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Abstract. In order to compute s a t e l l i t e motions with centimeter 
accuracy, the reference system, to which they are referred, should be 
careful ly chosen. In fact there are many kinds of the reference 
systems. In th is paper advantages and disadvantages of various refer
ence systems are discussed. 

There are many d i f fe rent reference systems, to which s a t e l l i t e 
positions are referred. Everybody prefers one system to the others, 
however, there is no system which everybody prefers the best. The 
mean equator and equinox at a certain epoch are adopted at some 
ins t i tu tes as the i r reference frame for s a t e l l i t e posi t ions, whereas 
at others the true equator and equinox of data are adopted. Instead 
of the true equinox the mean equinox of a f ixed date can be chosen. 
I t is also possible to adopt the mean equator and equinox at the 
beginning of a year and to change the system at the beginning of every 
year. More precisely, there are many choices for the z-ax is ; namely, 
the f igure axis or the celest ia l pole axis or the instantaneous spin
ning axis. Furthermore we may ask what kind of the f igure axis should 
be adopted; the true or mean f igure axis. I do not want to conclude 
here which is the best system, however, w i l l t r y to discuss how we 
should do to compute the s a t e l l i t e positions with centimeter accuracy 
for each case. 

None of the reference systems is i ne r t i a l as the i r or ig ins are at 
the geocenter which is in accelerated motion. The effects of the 
motion of the geocenter to s a t e l l i t e motions are usually included in 
the lunisolar gravi tat ional perturbations. In fact the disturbing 
function due to the sun and the moon for the s a t e l l i t e motions is 
derived by wr i t i ng the i r equations of motion in an i ne r t i a l coordinate 
system with i t s o r ig in at the barycenter of the solar system which is 
assumed to be moving with an uniform ve loc i ty . 

I f there is no rotat ional motion of the coordinate axes of the 
reference system with respect to the i ne r t i a l system, i t i s not 
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necessary to add any term to the disturbing function of the s a t e l l i t e 
motions, since i t is a quasi- inert ia! system (Moritz, 1979). The 
coordinate system with the mean equator and equinox at a certain epoch 
as the reference frame is such a system. I t has an advantage as i t is 
easy to describe the equations of motion in this system. However, to 
write the expression of the geopotential is not so easy as the coordi
nates of any point are time-dependent in the system even though the 
solid earth is assumed. I t is also possible to adopt a quasi-inertial 
system to formulate the equations of motion and to introduce an 
auxiliary reference to express the geopotential and the station coordi
nates. As the auxiliary reference frame usually the equator of date 
is adopted. 

When the equator and the equinox of date are adopted as the frame 
of reference, the expression of the geopotential becomes simpler as 
the coordinates of any earth fixed point are time-independent. I t has 
a disadvantage, however, since perturbations are produced as the 
coordinate axes move. To discuss more precisely on this system i t is 
necessary to specify what axis is adopted as i t s z-axis. Indeed there 
are many axes. The system, in which the equator of date and the mean 
equinox at an epoch is adopted, is a kind of this system, as there is 
no essential difference to t rea t the perturbations. 

Roughly speaking, there are two choices for the z-axis, the figure 
axis or the celest ial pole axis. The figure axis is the axis of the 
maximum momentum of iner t ia . Therefore, if i t is adopted C2] and S21 
terms vanish in the geopotential. However, as the sun and the moon 
are generating tides on the earth, the figure pole is moving around 
i t s mean position by as much as 60 meters (Moritz, 1979). Therefore, 
the figure axis is not fixed to the earth in any sense. 

However, if the mean position of the figure pole which does not 
move with respect to the earth is adopted as the direction of the z-
axis , the coordinates of any of the observing stations are expressed 
as the constant values plus tidal motions and the geopotential is 
expressed as the sum of the averaged part and the variable part due to 
the tidal deformation which can be formulated or can be derived by 
analyzing s a t e l l i t e motions. The rotation of the earth around the 
mean figure axis is not so simple as that around the celestial pole 
axis. However, as i t s rotation rate is constant with error less than 
10- 6 at most (the distance between the mean figure pole and the 
celest ial pole being 6 meters), the geopotential can be expressed with 
1CH° accuracy by assuming that the rotation rate around the mean 
figure axis is constant. Therefore, i t seems that i t is easy to 
express both the station coordinates and the geopotential in this 
reference system. However, the reference system moves by the preces
sion and the forced and free nutation in the iner t ia l system. 

When the celest ia l pole axis is adopted, the station coordinates 
are expressed by the sum of the constant par t , the tidal effects and 
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the effects of the polar motion and the geopotential is the sum of the 
constant par t , the t ida l part and the time-dependent C21 and S2i terms 
due to the polar displacement. The system does not move due to the 
free nutation with respect to the i n e r t i a l system, however, of course, 
moves due to the precession and the forced nutat ion. This system has 
an advantage as the nutation theory is referred to th is axis according 
to an IAU resolut ion in 1979. I t is p rac t i ca l l y convenient to adopt 
CIO as the direct ion to the z-axis. 

When any non-uniformly moving reference coordinate system is 
adopted the equations of motion should include addit ional terms due to 
the centri fugal and the Cor io l is forces, although acceleration of the 
motion of the reference system is very small as i t usually moves due 
to the precession and the nutat ion. However, as the ve loc i ty , the 
energy and the angular momentum of the s a t e l l i t e with respect to the 
system are d i f fe rent from those with respect to the quas i - iner t ia l 
system and vary wi th t ime, the osculating semi-major axis and eccen
t r i c i t y change with time even for the two-body problem. Of course, 
the other o rb i ta l elements also include the i r perturbations due to the 
motion of the system. 

