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Compared to the streamwise instability, the cross-flow instability in high-enthalpy flows
has received relatively less attention, but the latter is of vital importance in the flow
transition for practical configurations. This work aims to investigate the cross-flow primary
and secondary instabilities in hypersonic and high-enthalpy boundary layers, considering
thermochemical non-equilibrium (TCNE) effects. The numerical tools adopted include
a high-order shock-fitting solver, nonlinear parabolized stability equations and secondary
instability theory (SIT). The flow over a swept parabola is calculated at a free-stream Mach
number of 16. It is found that TCNE has a destabilizing effect on the cross-flow mode
with a non-catalytic wall. Two important non-dimensional parameters are summarized to
explain this effect. One is the ratio between the wall and boundary-layer edge temperatures,
and the other is the cross-flow Mach number. Due to nonlinear effects, the stationary
cross-flow vortices evolve and exhibit the classic rollover structures as in lower-speed
flows. Two different disturbance energy norms are used in the energy budget analysis
to classify the secondary cross-flow instability modes. The results from SIT highlight
the importance of type-IV modes in TCNE flows at the downwash region of the vortex.
The type-IV modes arise with the combined contribution from the wall-normal (on top
and trough of the vortex) and spanwise (in the downwash region) production terms. The
type-I mode is dominant in the calorically perfect gas case with an adiabatic wall, whereas
the type-IV mode has the largest growth rate in the TCNE cases irrespective of wall
temperature variation.
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1. Introduction

Accurate prediction and effective control of the hypersonic boundary layer transition
from laminar to turbulence are of great significance in the design of thermal protection
systems for space vehicles. However, the transition is still an unresolved problem due
to its highly nonlinear nature and sensitivity to numerous factors (Mack 1984). In
high-enthalpy boundary layers, the transition process is even more complicated due to
the so-called ‘high-temperature (real-gas) effects’ (see Anderson 2006). Specifically,
the high temperature behind shocks and in the boundary layer excites molecular
vibrational/electronic energy and causes chemical dissociation and even ionization. These
thermal and chemical processes invalidate the calorically perfect gas (CPG) assumption.
Consequently, new physical models are required to simulate the thermochemical
non-equilibrium (TCNE) flow (Gupta, Yos & Thompson 1990). These TCNE effects
inevitably influence the boundary layer transition process.

For practical configurations, multiple flow instabilities exist in different regions,
including the leading-edge instability, streamwise instability, centrifugal instability,
cross-flow instability and so on (Reed & Saric 1989). Here the cross-flow is a secondary
flow within the boundary layer due to the imbalance between the pressure gradient and
centrifugal force perpendicular to the potential flow. The cross-flow profile is subject to
an inviscid instability because of the existence of inflection points (Mack 1984). The
cross-flow instability is vital in many different three-dimensional boundary layers, such
as the flows over swept wings, yawed cones and asymmetric bodies, making it attractive
to many researchers.

The frequency of the most unstable cross-flow mode is generally much lower than
those of the streamwise instability modes, such as the Tollmien–Schlichting mode and the
second mode (Mack 1984). The mode of zero frequency is called the stationary cross-flow
mode, while the unsteady one is the travelling cross-flow mode. Poll (1985) observed both
stationary and travelling cross-flow disturbances in a swept-cylinder experiment. They
have different behaviours in the receptivity mechanism and disturbance evolution. For
incompressible boundary layers, both theoretical and experimental researches reveal that
the stationary cross-flow mode is more receptive to surface roughness and low-amplitude
free-stream turbulence, while the travelling one is more receptive to the free-stream
turbulence at high amplitude (Schrader, Brandt & Henningson 2009; Kurian, Fransson
& Alfredsson 2011). Experimental measurements of the receptivity coefficients were
reported by Borodulin et al. (2013). When the mode disturbance at small amplitude is
excited, it experiences linear and nonlinear evolution further downstream. Substantial
experimental efforts were made in this area by Bippes and co-workers (see the review
of Bippes 1999) at DLR, as well as Saric and co-workers (see the review of Saric,
Reed & White 2003) at ASU in the 1980s and 1990s. Müller & Bippes (1989) observed
the saturation of cross-flow vortex due to nonlinear effects downstream of the linear
growth region. Furthermore, Kohama, Saric & Hoos (1991) (also Poll 1985) reported the
existence of high-frequency waves prior to transition in their swept-wing experiments. The
frequencies of these waves are an order of magnitude higher than that of the most unstable
travelling wave. They are attributed to the secondary instability of stationary cross-flow
vortices where the distorted base flow has very strong and inflectional shear layers. The
growth rates of the secondary instability modes are much larger than those of the primary
modes, resulting in ‘explosive growth’ of disturbances and then rapid breakdown to
turbulence. Detailed secondary instability measurements of stationary cross-flow vortices
were provided by White & Saric (2005) for a swept-wing model. A type-I mode, which
lives on the outer side of the upwelling zone (with the inner side underneath the vortex)

