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ON CERTAIN NEW AND EXACT SOLUTIONS
OF THE EMDEN-FOWLER EQUATION
AND EMDEN EQUATION VIA INVARIANT VARIATIONAL
PRINCIPLES AND GROUP INVARIANCE
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Abstract

After formulating the alternate potential principle for the nonlinear differential
equation corresponding to the generalised Emden-Fowler equation, the invariance
identities of Rund [14] involving the Lagrangian and the generators of the infinites-
imal Lie group are used for writing down the first integrals of the said equation
via the Noether theorem. Further, for physical realisable forms of the parameters
involved and through repeated application of invariance under the transformation
obtained, a number of exact solutions are arrived at both for the Emden-Fowler
equation and classical Emden equations. A comparative study with Bluman-Cole
and scale-invariant techniques reveals quite a number of remarkable features of the
techniques used here.

1. Introduction

The importance of invariant variational principles and group-invariance tech-
niques for solving nonlinear differential equations of many a physical and
engineering system has already been highlighted in a number of recent pub-
lications. See for example Logan [10], Bhutani and Mital [2], Bhutani et al
[3], Bluman and Cole [1], Olver [12] and Bhutani et al [4-6].

The motivation for the present study had its origin in our attempt to carry
over these techniques either singly or collectively, as the case may be, for
obtaining the exact solutions of the Emden-Fowler equation and the classi-
cal Emden equation that have been listed in Section 2. More specifically,
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after formulating the alternate potential principle for the generalised Emden-
Fowler equation in Section 3, we have obtained, depending on the physical
realisable forms of the parameters involved, three different first integrals of
the Emden-Fowler equation via Noether’s theorem. This is followed by the
determination of exact solutions for the first-order equations via group in-
variance in Section 4. As a check to the efficacy of this technique, we have in
Section 5, obtained exact solutions of the Emden-Fowler equation via a scale-
invariant transformation. In Section 6, we have examined the possibility of
integrating the Emden-Fowler equation via the Bluman and Cole technique.
It turns out that the condition for the integrability of the reduced form of
the Emden-Fowler equation via the Bluman and Cole technique is the same
as the one obtained in new dependent and independent variables. Under the
condition, a class of new exact solutions is obtained. Finally, in Section 7 we
have summed up the results of this study in the form of conclusions.

2. Generalised Emden-Fowler equation and its applications

The generalised Emden-Fowler equation is written in the following form

Yita@y + @y =0, (2.1)
where a(t) and B(¢) are arbitrary functions of ¢, and » is a real number.
Equation (2.1) is reduced to the classical Emden-Fowler equation {11]

v+ %J" — Bt“y" =0, (2.2)

when o(t) = k/t, k is a constant parameter and B(¢) = —ﬂot“’, B, is
another constant. Equation (2.2) has been the subject of study by Rosenau
[13] for its solutions. Further, if f; = -1, w =0 and k =2 in (2.2), we
arrive at the Emden equation:

Y+ 4y =0, (23)

which arises in astrophysics [8]. Also, (2.2) can be considered as the gener-
alised Thomas-Fermi equation [7). When transformed to

J_}II _ ﬂo(k _ 1)(m+2k)/(l—k)z(au+2k)/(1—k))_)n -0 (24)
under the transformation
1=t k-1, IO =y, (2.5)

(2.4) assumes another form of Thomas-Fermi equation [9]. For the case
w=-7/2, n=3/2, B,=1 and k = 2, we arrive at the usual Thomas-
Fermi equation [9] .

7' =0 (2.6)
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3. Invariant variational principle for the generalised
Emden-Fowler equation and the first integrals

For obtaining the invariant variational principle, we need to prove the
existence and hence formulate a functional whose stationarity will yield the
given differential equation. To this effect we follow our earlier works [2, 3]
and write down the functional as follows:

F[y]=/n[(—%y'2 ff:)l "“) exp </a(t)dt)] Q. (3.1

Thus, the Lagrangian L, leading to (3.1) can be expressed as

L= (—%y’2 + nﬂi )1 y"+1) exp ( / a(t)dt) : (3.2)

In order to prove the invariance of the fundamental integral ([ Ldr), we
look for a one-parameter infinitesimal group of transformations of the form:

£ =t+1(t, y)e+0(e),
Y =y +&(t, v)e+0Ed).

