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COMPARISON OF THREE CONTEMPORARY FLOW LAWS
IN A THREE-DIMENSIONAL, TIME-DEPENDENT GLACIER
MODEL
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Washington 98416, U.S.A.)

ApstrAacT. A numerical model for three-dimensional, time-dependent glacier flow (Campbell and
Rasmussen, 1970) treated the ice as a Newtonian viscous fluid and related its dynamics to two large-scale bulk
parameters: the viscosity » determining the ice-to-ice friction, and a basal friction parameter 4 determining
the ice-to-rock friction. The equations were solved using the relatively simple flow law of Bodvarsson (1953)
in which the basal shear stress is proportional to volume transport. Recent research suggests that a more
realistic basal flow law is one in which the basal shear stress to some lower power (1-3) is either proportional
to the vertically averaged velocity (Glen, 1958; Nye, 1960, 1963[a], [b], [c], 1965[a], [b], [c]) or to the ratio
of the vertically averaged velocity to glacier thickness (Budd and Jenssen, in press).

In the present study a generalized flow law incorporating all of the above bulk basal flow laws is applied
to the Campbell-Rasmussen momentum equation to form a generalized two-dimensional transport equation,
which, when combined with the continuity equation, yields a numerically tractable set of equations for three-
dimensional, time-dependent glacier flow. Solutions of the model are shown for steady-state flow and surge
advance and recovery for a typical valley glacier bed for powers 1, 2, and 3 for each of the basal flow laws for a
steady-state climate input and a given ice-to-ice viscosity parameter.

REsuME. Comparaison entre trois lois d’écoulement acluellement proposées dans un modéle de glacier a trois dimensions
dépendant du temps. Un modele numérique a trois dimensions pour un écoulement de glacier fonction du
temps (Campbell et Rasmussen, 1970) traitait la glace comme un fluide visqueux Newtonien et rapportait sa
dynamique a deux parameétres d’ensemble 4 grande échelle: la viscosité v représentant le frottement glace-
glace et un paramétre de frottement basal A représentant le frottement glace-rocher. On résolvait les
équations en utilisant la loi d’écoulement relativement simple de Bodvarsson (1955) dans laquelle 'effort de
cisaillement basal est proportional au volume transporté. Des recherches récentes suggérent qu’une loi
d’écoulement basal plus réaliste serait celle selon laquelle I'effort de cisaillement 4 la base a une puissance
inférieure (1-3) est proportionnelle soit 4 la vitesse moyenne le long d’une verticale (Glen, 1958; Nye, 1960,
1963[a], [b], [c], 1965[a], [b], [c]) soit au rapport entre la vitesse moyenne le long d’une verticalle a
I"épaisseur du glacier (Budd et Jenssen, sous presse).

Dans la présente étude, une loi d’écoulement générale englobant toutes les lois d’écoulement d’ensemble
ci-dessus est appliquée a I'équation des moments de Campbell-Rasmussen pour former une équation générale
du transport 4 deux dimensions qui, combinée avee I'équation de continuité fournit un systéme d’équation
traitable numériquement pour I’écoulement tridimensionnel du glacier en fonction du temps. On montre
les solutions de ce modeéle pour un écoulement permanent et pour un épisode d’avance et de retrait aprés une
crue dans une vallée glaciaire typique avec des puissances de 1, 2 et g pour chacune des lois d’écoulement a
la base sous un climat constant et une valeur donnée du paramétre viscosité glace-glace.

ZUSAMMENFASSUNG. Vergleich dreier moderner Fliessgeselze fiir ein dreidimensionales, zeitabhingiges Gletschermodell.
Ein numerisches Modell fiir dreidimensionales, zeitabhéngiges Gletscherfliessen (Campbell und Rasmussen,
1970) behandelte das Eis als eine Newton’sche viskose Fliissigkeit und beschrieb seine Bewegung mit Hilfe
zweier makroskopischer Massenparameter: der Viskositit v, welche die Eis-zu-Eis-Reibung bestimmt, und
cinem Grundreibungsparameter A, der die Eis-zu-Fels-Reibung bestimmt. Die Gleichungen wurden mit dem
relativ einfachen Fliessgesetz von Bodvarsson (1955) gelost, in dem die Scherspannung am Untergrund
proportional zum Massentransport ist. Neuere Untersuchungen deuten darauf hin, dass in einem realisti-
scheren Gesetz fiir das Fliessen am Untergrund eine gewisse niedrige Potenz (1-3) der Scherspannung
proportional entweder zur vertikalen Durchschnittsgeschwindigkeit (Glen, 1958; Nve, 1960, 1963[a], [b], [c],
1965[a], [b], [c]) oder zum Verhiltnis von vertikaler Durchschnittsgeschwindigkeit und Gletscherdicke
(Budd und Jenssen, im Druck) angenommen werden sollte,