947 A25-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.607


Cross-flow vortices and their secondary instabilities

of the vortex, was the highest-amplitude mode in nearly all cases. In comparison, a type-II
mode was clearly detected only in the case with the highest free-stream Reynolds number,
located on top of the vortex. Here the classification of unstable secondary instability modes
is based on their production mechanisms (Malik et al. 1999). Type-I, or z, modes are
mainly produced by the spanwise gradients of the streamwise flow (i.e. ∂U/∂z), while
type-II, or y, modes are primarily driven by the wall-normal gradients (i.e. ∂U/∂y).
Recently, high-resolution experimental techniques were used by Serpieri & Kotsonis
(2016) to identify and quantify the type-I, type-II and low-frequency type-III modes. The
last was located at the inner side of the upwelling region and resulted from the interaction
between stationary and travelling cross-flow vortices.

A number of numerical techniques were also successfully applied to investigate the
cross-flow instability. Malik, Li & Chang (1994) utilized the nonlinear parabolized
stability equations (NPSE) method to calculate the nonlinear evolution of stationary
cross-flow vortices in a swept Hiemenz flow. The typical phenomena reported in the
experiment, such as half-mushroom structures and vortex doubling, were captured and
further analysed. Haynes & Reed (2000) performed a detailed comparison between
the results from the ASU experiment and linear/nonlinear instability solvers. Linear
stability theory (LST) and NPSE were shown to reasonably predict the linear growth and
nonlinear saturation of stationary cross-flow disturbance. Different from the streamwise
marching procedure in NPSE, Koch et al. (2000) regarded the saturated cross-flow vortex
as a nonlinear equilibrium solution of the system, and directly solved the equations.
In following research, Koch (2002) (also Wassermann & Kloker 2002) confirmed that
the primary and secondary cross-flow instabilities were both convective. This physical
behaviour supports the reasonability of the streamwise marching procedure in PSE.
Based on the base flow distorted by the cross-flow vortices, various numerical tools can
be employed to calculate their secondary instabilities. These tools include the classic
Floquet-based secondary instability theory (SIT) (Janke & Balakumar 2000; Koch et al.
2000), biglobal stability analyses (Malik et al. 1999; Theofilis 2011) and direct numerical
simulations (DNS) (Högberg & Henningson 1998; Wassermann & Kloker 2003). Bonfigli
& Kloker (2007) performed comparisons between the secondary instability results from
DNS and SIT. The growth rate from SIT was found to be sensitive to the distorted
base flow. When the base flow was from DNS, SIT gave a basically consistent growth
rate. Their results also confirmed the accuracy of the extended Gaster transformation
(Malik et al. 1999; Koch et al. 2000), which converted the temporal growth rate of
secondary instability mode to the spatial growth rate. Consequently, the N factor envelope
of secondary instability modes was obtained for transition prediction. As another approach
to obtain an accurate mean flow, Groot et al. (2018) conducted their biglobal analyses with
the base flow directly from high-resolution experimental measurements. High-frequency
type-I and type-II modes were found ultimately responsible for the turbulent breakdown.
Using biglobal analyses, Li et al. (2010, 2014) investigated the secondary instability of
stationary and travelling cross-flow vortices. In their case, SIT somewhat overestimated
the growth rate as it neglected the flow non-parallelism.

The cross-flow instability in hypersonic flows has received increasing attention in
recent years, especially with the implementation of the Hypersonic International Flight
Research Experimentation (HIFiRE) project (see Kimmel et al. 2019). Two configurations,
HIFiRE-1 (yawed circular cone) and HIFiRE-5 (elliptical cone), were specially designed
for transition study. The boundary layers over these two models are subject to strong
cross-flow instability. For the yawed circular cone, Kocian et al. (2019) reviewed
elaborately the combined experimental and computational efforts on the cases at
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free-stream Mach numbers of around 6. The experimental facilities included two quiet
wind tunnels, and the numerical techniques were NPSE and biglobal analyses. The results
from experiments and computations were satisfactorily cross-validated with each other.
Furthermore, it was suggested that different from the streamwise instability where the
new second mode appeared and dominated in hypersonic flows, the cross-flow instability
displayed some fundamental similarities between the cases of low- and high-speed flows.
In other words, the cross-flow instability mechanisms were insensitive to the Mach
number. Nevertheless, some quantitative differences were also reported. One important
finding was that the growth of secondary instability modes in their cases was not as
‘explosive’ and was even somewhat saturated downstream (see Craig & Saric 2016).
Another finding was that the frequency of the secondary instability mode could be
close to that of the second mode, so there could be a possible new type of modal
interaction (Li et al. 2016). The PSE and biglobal analyses were adopted by Moyes et al.
(2017) to investigate different secondary instability modes according to the experimental
set-up. Unstable travelling cross-flow mode and the second mode were also recognized.
Furthermore, the low- and high-frequency disturbances in the experiment by Craig &
Saric (2016) were identified as travelling cross-flow mode and type-I mode, while in the
experiment by Ward, Henderson & Schneider (2015) the second mode and type-II mode
were also identified. The biglobal analyses results of Li et al. (2016) showed that only one
mode of secondary cross-flow instability reached a comparable N factor with the second
mode along the geometry considered.