The necessary condition for the fundamental integral (f Ld¢) to be invariant
under the transformation (3.3) as given by Rund [14] is

(3.3)

oL oL BC 6{ /_ﬁ ] 8t n

‘a—z”w“a [at“‘w 5" " 8y’

o7 41
r2 (%) =0

On substituting for L and its derivatives in (3.4) and collecting in descending
order the coefficients of various powers of y' and setting these coefficients
equal to zero, we obtain the following system of partial differential equations

(3.4)

o ¢

6y=0’ 3 =0 (3.5)
g: $(t)T - ‘95 -0, (3.6)
y ()’/(t)r + %‘t + %) +(n+1)X=0, 3.7
where
0= [ad,  y=L0).  B=5®)
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On solving (3.5)-(3.6), we arrive at the following expressions for 7 and ¢:
(1) =’ [al / e "Vt + az} , (3.8)

) =y +ay, (3.9)

where a, and a, are constants of integration and g, is a separation constant.
For a consistent solution to the system (3.5)~(3.7), equations (3.8)-(3.9) must
satisfy (3.7). Consequently, the following possibilities arise:

(i) a, =0=a,, (ii) a, =0=a,; and (iii) a; =0,
where B(¢t) and y(¢) are related, corresponding to each case, through the

relations

(B(1)e? )2+ / e 4t = const. (3.10)

B () = const, for all n, (3.11)

B(t)e”™ = const, for n = -3. (3.12)

On making use of the invariance groups (3.8)-(3.9) in the following Noether’s
identity

oL . oL
-L+— - = t., 3.13
(-L+55y') = 25t = cons (3.13)

we obtain, corresponding to the three different cases cited above, the follow-
ing three different first integrals of (2.1):

(lyl2 + £(L)1y"“) e /e—r(t) dt— %yy'ey(') = const., (3.14)

2 n+
1 ,8([) n+l 2p(ty _
(2y o) e’ = const., (3.15)
and
%(yn_ - B(eyy e (al /e—y(t)dt+ a2> - %ey(')yy' =const . (3.16)

Equations (3.14)-(3.16) are valid for arbitrary forms of a(t) and B(¢) that
satisfy (3.10)-(3.12). Corresponding to (2.2), the first integrals given by
(3.14)-(3.16) and the respective conditions (3.10)-(3.12) assume, for k =2
the following forms:

3 2
2t ’ ﬂo w+3 n+l _ _
5¥ + C224 mz =¢,, aconstant, 2w=n-5, (3.17)
ﬁ 2_ By nr_ ¢,, aconstant, w = —4, forall n (3.18)
2y n + ly 29 ] - ] .
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and

(a2t4 - a1t3)y'2 - a,tzyy' + /90y_2(a2 - alt—l) =c,, aconstant, n=-3.
(3.19)

4. Exact solution
Herein, we deal with the first integrals listed in (3.17)-(3.19) for their

exact solution via group invariance. Observing that (3.17) is further invariant
under the transformation

y=t"z, (4.1)
that separates the variables in it, we get
+ 2vn+1dz =£’ (4.2)

Vale + 2By + (n+ D22

and n# —-1. For n=-3,0, 1, (4.2) may be solved in terms of elementary
functions. When n=-7, -5, 2, 3, 5, (4.2) can be solved and the solution
can be expressed in terms of elliptic functions [13]. As a particular case,
let us consider the situation when ¢, = 0. This leads to discussion of the
following two cases:

Case 1. B,>0.
For the case under consideration, an exact solution to (4.2) can be ex-
pressed in the following form

1/2 (n—1)/4 12/(n—1)
.- [(n+l) 2(Ar) ] ’ 43)

88, 1— (At)("")/z

where A is a constant of integration. On combining (4.1) and (4.2), we get
2 (n+ 1\ A is

Y= 28, (1 = (A42)m=D2)3(n=1) (4.4)

Equation (4.4) represents a new exact solution to the Thomas-Fermi equation.
It is interesting to point out that the exact solution given in (4.4), is not only
new for the Thomas-Fermi model, but it is also valid for all g, >0, n> 1,
k =2 and 2w = n-S5. Further, (4.4) can be reduced to the solution of (2.4)
under the transformation (2.5).

Case 2. B,<0.
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Let B, = 'k12 , k, > 0. Corresponding to this case, a solution to (4.2) can
be expressed as

n+l / 2(Alt)(" 1)/4
z= 2 CEDE ’ (4.5)
8k; 1+ (4,8
where A, is another constant of integration. Combining (4.1) and (4.5), we
get
2/(n—1
o () 4 (4.6)
Ve [1+ (4,2)" D20 |2 '

which represents an exact solution to the classical Emden-Fowler equations
(2.2) for kK = 2. If we choose n = 5, we arrive at the exact solution to
the Emden equation (2.3), which coincides with the one reported in Murphy
[11].