In der vorliegenden Untersuchung wird ein allgemeines Fliessgesetz, das alle oben genannten Fliessge-
setze fiir Massen am Untergrund einschliesst, auf die Campbell-Rasmussen’sche Momentengleichung
angewandt; daraus ergibt sich eine allgemeine zweidimensionale Transportgleichung, die in Verbindung mit
der Kontinuititsgleichung ein numerisch lésbares Gleichungssystem fiir cin dreidimensionales zeitabhiingiges
Gletscherfliessen liefert. Losungen des Modells werden fiir stationires Fliessen sowie fiir einen ausbruch-
artigen Vorstoss und dessen Regeneration in einem typischen Talgletscherbett mit den Potenzen 1, 2 und 3
in jedem der drei Fliessgesetze unter der Annahme stationirer Klimaverhiltnisse und mit einem gegebenen
Eis-zu-Eis-Viskosititsparameter aufgezeigt.

INTRODUCTION

Because of the structural complexity of glaciers and ice caps, direct measurements of them
are necessary in order to reach a quantitatively pertinent flow law. As Lliboutry (1970) has
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pointed out, the measurements “‘are by no means simple since three distinct problems must be
solved simultaneously (ice flow law, boundary conditions at the bottom, dynamic problem),
and only the whole solution may be checked by field data’”. In an effort to construct a model
which could be used to relate solutions of three-dimensional, time-dependent glacier flow to
observations, Campbell and Rasmussen (1970) assumed a viscous flow law for ice, a simple
(Bodvarsson, 1955) basal flow law for the bottom boundary condition, and generated a
system in which solutions could be obtained for any given glacier whose bedrock topography
and mass balance are known.

Both the ice and basal flow laws were simple compared with existing flow laws (Glen,
1955, 1958; Lliboutry, 1968; Nye, 1960, 1963[a], [b], [c], 1965[a], [b], [c]; Weertman, 1957,
1964, 1969) and were chosen so as to render the equations mathematically tractable for
numerical solution. Although the flow laws used were simple, the model was more complex
than many existing models in that it was three-dimensional and time-dependent, it included
the effect of longitudinal and lateral stress gradients, and it partitioned the ice viscosity from
the basal friction allowing them to be parameterized independently. Although the solutions
obtained were for an ideally smooth bedrock topography and mass balance versus altitude
curve, the equilibrium profiles for selected sets of the ice and basal friction parameters
resembled those of real glaciers. Campbell and Rasmussen (1969) further applied the model
to glacier waves, surges, and surge recoveries, and again found solutions that resembled the
behavior of real glaciers. At the time this model was developed the authors were aware that
although the solutions resembled the behavior of real glaciers, the model would not be quanti-
tatively accurate until a more complex flow law, one in keeping with the findings of the above
named authors, was incorporated into it. Their modus operandi was to get the simpler model
working and then go on to more complex ones.

The problem facing the authors was in what way the first model ought to be improved—
should they adopt a more complex ice viscosity, or a more complex basal friction? Various
measurements of temperate glacier ice, for example those of Colbeck (unpublished), suggest
that at the stresses normally found in temperate glaciers, the Newtonian viscous approxima-
tion for ice flow is acceptable, whereas considerable controversy exists over the mechanisms of
basal flow. Therefore, it was decided to compare solutions, using the same idealized valley
glacier and mass balance to which the carlier model was applied, for three models incorpora-
ting different basal flow laws: the Bodvarsson law used in the earlier model, a vertically
integrated form of Glen’s (1955) flow law used extensively by Nye (1960, 1963[a], [b], [c])
and others, which for the sake of simplicity we will refer to throughout the text as the Glen
law, and another form of Glen’s law, involving certain assumptions concerning the stress
distribution, used by Budd (1969), Nye, and others, which again for the sake of simplicity we
will refer to as the Budd law, becausc in the literature he has most frequently used it.