Paredes et al. (2016) performed biglobal stability analyses of the HIFiRE-5 elliptical
cone flows at a free-stream Mach number of 7.45. They identified four types of
instabilities: the second, attachment-line, cross-flow and centreline (classified as a
shear-layer instability) modes. The centreline modes were the strongest candidates leading
to transition, while the cross-flow mode existed over most of the cone surface away from
symmetry planes. On the HIFiRE-5b flight geometry, Moyes et al. (2018) found that
when stationary cross-flow vortices saturated, both type-I and type-II modes grew, but
the second mode quickly decayed. Furthermore, they noticed a correlation between the
neutral point of secondary instability and the transition onset. Therefore, the combination
of NPSE and biglobal analyses could be used for transition prediction. In reverse, the initial
disturbance amplitude could be determined using experimentally measured transition
onset. Some DNS results for the HIFiRE-5 configuration were reported by Dinzl &
Candler (2017) for the evolution of stationary cross-flow vortices. Recently, combined
NPSE, SIT and DNS investigations were performed by Xu et al. (2019) and Chen et al.
(2021a) for the flow over a Mach-6 swept parabola. The SIT analyses identified several
secondary instability modes. For the DNS results, the type-I mode was found crucial to
the breakdown, and the roles of other modes were insignificant. Vortical structures were
observed along with the growth of the type-I mode, which had two counter-rotating tubes
stretched along the spanwise direction. Again, no intrinsic differences were found from
low-speed flows in terms of principal secondary instability modes and the formation of
coherent structures. Similar flow cases were also simulated by Cerminara & Sandham
(2020) using DNS for swept and unswept cases with emphasis on the mechanisms of
receptivity and breakdown.

High-temperature effects cannot be neglected in flows with high free-stream enthalpy.
Malik & Anderson (1991) extended LST to include high-temperature gas models. Their
results for Mach-10 and Mach-15 flat-plate boundary layers demonstrated a destabilizing
effect on the second-mode growth. Subsequent research also mainly focused on the
streamwise instability. The LST results were capable of reproducing the transition trends
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concerning the second mode in high-enthalpy experiments (Johnson, Seipp & Candler
1998; MacLean et al. 2007). Furthermore, two influence paths were concluded for the
second-mode growth. On the one hand, the second mode could become destabilized at a
higher frequency as the TCNE boundary layer was cooler and thinner than the CPG flow.
On the other hand, the second mode could be stabilized due to the energy relaxation and
endothermic reactions that the disturbance experienced (Bertolotti 1998; Johnson et al.
1998; Bitter & Shepherd 2015). The relative strength of these two competing effects could
be estimated based on their Damköhler numbers (the ratio of the thermochemical process
time scales to the flow time scale). Miró Miró et al. (2019) provided a comprehensive
comparison among the LST results using different high-temperature gas models. In
addition to LST, linear PSE was developed by Chang, Vinh & Malik (1997) for chemically
non-equilibrium flows. This method was also embedded in the software LASTRAC of
NASA (Kline, Chang & Li 2018) and VESTA of VKI (Zanus, Miró Miró & Pinna 2019).
Utilizing these tools, the transition N factors of high-enthalpy flows were obtained after
correlating with the experiment results (Germain & Hornung 1997; Malik 2003; Grossir,
Pinna & Chazot 2019). Recently, the NPSE and SIT methods were extended to include
TCNE models for two-dimensional high-enthalpy boundary layers (Chen, Wang & Fu
2021c). The fundamental resonance was found dominant in the secondary instability of
the second mode. In addition, TCNE effects led to a larger maximum secondary-instability
growth rate and corresponding azimuthal (spanwise) wavenumber. To drop most of the
assumptions on flow perturbations, the DNS method was also developed to account for
non-equilibrium effects (Stemmer 2005; Prakash et al. 2011; Marxen et al. 2013; Di
Renzo, Fu & Urzay 2020). The first DNS study from laminar all the way to turbulence
in high-enthalpy flows was reported recently by Di Renzo & Urzay (2021). The main
emphasis was on the flow downstream of the secondary instability region. Transitional
and turbulent perturbations, as well as coherent structures, were investigated in
detail.

Compared with the streamwise instability, the cross-flow instability in high-enthalpy
flows has received relatively less attention. Although previous researchers suggested that
the cross-flow instability mechanism was insensitive to the Mach number, the free-stream
Mach numbers of their cases were limited to less than 10, and the flows were simulated
under the CPG assumption. Therefore, investigations of flows at higher free-stream Mach
numbers are thus required to explore the effects of TCNE. A case of a swept-wing
boundary layer flow at Mach 13 was studied by Kline et al. (2018), where the chemical
non-equilibrium effects were found to stabilize the linear growth of stationary cross-flow
mode on an adiabatic wall. Nevertheless, the reasons for this stabilization effect on
the cross-flow mode were not clear. More importantly, the nonlinear interaction and
the secondary instability of cross-flow vortices have not been explored. These are the
focus of the present study. The stability analysis tools have been proven effective in
previous cross-flow instability studies for hypersonic flows. They are thus employed
in this study to provide systematic stability analyses for hypersonic and high-enthalpy
flows.