Corresponding to the first integral (3.18), one can write
dy dt

T
Vet asty t

As for (4.2), (4.7) may be solved in terms of elliptic functions, for particular
values of n. however, for the case where ¢, = 0, we get

28, (1—n )
(D) e

where ¢ is a constant of integration, a new solution to (2.2) for w = —4,
k = 2. The solution given in (4.8) is valid only when (n + 1) and B, have
the same sign. It is worth mentioning that the first integral given in (3.19)
corresponding to (2.2), for the case n = -3, is not solvable exactly.

+ (4.7)

5. Invariant solutions of classical Emden-Fowler equation

On using the scale-invariant transformation
y—aly, t—at,

where y, and p, are real constants and a is another constant, we find that
(2.2) is invariant under the infinitesimal transformations

- 1-n 2
t —t+8(2+w)t+0(8 ),

(5.1)
Y =y +ey+ 0.
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Consequently, (5.1) yields a transformation
y = z(t)fF=m (5.2)
which together with the following transformation
t=e" (5.3)
reduces (2.2) to the following autonomous ordinary differential equation:

o (4+2w+1(1—n)(k—1))
-n

+(2+w) (w+n+k(1—n))z_ﬂozn=o, (5.4)

1-n 1-n

In order to solve (5.4), we consider the following possibilities:
(i) z =const., (ii) 2w+k+3 = n(k—1) and (iii) w+n+1+k(1-n)=0.
Thus, we have the following cases for detailed discussion:

CASsE 1. z = B, a constant.
For the case under consideration, (5.4) yields

2+on(l-k)+o+k+1 /=1
B = 3 . (5.5)
Bo (1-n)
On combining (5.2) and (5.3), we find that
y = Bt2+w/l n) ’ (5.6)

turns out to be a new exact solution of (2.2), which has not been reported in
any form so far. As a particular case, if we choose w =0, k=2, B,= -1,

we get
200-3) 5 ]"“"”. 57
(n-2)

Equation (5.7) represents a new solution to the Emden equation (2.3). Also,
when B,=1, k=2, n=3/2, w=-7/2, we arrive at the solution to the
Thomas-Fermi equation (2.6) [9]

y = 144(9° (5.8)
CAsE2. 2w+k+3=n(k-1).

For this case, (5.4) can be integrated to yield a first-order differential equa-
tion which for general value of 6, , the constant of integration involved, can
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yield solutions in terms of elliptic functions. However, for the case where
6, = 0, a more general exact solution to the Emden-Fowler equation corre-
sponding to S, < 0 Thomas-Fermi equation for B, > 0 can be expressed,
respectively, as

I
Y XSRE )
and
g

(1 Byt)%”

In (5.9) and (5.10), y, = (28,1*(n — 1)/k})"/""V, B, = k2. In (5.9),

_ 2 1/(n—1) _ 4n=1) _ 4ln-1) _
Y, = 2B,1°(n—-1)/B,) , By =4, , B, =4, , ag =2+w/l-n+
I, yo=1l(n-1), I =(k—-1)/2 and 6, = 2/(n—1). Further, 4, and 4, are
constants of integration. Equations (5.9) and (5.10) reduce respectively to
equations (4.6) and (4.4) for / = 1/2. This shows that solutions represented
in (5.9) and (5.10) contain (4.4) and (4.6) as a subclass of solutions for (2.2).
Even though the forms of solutions (5.9) and (5.10) appear to be very simple,
they have not been reported so far.

Case3. w+n+1+k(l—-n)=0.
For this case, using the substitution

W(z)=1/2'(x), (5.11)
(5.4) is reduced to Abel’s type of equation of the first kind.
W't (k- )W+ B,2"W> =0. (5.12)

For k = 1, a solution to (5.4) can be expressed as

ﬂ 2/(1=n)
1-n [ 28,
z= (T\/n+1x+co) , (5.13)

where C, is a constant of integration. On combining (5.2), (5.3) and (5.13),
we get

2/(1—n)

y=t logt + C, (5.14)

2+0/(1-n) |1 —n [ 2B,
2 n+1

Equation (5.14) represents a new exact solution to the Emden-Fowler equa-
tion (2.2) for k=1.
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6. Reduction of classical Emden-Fowler equation
to first-order and integrability condition