These flow laws, which involve three parameters, are in turn coupled with the Campbell
and Rasmussen momentum equation, obtained by vertically integrating the Navier—Stokes
equation, which adds one more parameter to the problem, the ice-to-ice viscosity ». Each of
these momentum equations is then solved simultaneously with the continuity equation. The
greater part of this study involved variation of parameters associated with basal friction. The
value of v we used (10'5 cm?/s) proved to be the optimum value in our earlier studies and is
close to the value obtained by Raymond (1971[a], [b]) in his study of the Athabasca
Glacier.

The influence of each of the three basal flow parameters was first studied by modelling a
steady-state valley glacier and noting how the glacier shape and flow varied for the equilibrium
solution for each set of parameters. Then the effect on non-steady behavior was examined by
depressing the basal friction parameter to five per cent of its initial steady-state value for a
period of one year, thereby inducing a glacier surge. Finally the basal friction parameter was
restored to its initial value and the recovery of each glacier was studied for one hundred years.
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MATHEMATICAL MODEL

As shown by Campbell and Rasmussen (1970), the Navier-Stokes equation, from which
inertial and acceleration terms have been omitted, may be written

v
—7”+g+szv (1)

where V = ui+vj+wk is the velocity vector, » is the kinematic viscosity, § = gzi-+gyj+2-k
is the gravity vector (with magnitude g), p is the pressure, p the density. If Equation (1) is
applied to a glacier and V2 is the two-dimensional Laplacian operator, and the coordinate
system is chosen so that the z-axis is normal to the bed of the glacier, then Equation (1) may
be written in component form as

1c 18
= .\—PJrgaHerzu“— =
p Cx p o2
" . (2)
10 1 07y
'“; a’)’+gy+uvzv_f’ 2z = 0,
0
E_Z = PgZ) (5)

where 7, and 7, are the shearing components parallel to the bed, and the velocity component
w normal to the bed has been neglected.

The hydrostatic equation (3) may be integrated vertically, yielding the hypsometric
equation

p = pgz(h—2)+pa (4)

where A is the glacier thickness, measured normal to the bed, and p5 is the atmospheric pressure.
A volume transport vector @ = Q ,i+ () yj may be defined as

h ~N
Q= J. Vdz
o
h A e (5)
where Q= f udz and Qg= f vdz

o o E

Term by term, the x-component equation (2) may be integrated vertically to produce a
transport equation. By using Equation (4), the first term may be integrated as follows:

h
¢ [ pg:h? L ch
) =8y

The gravity term can be integrated directly:
A

ng dz = gzh.

o

Assuming v to be independent of z, the horizontal viscous term is integrated,
k

A
J vWanudz = vV? J udz = vV2Q,.

(] (8]
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Since the shearing stress vanishes at z = k, the vertical viscous term is integrated,
b

flaﬂdz:??
p oz p

o

’
Tz

z2=0 P

where 7' is the shearing stress at the bed.
The vertical integration of the y-component equation (2) leads, then, to the component
form of the transport equation:

; ch
% = —gzh a+gxh+VVZQ,x:

, i (6)
T

ch
5 = —gh S—I—gyh-i—szQ_y.

If the transport equation is to be applied to an arbitrarily shaped glacier bed, it may
conveniently be transformed so that & is measured along the Earth-vertical. This facilitates
the plotting of computation results, and accumulation or ablation is specified in this direction.
The transformation is accomplished by invoking the relation

8z
h(normal) - E h(vcrlica[) = ch(verlical)'

The symbol % in Equations (4)-(6) indicates Apqma; in all appearances hereafter it indicates
hyericany, and the relevant coordinate system is that in which z is measured along the Earth-
vertical, positive upward, with x and y in the Earth-horizontal plane.