The article is organized as follows. Section 2 describes the flow conditions and
governing equations for TCNE flows. Section 3 provides the numerical methods
adopted for laminar base flow calculations and instability analyses. The laminar flow
and linear cross-flow instability results are studied in §§ 4 and 5. The secondary
instability characteristics are discussed in § 6, and finally, the work is summarized
in § 7.
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Figure 1. Schematic of the geometry and computational domain, as well as the coordinate systems. Here x, y
and z are the Cartesian coordinates, and s, η and z are the local body-fitted coordinates.

Ma∞ Λ (deg.) Re∞ (m−1) T∞ (K) p∞ (Pa) Q∞ (m s−1) YN2,∞ Tw (K)

16 45 8.404 × 106 224.5 1616 4806 0.767 1500

Table 1. Flow conditions of Mach-16 flow over a swept parabola.

2. Problem description and governing equations

The three-dimensional boundary layer over a swept wing of infinite span is considered
herein. The swept wing is modelled by a swept parabolic body, which was widely adopted
in previous investigations concerning cross-flow instability (see Mack & Schmid 2010; Xu
et al. 2019; Xi et al. 2021). The geometry is described as

y2 = 2r0x and r0 = 0.01 m, (2.1a,b)

where r0 is the radius of curvature at the leading edge. A schematic of the geometry
and computational domain is provided in figure 1, where x, y and z are the Cartesian
coordinates with the spanwise z direction along the stagnation line. The sweep angle Λ

results in a non-zero spanwise velocity W∞ = Q∞ sin Λ at zero angles of attack, where
Q∞ is the free-stream velocity. In terms of stability analyses, a local body-fitted coordinate
(s–η–z) is defined as sketched, where s denotes the streamwise direction along the surface
with its origin at the stagnation line and η is the wall-normal coordinate.

The flow conditions of the benchmark case are listed in table 1, where the subscript ∞
denotes free-stream values, and Tw is the wall temperature. The free-stream conditions
correspond to an altitude of 28 km. At such a high Ma∞, the flow temperature
increases considerably behind shocks and towards the wall, where the vibrational
energy and chemical dissociation become significant. A good approximation considered
is the five-species model of air (N2, O2, NO, N, O) (Anderson 2006). Additional
conservation equations of species mass and vibrational energy are needed as compared
with CPG flows. The two-temperature model of Park (1990) is adopted, which includes
a translational/rotational temperature T and a vibrational temperature Tv . The resulting
Navier–Stokes equations for the TCNE flow take the following forms.
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(i) Continuity equation:

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.2a)

(ii) Momentum equation:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [μ (∇u + ∇uT)]− 2
3
∇ (μ∇ · u) . (2.2b)

(iii) Energy equation:

ρcp,t−r

(
∂T
∂t

+ u · ∇T
)

−
(

∂p
∂t

+ u · ∇p
)

= μ

[
∇u :

(∇u + ∇uT)− 2
3

(∇ · u)2
]

+∇ · (κt−r∇T) +
∑
m,n

(
ρDmncp,t−r,m∇T · ∇Yn

)− Qt−v −
∑

m

(hmω̇m) . (2.2c)

(iv) Species continuity equation (species index s ∈ [2, 5]):

ρ

(
∂Ys

∂t
+ u · ∇Ys

)
= ∇ ·

(∑
m

ρDsm∇Ym

)
+ ω̇s. (2.2d)

(v) Vibrational energy equation:

ρcvib

(
∂Tv

∂t
+ u · ∇Tv

)
= ∇ · (κv∇Tv) +

∑
m,n

(
ρDmncvib,m∇Tv · ∇Yn

)+ Qt−v.

(2.2e)
(vi) Equation of state:

p = ρRT, R =
∑

m

(YmRm) . (2.2f )

Here ρ and p are the density and pressure; u = [u, v, w]T is the velocity vector;
cp,t−r and cvib = ∂ev/∂Tv are the translational–rotational and vibrational components of
specific heat, respectively, where ev denotes the specific vibrational energy; the species
mass fraction Ys = ρs/ρ and Rs is the species gas constant; hs denotes the species
specific enthalpy; and the species vibrational energy is calculated using the characteristic
vibrational temperature (Miró Miró et al. 2018).