There is also a d i f fe rent kind of reference frame, such as one 
which has been adopted at the Smithsonian Astrophysical Observatory. 
I t is basical ly a quas i - iner t ia l system even though i t has not been 
stated so before, since the basic equations of motion are those in 
the i ne r t i a l system without any addit ional term. However, in order to 
make the expressions of the geopotent ial , the stat ion coordinates and 
the perturbations much simpler an aux i l ia ry reference for them has been 
introduced. I t is referred to the equator of date and the mean equinox 
at 1950.0, with respect to which the i nc l i na t i on , the argument of 
perigee and the longitude of the ascending node of the s a t e l l i t e are 
given. However, the semi-major axis and the eccent r ic i ty are referred 
to the quas i - iner t ia l system in the sense that the ve loc i t y , the energy 
and the angular momentum computed by formulae fo r the two-body problem 
with the osculating semimajor axis and eccent r ic i ty are those with 
respect to the quas i - iner t ia l system, namely, that defined by the mean 
equator and equinox at 1950.0. The semimajor axis and the eccen t r i c i t y , 
therefore, are not disturbed by the motion of the aux i l ia ry system, 
that i s , constant for the two-body problem, however, have some small 
ind i rec t perturbations through other elements due to the motion of the 
equator. Therefore, one must be careful to analyze doppler data of 
the s a t e l l i t e in th is system. 

For the three angular elements with respect to the aux i l ia ry 
system (Kozai and Kinoshita, 1973) proved that by adding s i / a t , 3u)/3t 
and 3fi/at to the right-hand sides of Lagrange's planetary equations 
for the i nc l i na t i on , the argument of perigee and tne longitude of the 
ascending node, respect ively, the equations hold for any moving 
auxi l iary system. S imi la r l y , any other type of equations of motion 
can be modified for such systems. For the other o rb i ta l elements the 
equations need not have any addit ional term as the def in i t ions of the 
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semimajor ax is , the eccent r ic i ty and the mean anomaly are the same as 
those for the quas i - iner t ia l system. 

The par t ia l derivatives are derived by using geometrical relat ions 
between the moving and the f ixed systems. In fact as the reference 
system is moving the values of the three angular quant i t ies , i , u and 
ft take values d i f fe rent from the or ig ina l ones even i f there were not 
perturbation at a l l . The par t ia l derivatives are the time derivatives 
of the angular quanti t ies without taking into account any perturbation 
in the o rb i ta l elements. Namely, the elements are constant in deriving 
the der ivat ives. 

In the previous paper (Kozai and Kinoshita, 1973) the fol lowing 
expressions are derived for the par t ia l der ivat ives: 

•ĝ f = - f j f {S1'n 6 C0S (a " " H 

—• = cosec i —r {s in 6 sin (a - ft)} , (1) 
ot 31 

8ft / i „ i da . . 3 r . „ • , „ \ , 
r r = (1 - cos e) -TV- - cot i —r (s in e sin (a - ft)} , 

where 9 and a are, respect ively, the inc l ina t ion and the longitude of 
the ascending node of the moving reference plane with respect to the 
f ixed one and are e x p l i c i t l y time-dependent. 

When the moving references are the equator and the equinox of date 
and the f ixed ones are the mean equator and equinox at an epoch, sin e 
sin a, and sin e cos a are expressed as, 

sin e sin a = sin ej sin 41 , 

sin e cos a = sin (e0 - ex) + 2 sin U/2) sin ei sin e0 

(2) 

where \p is the arc between the ascending nodes of the e c l i p t i c at the 
epoch referred to the equators and eg and ex are the i r inc l ina t ions . 
And ei and ty change due to the precession and the nutation and for 
some cases the free nutat ion. The expression (2) can be approximated 
by, 

sin e sin a = (0.3979 + e\ - EQ) s " i n i> , 
(3) 

sin e cos a = 0.3651(1 - cos $) - zi + e0 

In order to obtain the perturbations due to the motions of the 
reference frame in the three angular elements i t is necessary to take 
par t ia l derivatives wi th respect to time for (1) by assuming that only 
6 and a are time-dependent and then to integrate them by assuming that 
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0, is also time-dependent. As y and E1 move, usual ly, more slowly than 
Q, the perturbations introduced are smaller than the motions of the 
reference frame. As the lunar longitude of the ascending node which 
enters into the argument of the pr inc ipal nutation term, 18.6 year 
period term, moves more slowly even than that of Lageos s a t e l l i t e , the 
amplitude of the perturbation term produced by th is nutation term is 
smaller than that of the nutation term i t s e l f . As the 18.6 year period 
nutation term's amplitude is known with the accuracy of O'.'OOl , the 
perturbations in the o rb i ta l elements can be computed with centimeter 
accuracy. The perturbations due to other nutation terms can be computed 
with the same accuracy by using the ex is t ing nutation theory unless 
any serious resonance is introduced. 

When the mean f igure axis is adopted as the z-ax is , the pole 
coordinates should be known with centimeter accuracy to compute the 
perturbations due to them with the same accuracy. Even when the 
celest ia l pole axis is adopted, the pole positions should be known with 
centimeter accuracy to compute the values of time-dependent C21 and 
S21. 

Even when the equations of motion are formulated in a quasi-
i ne r t i a l system or in a non-uniformly moving system with addit ional 
terms, the perturbation behavior for the three angular elements is not 
essent ia l ly d i f fe rent from discussed here. The semimajor axis and the 
eccent r ic i ty are perturbed for the moving reference system. However, 
they can be derived with the centimeter accuracy when the expressions 
of the precession, the nutation and the pole motion are known with the 
same accuracy. I f they are not known wi th th is accuracy, the s a t e l l i t e 
motions can improve them from time to time. 
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