The transport equation, so transformed, is

T = p(cgs,yh—c*2hVh-+vV2@). (7)
If tan ; and tan «y are the components of the bed’s inclination to the horizontal, the gravity
components are given by

gr = ¢g tan ay,

&y = cgtan oy, (8)
e ]
where ¢ = (1-+tan? a;+tan? ay) b

If a functional relationship can be established between @ and t’, then Equation (7) can be
solved for @, presuming h to be known. Suggested forms of this relationship, in which the
bed friction coefficients A are specified constants, include

I

Q:

(t')» Bodvarsson,

|

V =—(¢)" Glen, F (9)

| =

V/k = (*)" Budd,
estimates of the exponent n ranging from 1 to 4. Setting @ = £V, these may be generalized to

& Zlhk('r’)", (10)
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by which is meant
I
T A
where sgn (x) is -1, 0, —1 as x is positive, zero, negative.
The Bodvarsson law has k = o, the Glen law has £ = 1, and the Budd law has £ = 2.
Also 4 is seen to have the units g cm#-7-2 s1-2% and, therefore, should be denoted A(n).
Substituting for t’ from Equation (6) yields

k¥ |7, | 7 sgn (74") and Qy= Zlhkl-ry’ | sgn (7y")

- m (ch)*[p(cgr,yh—c2g:hAVR+vV2@) ]2 (11)

If a(x,,t) is the specified mass-balance forcing function, the continuity equation for

incompressible flow can also be integrated vertically to yield
ch 1
e —E\—-Q—i—a(a,_y,t). (12)

Equations (11) and (12) now constitute a system of three algebraic equations in three
unknowns @ », Q 4, and A. Assumption of a subglacial geometry determines the x, y distribution
of tan oz and tan ay and therefore, through Equations (8), of the components of the gravity
vector.

Mathematically, then, the glacier is treated as an array of vertical columns of unit area
and varying height. The ice-to-ice friction on the sides of the columns is controlled by the
viscosity coeflicient v, whereas the ice-to-bed friction is controlled separately by the bed
friction coefficient A.

NUMERICAL SOLUTION

Equations (11) and (12) are solved by a forward-difference method on a square finite-
difference grid with spacing S, and whose grid points are denoted by standard matrix notation.
If (x,) are the coordinates of grid point (7,7), then (x-+S, y) are the coordinates of point
(i,j+1), and (x, y—S) of point (41, j).

Qi 111 = gy LR, 5+ @,y {2 Legahle s+ g o)+

p pv
+o5 [(Peh?)e, j—(Pgeh?), 1]+ [Qa, b, 01+ Qs 1, 14+ Qo 41, 10t
n

+Qz, 41, 41—4Q 2, 1, m]} ;

Qy, iy, 1= F {3[(ch)s, 5+ (ch)iyq, 51}° {g [(cgyh)i, i+ (cgph)isq, 114

L [(egeh?) 41, 1— (28hD1, 51+ [Qu, w14, 101+ Qo 12, 1+

n
+Qy, t-4, 1+ Qy, t411, 1—4Qy, 143, J]} 3

and the continuity equation (12) can be approximated by

ke, §(14-At) = ha, 4() + At l:cz;, ,—C_ij V. Q(t)]

1
where V@ =15[Qs¢14—Qs t, 114+ Qy, 14, 1= Ly, 144, 1]-
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The equations for Q , and Q , are solved by over-relaxation, in about three passes when
v # 0, in (exactly) one pass when v = 0. The boundary conditions were conveniently
managed by choosing the solution region to be sufficiently large that the glacier lay wholly
within it. Then, since # = o all around the glacier, and by requiring @ = o whenever & = o,
it is possible to impose a no-slip boundary condition precisely at the glacier margin without
specitying the location of the margin in advance.