The mixture’s viscosity μ and thermal conductivity κt−r and κv are calculated through
the relations from Gupta et al. (1990), which are as accurate as the solution of the
first-order Chapman–Enskog approximation in the absence of ions (Bottin et al. 2006). The
molecular collision integrals required in the relations are evaluated from the curve fits of
Capitelli et al. (2000). The mass diffusion coefficient ρDsm is associated with μ through a
constant Schmidt number Sc = 0.5. Miró Miró et al. (2018, 2019) concluded that the use of
different mass-diffusion models or a moderate variation of Sc had small influences on the
boundary layer instabilities. The source terms Qt−v and ω̇s describe the finite-rate energy
relaxation and chemical reactions, respectively. The energy relaxation between transitional
and vibrational components is modelled using the Landau–Teller equation (Park 1990).
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Five chemical reactions among the five species are considered here:

R1 : N2 + M ↔ 2N + M,

R2 : O2 + M ↔ 2O + M,

R3 : NO + M ↔ N + O + M,

R4 : N2 + O ↔ NO + N,

R5 : NO + O ↔ O2 + N,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

where M is a third body. The chemical equilibrium constants are calculated based on the
species Gibbs free energy fitted by McBride, Zehe & Gordon (2002). The forward reaction
constants are from the relations of Park, Jaffe & Partridge (2001).

The ten basic variables of (2.2) are q = [ρ, u, v, w, T, Ys, Tv] with s ∈ [2, 5]. Hence
(2.2) is expressed in an operator form as

N (q) = S (q) , (2.4)

where the operator N includes unsteady, convection and diffusion terms, while S denotes
the TCNE source term related to ω̇s and Qt−v . The combination of ρ and four Ys, rather
than five ρs, is selected as the basic variables here because once S is set to 0, Ys and Tv are
constants throughout the flow field under homogeneous boundary conditions, then (2.2)
reduces to the same form as that for CPG flows: N (q) = 0.

3. Numerical methods

3.1. Laminar flow solver
A steady laminar flow is required prior to stability analyses. In this work, (2.2) is solved in
Cartesian coordinates through a fifth-order shock-fitting solver developed by Chen & Fu
(2020). Two implicit time-marching schemes are utilized for efficiency increase, including
GMRES (generalized minimal residual) and line relaxation methods. As the swept body
is of infinite span, the flow is assumed to be uniform in the spanwise direction. The
boundary conditions at the wall are no-slip, isothermal or adiabatic, and non-catalytic, i.e.
(∂Ys/∂η)w = 0. In the far field, the boundary is located at the shock, and the post-shock
parameters are obtained from the Rankine–Hugoniot relation. A symmetry condition is
imposed at the boundary of s = 0. A non-reflecting boundary condition is adopted for the
outflow boundary based on characteristic variables.

Sufficient grid points of 401 are used in the wall-normal direction to ensure grid
independence (see supplementary material available at https://doi.org/10.1017/jfm.2022.
607 for details). In the streamwise direction, the grid density required for a converged
laminar flow is lower than that for NPSE calculations, so it is determined by the latter. At
most, around 40 points are distributed within one streamwise wavelength of disturbance
mode.

3.2. Linear instability theory and parabolized stability analysis
Here LST and PSE are used to efficiently calculate the linear and nonlinear growth of
the cross-flow disturbance. Their frameworks are briefly described below as widely used
techniques (see Herbert 1997). The variable q is decomposed into a steady laminar part
q̄ and a disturbed part q̃. Here q̄ = [ρ̄, Ū, V̄, W̄, T̄, Ȳs, T̄v] is the laminar flow solution,

947 A25-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.607
https://doi.org/10.1017/jfm.2022.607
https://doi.org/10.1017/jfm.2022.607


Cross-flow vortices and their secondary instabilities

and q̃ = [ρ̃, ũ, ṽ, w̃, T̃, Ỹs, T̃v] is the disturbance. The disturbance governing equation is
written as

N (q̄ + q̃) − N (q̄) = S (q̄ + q̃) − S (q̄) . (3.1)

The expanded matrix form of (3.1) in the (s–η–z) coordinates is

F
∂ q̃
∂t

+ A

h1

∂ q̃
∂s

+ B
∂ q̃
∂η

+ C
∂ q̃
∂z

+ Dq̃ = Hss

h2
1

∂2q̃
∂s2 + Hηη

∂2q̃
∂η2

+ Hzz
∂2q̃
∂z2 + Hsη

h1

∂2q̃
∂s∂η

+ Hsz

h1

∂2q̃
∂s∂z

+ Hηz
∂2q̃
∂η∂z

+ N . (3.2)

Here h1 = 1 + κ0η is the Lamé coefficient related to the streamwise curvature κ0; matrices
F , A, B, C, D and H are all 10 × 10 matrices just dependent on q̄; and N represents the
nonlinear term. The expressions of these matrix coefficients are very elaborate, especially
in TCNE flows, and the software MAPLE is thus employed to ensure correctness. The
following Fourier decomposition of a disturbance is introduced:

q̃ (s, η, z, t) =
Mmax∑

m=−Mmax

Nmax∑
n=−Nmax

q̂mn (s, η) exp
[

i
(∫ s

s0

αmn (s) ds + nβz − mωt
)]

, (3.3)

where Mmax and Nmax represent one-half of the number of modes kept in the truncated
Fourier series; s0 is the computational onset; ω and β are the specified circular frequency
and spanwise wavenumber, respectively; αmn = αmn,r + iαmn,i is the complex streamwise
wavenumber; and q̂mn stands for the shape function. A phase velocity is defined as cmn,r =
mω/[α2

mn,r + (nβ)2]1/2. For brevity, a notation (m, n) is introduced for the mode with a
circular frequency of mω and a spanwise wavenumber of nβ. Mode (0, 0) is also called
mean flow distortion, as a modification to the laminar flow after temporal and spanwise
average.