On making use of Bluman and Cole’s procedure [1], (2.2) can be reduced
to the first-order equation (for details see Appendix)

vv - 22y (2 v, =0, (6.1)
1-n 1-n
where
;= t—-(2+w/(l~—n))y’
and
U(Z) — t-(1+w+n)/(1—n)yt. (6.2)
From (A.7) we make use of the relation
2w=nk-1)~-(k +3) (6.3)
and integrating (6.1), we get
U2 2 +w ﬂozﬂ+l
() A
where 8, is a constant of integration. On combining (6.2) and (6.4), we get
2
U k-1 ' By (ke-1)n-1)/2_n+1 _
5¥ +(—-—2 )tyy—n+1t y  =0. (6.5)

In writing (6.5), the constant 6, is assumed to be zero. Keeping in view the
fact that (6.5) is invariant under the transformation

(k-1)/2
W=t

1-(1—k)J;2’ /} (6.6)
V=t y

we can rewrite it as

dt aw
. L A— 7
t Gw)-Ew (6.7)

where

2 2 n+1

It is interesting to point out that on solving (6.7) for W(¢) and combin-
ing it with (6.6), we arrive, corresponding to the two choices for g, = 0,

v =60 = (:55) W:h\ﬁk—l)zW3+ 2By pyns
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at the expressions for y that coincide, respectively, with (5.9) and (5.10).
Further, the condition (6.3) under which (6.1) is integrable turns out to be
the integrability condition for (2.2).

7. Conclusion

Following the invariant variational principles and group-invariant tech-
niques, we have obtained quite a number of new or exact solutions to the
generalised form of the Emden-Fowler equation and Emden equation. The
most notable among them are the solutions (4.4) and (4.6) to (2.2) under the
condition 2w = n — 5, (c.f. Section 4) and (5.9) and (5.10) to (2.2) for all
w, n and k satisfying the condition 2w = n(k — 1) — (k + 3). Even though
are solutions (5.9) and (5.10) are of a simple type, these solutions are not re-
ported anywhere. Also, the solution (5.6) is new for all w, n and k for the
Emden-Fowler equation (2.2), which, for a particular case, yields solutions
of Emden equation (2.3) and Thomas-Fermi equation (2.6). Further, in Sec-
tion 6, we have extended the study to obtain the generalised invariance group
(A4 — 6) (see Appendix), which for a particular case yields the integrability
condition for the Emden-Fowler equation (2.2).

Appendix

In order to apply Bluman and Cole’s procedure to (2.1), we rewrite it as
follows:

Yi=w(t,y,y)=-a)y - B()y", (A.1)
Keeping (A.1) invariant under the infinitesimal transformation
£ =t +el(t, y)+0(e),
* 2
y =y+en(t,y)+0(),
then the invariant condition, as given in [1], is as follows:
! 12
Sw,+nw, +{n+(n,-&)y -y }w,
2
— =20, =&)Y — (m, -2,y +&,5
—(n, - 2¢,- 3y, =0. (A.3)

On making use of (A.1) in (A.3) and collecting the coefficients of various pow-
ers of derivatives of y and equating them to zero, we arrive at the following

3
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system of partial differential equations involving &, 5
¢,y =0,
—2a()¢, - n,, + 2,=0,
—/ (1) — a(t)E, - 21, + &, — 3B(1)Y"E, =0,

—B'(y"E —nB(e)y" 'n - a(tyn, + 1, + BE)Y" (n, —2¢) =0. (A4)
The general solution to the system (A.4) is given as

&= oJ ot [—2/ (cl /ef"(’)d'dt +cz) e_f"(')d'dt] + c3efa(')d',

n= (cI/ef“(t)d'dt+c2>y,
(A.5)

where c¢,, ¢, and ¢, are arbitrary constants. Making use of the choices
of the arbitrary constants, we arrive at different possibilities of obtaining
symmetries that keeps (A.l) invariant. When applying (A.5) to (2.2), with
the corresponding choices of a(t) and B(¢) given therein, we obtain

C, k+2 20t k
1 2
t -2 t
k+1 +1—k+c3 ’

_ cl k+1
n= (k+1t +c2)y.

In (A.6), if we make ¢, = ¢; = 0, then we arrive at the following forms of ¢
and n:

(A.6)

2¢,
¢= 1-k
From (A.7), we write the Lagrange characteristic equation
- dy'(1 - 2
de(l—k) _dy _ y( 11_-E). (A8)
2c,t C,y c,y
Solving (A.8), we find that

t, n=c¢y and 2w=n(k—-1)-(k+3). (A.7)

7= t—(w+2/(l—n)y/

U(Z) — t—(w+l+n)/(l—n)yl
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