The calculations were performed on a CDC-6400 computer by a modular program
written in FORTRAN IV. An empirical stability examination showed

At < [0.006(1+3 tan? o) | Ay (n)S2h—tntE+D)

where At is given in days for Ax(n), and & in c.g.s. units but S in m. The calculation rate is
given approximately as
M(14+XN) s
1 500 time step

where M is the number of (h > 0) points in the solution region, and V'is the average number
of relaxation passes per time step. For the cases described in this paper, the time step varied
from 10 to 40 d for steady-state solutions and surge recoveries, and from } to 2 d for surges.
The calculation rate was about one second per time step.
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Fig. 1. Steady-state solution for Glen flow law (n = 3).
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STEADY-STATE SOLUTIONS

Shown in Figure 1 are the glacier bed and annual mass balance used in all calculations.
The glacier bed has a steep (30°) upper slope joined by a short, smooth transition to a shallow
(87) lower slope, with a constant, U-shaped transverse cross-section that is symmetric about
the glacier center-line. The annual mass balance, unchanging in time, varies from 42 m/year
at the top of the accumulation zone to about —8 m/year at the terminus, depending on its
precise position. A 200 m grid spacing was used for all calculations.

For any rheology (£, n pair) considered, the steady-state solution is strongly dependent on
the numerical value of the coefficient A. Therefore, to examine the differences between
rheologies (separately from differences due to variations in the value of A), the A-values were
chosen so that the glacier volumes of the steady-state solutions were the same for all seven
rheologies. The value for 4,(1) (Bodvarsson, n = 1) was taken to be 109, as by Campbell and
Rasmussen (1970), which produced a steady-state volume of 3.375 km3. Shown in Table I
are the values for the other six rheologies that produce this same steady-state volume. Also
shown in Table I are the sensitivities of each steady-state volume to unit variations both in
Ak(n) and in ».

TaprLe I. DEPENDENCE OF STEADY-STATE VOLUME ON Ax(n) axp v

Ag(n) producing ~ Change* in Change* in
Rheology 3.375 km? volume per volume per
steady-stale 19, increase 1%, increase
Flow law n glacier volume in Ay(n) in v
% %o
Bodvarsson (k = o) 1 10 +o0.598 —0.0433
Glen (k = 1) 1 1.75 X 1010 {0.494 - 0.0683
Glen (k= 1) & 3.92 X 1016 fo.g11 +0.0855
Glen (k = 1) 3 8.52 % 1022 +0.303 +0.0926
Budd (k = 2) 1 2.40 X 104 +0.373 +0.0628
Budd (k = 2) 2 5.06 % 1020 +0.237 +0.0867
Budd (k = 2) g 1.00 X 10%7 +0.190 +0.0956

* Ax(n) value producing 3.375 km? steady-state and » — 1015 cm?/s.

Figure 1 gives the steady-state distributions of glacier thickness and volume transport for
the rheology defined by the use of the Glen flow law (k = 1) with n — 3. It exhibits the
familiar pattern of concave transverse cross-sections in the accumulation zone, with converging
streamlines, and convex transverse cross-sections in the ablation zone with diverging stream-
lines.

When constrained to have the same volume, the steady-state solutions for the other six
rheologies have glacier thickness distributions so similar that their differences are not readily
perceived when plotted at the scale of Figure 1. Hence these differences are shown in Figure 2,
which gives the center-line glacier thickness profiles for each of the seven rheologies.

At steady-state, Equation (12) becomes

V-@ = ca(x, )

which, when integrated over the areal extent of the glacier, gives @ solely as a function of
a(x, y), independent of any direct influence from Equation (11). The slight differences of the
steady-state @ distributions from rheology to rheology are due only to the differences in the
arcal extent of the seven steady-state solutions which, as shown in Figures 5-11, are quite small.
Figure 1 also contains the distribution of @ for the rheology & = 1, n — 3:

https://doi.org/10.3189/50022143000031786 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031786

368 JOURNAL OF GLACIOLOGY

[ | I I | 1 T T T T T T 1

GLACIER A BODVARSSON, n=|
THICKNESS B GLEN,n=1
w Jite
) \n=
400 E BUDD .n=1 1
n F BUDD,n=2 |
A G BUDD . n=3
300 B 4
c
I E d
G
200 - .

100 VERTICAL .
EXAGGERATION
20:| =
O 1 | 1 1 | 1
0 2 4 6 8 10 12

DISTANCE DOWN GLACIER (km)

Fig. 2. Steady-state glacier thickness center-line profiles comparing seven different rheologies.