The PSE for each mode takes the following form:

Âmn
∂ q̂mn

∂s
= −

(
D̂mnq̂mn + B̂mn

∂ q̂mn

∂η
+ Ĉmn

∂2q̂mn

∂η2

)
+ N̂mn exp

(
−i
∫ s

s0

αmn ds
)

,

(3.4)

where the matrix coefficients are functions of αmn, mω, nβ and the matrices in (3.2),
and N̂mn is the Fourier component of N and acts as a nonlinear forcing term. For LST,
the nonlinear term is neglected and the flow is further assumed to be locally parallel, i.e.
∂/∂s = 0. Hence the base wall-normal velocity is also assumed zero from the continuity
equation. As a result, an eigenvalue problem is established for each Fourier mode (Malik
1990). For PSE analysis, (3.4) is solved through a streamwise marching procedure. The
auxiliary condition adopted to determine αmn is based on the disturbance kinetic energy.
The wall-normal discretization uses the Chebyshev collocation point method and the
streamwise one uses the Euler scheme. In addition, a relaxation factor is introduced to
improve numerical robustness at large amplitudes of harmonic waves (Zhao et al. 2016).
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The disturbance boundary conditions at the wall are consistent with those for laminar flow:

At η = 0 : ûmn = v̂mn = ŵmn = ∂Ŷs,mn

∂η
= 0,

⎧⎨
⎩

T̂mn = T̂v,mn = 0, if isothermal,
∂T̂mn

∂η
= ∂T̂v,mn

∂η
= 0, if adiabatic.

(3.5)

The ρ̂mn at the wall is solved through the disturbed continuity equation. For the boundary
conditions at the shock, the disturbed Rankine–Hugoniot relation is solved to account for
the shock–disturbance interaction (Chang et al. 1997).

The present PSE solver for TCNE flows has been verified with the DNS data in the
authors’ previous works (see Chen, Wang & Fu 2021b,c). Comparisons with the existing
results of cross-flow instability cases are provided in the supplementary material.

3.3. Secondary instability analysis
Large-amplitude cross-flow vortices are subject to various types of high-frequency
instabilities. The SIT can be used to obtain the disturbance characteristics by solving the
instability equation on the distorted base flow. For stationary cross-flow vortices, the NPSE
solution is written as

q̃NPSE (s, η, z) =
∑

n

A0nq̂0n exp
[

in
(∫ s

s0

αr ds + βz
)]

, (3.6)

where A0n is the mode’s amplitude and αr stands for the real part of the fundamental
wavenumber. Therefore, the distorted base flow is q̄′ = q̄ + q̃NPSE, and the secondary
instability disturbance to be solved is q̃sd. The exponent in (3.6) depends on two
coordinates, so a coordinate transformation is introduced to make the exponent
one-coordinate-dependent. The wave front zr = zr(sr) is

zr =
∫ sr

s0

tan θ2 ds + z0, tan θ2 = −αr

β
, (3.7a,b)

where θ2 is the slope angle and z0 is a reference point. Physically, the tangent line indicates
the direction of the cross-flow vortex axis, and thus a local vortex-oriented coordinate
(s2–η2–z2), with its origin at (s = sr, η = 0, z = zr), can then be defined as

s2 = (z − zr) sin θ2 + (s − sr) cos θ2,

z2 = (z − zr) cos θ2 − (s − sr) sin θ2,

η2 = η.

⎫⎪⎬
⎪⎭ (3.8)

A schematic of this vortex-oriented coordinate is provided in figure 2. A locally parallel
flow is further assumed in SIT, such that at a given location s = sr, the s-derivatives of
A0nq̂0n are much smaller than the η-derivatives, so the s-dependence of A0n, αr and q̂0n
is neglected in a small region near sr (Koch et al. 2000; Bonfigli & Kloker 2007). This
is reasonable because strong secondary instability usually occurs where the cross-flow
vortices are saturated (see § 6). Consequently, the disturbance in (3.6) near s = sr is
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s

z

zr = zr (sr)

z2 

θ2

β

β2–αr

s2

Figure 2. Definition of the vortex-oriented coordinates.

rewritten as

q̃NPSE (η2, z2) =
∑

n

A0nq̂0n (η2) exp (inβ2z2), (3.9)

where β2 = β/ cos θ2 is the z2-direction wavenumber. As a result of the locally-parallel-flow
assumption, q̃NPSE is explicitly independent of s2 and periodic in the z2 direction.

