changes during surge and recovery for Bodvarsson 
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Fig. 7. Height changes during surge and recovery for Glen flow 
law (n = 2) . 
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Fig. [ 0. H eight changes during surge and recovery for Budd 
jlow law (n = 2) . 
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The final stage of recovery consists of a simple pattern of continuous height rises until 

steady-state is attained, which occurs first at the top of the accumulation zone and then 
progresses down-glacier. The down-glacier speed of the point of attainment of steady-state 
increases with k+ n. 

The errati c behavior at the terminus that occurs during recovery does not occur during 
the surge, when the glacier is moving an order-of-magni tude faster. Neither does it ever 
produce a glacier surface at the terminus that is irregular when plotted as glacier thickness, 
rather than as a departure from steady-state. This suggests that it is a real, crack-of-the-whip 
phenomenon at the terminus, not simply a symptom of numerical volatility. 

MS. received I7 January I973 and in revisedJorm IO April I973 
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