SURGE AND RECOVERY SOLUTIONS

Each steady-state solution was caused to surge by carrying out the calculation for one year
with Ax(n) depressed to 0.05 of the value that produced the steady-state solution. Then, Ax(n)
was restored to its former value, and the first 100 years of its reversion to steady-state was
examined.

The reduction of Ag(n) increases the transport for a given basal stress, permitting the
glacier to flow more rapidly downhill. Hence, the surge is marked by height falls in the upper
part of the glacier, height rises in the lower part, and a slight advance of the terminus. Also,

since
J’J a(x,y)dxdy =0

over the extent of the steady-state glacier, its advance appends a region in which the mass-
balance is negative, resulting in a net loss of glacier mass.

When the steady-state A(n) value is restored, the glacier begins to reassume its steady-
state distribution, but in a more complicated manner than the simple pattern of height
changes that occurred during the surge. In fact, the glacier continues to lose mass for several
more tens of years. The resumption of the steady-state distribution begins at the top and
proceeds down the glacier.

Figure g shows the variation of glacier mass during both the one-year surge and the 100-
year recovery for each of the seven rheologies. Equation (11) may be roughly regarded as a
polynomial in & of degree k+n, which serves as a crude index characterizing the dynamic
response of the glacier. The speed of recovery generally increases with k—+n.
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Another indication of differences in dynamic response is given by Figure 4. It shows, for
each of the seven rheologies, the centerline profile of the down-slope volume transport at the
end of the one-year surge, while the A(n) value is still depressed. The volume transport

during the surge decreases with k-n.

Figures 5-11 show, each for one or another of the rheologies, the height changes from
steady-state during surge and recovery. The transient behavior of the height changes along
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Fig. 4. Down-slope volume transporl center-line profiles at the end of one year surge comparing seven different rheologies.

the glacier center-line is exhibited both during the surge and during the recovery. Also shown
is the distribution, over the entire glacier, of the net height change at the end of the surge, as
well as the glacier margin both at steady-state and at the end of the surge.

The surges follow a relatively simple pattern of continuously falling heights in the upper
part of the glacier, continuously rising heights in the lower part, and a slight continuous
advance of the terminus. The glacier bed at the top of the glacier is exposed during the surge
for rheologies Bodvarsson, n = 1, and Glen, n = 1. Presumably it would also be exposed for
the other rheologies, were the surge continued for a sufficient time. The magnitude of the
terminus advance, as well as of the maximum height falls and rises, generally decreases with
k-+n. Also, as k-+n increases, the height rises tend more to a double maximum, one occurring
at the base of the steep part of the bed, the other at the terminus.

The recovery is more complicated than a simple reversal of the pattern of height changes
taking place during the surge. At steady-state the down-slope transport values in the lower
part of the ablation zone are in equilibrium with the mass-balance. The excess of mass here
at the end of the surge produces higher transport values, which continue to supply mass to the
region in advance of the terminus, where the mass balance is strongly negative. This results in
losses of glacier mass until the transport falls below the steady-state values, in 45-65 years
depending on the rheology.

At the end of the surge, the wave formed by the excess of mass at the down-stream end of
the steep part of the bed and the deficiency of mass in the accumulation zone move down the
glacier with a wave speed of about 100 m/year, rapidly diffusing. The mass deficiency part
of the wave is followed by a minor, short-lived positive anomaly at the base of the steep part
of the bed. When the mass deficiency passes the terminus, after 5070 years depending on the
rheology, the entire glacier surface is at or below its steady-state position.
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The final stage of recovery consists of a simple pattern of continuous height rises until
steady-state is attained, which occurs first at the top of the accumulation zone and then
progresses down-glacier. The down-glacier speed of the point of attainment of steady-state
increases with k-+n.

The erratic behavior at the terminus that occurs during recovery does not occur during
the surge, when the glacier is moving an order-of-magnitude faster. Neither does it ever
produce a glacier surface at the terminus that is irregular when plotted as glacier thickness,
rather than as a departure from steady-state. This suggests that it is a real, crack-of-the-whip
phenomenon at the terminus, not simply a symptom of numerical volatility.

MS. received 17 January 1973 and in revised form 1o April 1973
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