The velocities in the vortex-oriented coordinates are

u2 = w sin θ2 + u cos θ2, w2 = w cos θ2 − u sin θ2, v2 = v. (3.10a–c)

Therefore, the variable in SIT is q2 = [ρ, u2, v2, w2, T, Ys, Tv], and the base flow distorted
by the stationary cross-flow vortex is

q̄′
2 (η2, z2) = q̄2 (η2) +

∑
n

A0nq̂2,0n (η2) exp (inβ2z2). (3.11)

Similarly, the disturbance to be solved is replaced as q̃2,sd, and the governing equation is

N
(
q̄′

2 + q̃2,sd
)− N

(
q̄′

2
) = S

(
q̄′

2 + q̃2,sd
)− S

(
q̄′

2
)
, (3.12)

which can be expanded into a similar form to (3.2).
Equation (3.12) is solved through the Floquet theory (see Herbert 1988), so a

temporal-mode solution is written as

q̃2,sd = ε

⎧⎨
⎩

Nsd∑
n=−Nsd

q̂2,n (η2) exp [i (n + σd) β2z2]

⎫⎬
⎭ exp (ωst + iαss2) , (3.13)

where ε is the mode amplitude, ωs = ωs,r + iωs,i the temporal characteristic exponent,
ωs,r the mode growth rate and ωs,i the shift in the circular frequency. Also, σd denotes the
detuning parameter and Nsd is the truncated orders. The corresponding phase velocity is
defined as cs,r = −ωs,i/αs. After substituting (3.11) and (3.13) into (3.12) and neglecting
O(ε2) terms, a complex eigenvalue problem is obtained:

AQ̂ = ωsBQ̂. (3.14)

Here Q̂ is the global eigenvector containing all q̂2,n. Matrices A and B are global matrices
with dimensions of [10Ny × (2Nsd + 1)]2. The boundary conditions for q̂2,n at the
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wall are

At η = 0 : û2,n = v̂2,n = ŵ2,n = T̂n = T̂v,n = Ŷs,n = 0. (3.15)

The main consideration is that the frequency of the secondary cross-flow instability mode
is usually high (of the order of 100 kHz; see § 6.4), so T̂n, T̂v,n and Ŷs,n are forced to vanish
at the wall owing to the thermal inertia of the solid body (Malik 1990; Bitter & Shepherd
2015). The Dirichlet conditions in (3.15) are also used at the far-field boundary because
q̂2,n quickly decays outside the boundary layer. The eigenvalues and eigenvectors of the
large-scale matrices are solved through the same algorithm as that in LST. More details
can be found in Koch et al. (2000) and Ren & Fu (2015).

4. Laminar flow results

The laminar flow field is investigated first. The flow is also calculated under the CPG
assumption for comparison to clarify the effect of TCNE. Instead of Sutherland’s law,
the same air composition and transport models as described in § 2 are adopted for
consistency. Figure 3(a) provides the laminar temperature contours in the TCNE and
CPG benchmark cases around the nose region of the parabola. A noticeable difference
is that the temperature in the TCNE case is much lower than that in the CPG case due
to strong thermochemical processes downstream of the shock. The difference is most
obvious downstream of the normal shock at y = 0, and the distributions of T̄ and T̄v

along the streamline at y = 0 are plotted in figure 3(b). In the CPG case, T̄ slowly
increases downstream until a sudden drop at x > −0.23 mm due to the specified low Tw.
In comparison, T̄ in the TCNE case quickly decreases downstream of the shock, and is
at most 2268 K lower than that of the CPG case. As a result, the shock stand-off distance
is 32 % smaller at y = 0. The decrease of temperature in the TCNE case is accompanied
by the rise of the vibrational energy and mass fractions of NO, O and N. Vibrational
temperature T̄v rapidly increases to over 4500 K and tends to vibrational equilibrium
further downstream towards the wall. Moreover, large fractions of NO and O are produced,
as shown in figure 3(c), and the minimum mass fractions of N2 and O2 are 0.737 and
0.114, respectively. Figure 4 gives the contours of T̄v and ȲO2 around the nose region.
Away from the stagnation line, T̄v along with T̄ decrease due to the fluid acceleration.
Vibrational temperature T̄v decreases more slowly and is higher than T̄ in the displayed
range. The dissociation of O2 mainly occurs near the wall due to local high temperature
and the chemical non-equilibrium effect.

The potential-flow direction is required in the calculation to obtain the cross-flow
velocity. Actually, the flow outside the boundary layer is not irrotational, as will be
discussed later. As W̄ is uniform in the inviscid-flow region, the boundary layer edge
(η = δN) is determined from the profile of W̄ with W̄(δN) = 0.995W∞. The angle
of the potential streamline is θe = arctan(W̄e/Ūe), where the subscript e denotes the
boundary-layer-edge value at δN . As a result, the potential-flow velocity Ūpl and cross-flow
velocity Ūcf are

Ūpl = Ū cos θe + W̄ sin θe,

Ūcf = −Ū sin θe + W̄ cos θe.

}
(4.1)

Here Ūcf is basically negative under the present coordinates. The streamwise distribution
of the quantities at the wall and the boundary layer edge is plotted in figure 5. The
coincidence of the two wall-pressure curves in the TCNE and CPG cases indicates that the

947 A25-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.607


Cross-flow vortices and their secondary instabilities

0

2000

4000

6000

2000 3000 4000 5000

T̄
(K

)

Shock
location

T   CPG

TCNE

0 0.02 0.04 0.06

T   TCNE

Tv TCNE

–5 –4 –3 –2 –1 0

x (mm)

y

x (m)

CPG
10–4

10–2

100

0.04

0.02

0

–0.02

–0.04

Ȳs
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Figure 3. (a) Laminar temperature contours around the nose region, and the streamwise distribution of (b)
temperatures and (c) species mass fractions (TCNE only) along the streamline at y = 0 in the TCNE and CPG
benchmark cases.
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Figure 4. Laminar flow contours around the nose region of the parabola in the TCNE benchmark case:
(a) vibrational temperature and (b) mass fraction of oxygen.

surface pressure distribution is insensitive to TCNE effects, which is basically determined
by the flow outside the boundary layer. In comparison with the CPG case, θe in the TCNE
case is roughly 2◦−4◦ larger due to a smaller Ūe. This leads to a larger pressure gradient
perpendicular to the potential-flow direction, i.e. (∂pe/∂x) cos θe, within the boundary
layer, which tends to increase the cross-flow velocity. Due to the entropy layer produced
by the strong bow shock, Te is much higher than T∞, as shown in figure 5(b). As a result,
Mae is much lower than the free-stream value, different from the flows over a sharp leading
edge. In both the TCNE and CPG cases, Mae continuously increases with s and is close to
5 at s = 1 m. Meanwhile, Mae in the TCNE case is generally 0.18–0.45 higher, owing to
the lower Te.

The boundary layer profiles are plotted in figure 6 at two s of 0.1 and 0.5 m. As can
be seen, the Ūpl profile is less sensitive to the TCNE effects, and δN in the TCNE case is
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Figure 5. Streamwise distribution of (a) wall pressure and flow direction at the boundary layer edge and of
(b) edge temperature and Mach number in the TCNE and CPG cases.
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Figure 6. Boundary layer profiles at different s in the TCNE and CPG cases: (a) velocity in the potential-flow
direction, (b) temperature and vibrational temperature (TCNE only) and (c) species mass fractions (TCNE
only). Only δN in the TCNE case is labelled for clarity.

only slightly smaller, though the temperature is hundreds of kelvins lower. This is related
to the increase of R̄ due to the production of atoms. From ( 2.2f ), the production of R̄
and T̄ happens to be almost unchanged by TCNE, so the density profile (not shown here)
and thus the boundary layer thickness only experience slight variations. From figure 6(b),
Tw is lower than Te, which is commonly considered, in the stability theory, as a ‘highly
cooled wall’ case (Bitter & Shepherd 2015). The effects of wall cooling are discussed in
§ 5.2. Besides, the difference between T̄ and T̄v indicates that the flow is still in thermal
non-equilibrium inside and outside the boundary layer. For chemical species, it is observed
that there are still reactions outside the boundary layer due to the high temperature in the
inviscid-flow region. Within the boundary layer, the mass fractions of O2 and NO are
nearly unchanged in the wall-normal direction. Meanwhile, the species mass fractions at
the wall vary slowly in the streamwise direction, and the TCNE effects are retained far
downstream.
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Figure 7. (a) Streamwise distribution of the maximum cross-flow velocity, and the cross-flow velocity profiles
at different s in (b) TCNE and (c) CPG cases. The four values of s in (b,c) are labelled in (a) as dashed
lines.

The streamwise distribution of Ucf ,max, defined as the maximum |Ūcf | in the
wall-normal direction inside the boundary layer, is given in figure 7(a). For both cases,
Ucf ,max quickly increases from zero to the maximums at s ≈ 0.1 m, and gradually
decreases further downstream. The peak of Ucf ,max in the TCNE case is 6 % higher, but
it also drops more quickly. The cross-flow Reynolds number, Recf ,e = ρeUcf ,maxδN/μe, is
evaluated to be 324 at s = 0.1 m. The profiles of Ūcf at different streamwise locations
are depicted in figure 7(b,c). The curve shapes are similar at different s except for
the increasing boundary layer thickness. Meanwhile, |Ūcf | tends to increase outside the
boundary layer in both the TCNE and CPG cases, which means that the flow outside the
boundary layer is rotational, and the velocity curl is mainly from ∂Ūcf /∂η. This can be
interpreted through the Crocco theorem, which, for CPG flows, is written as

T̄∇S̄ = ∇H̄ − Ū × (∇ × Ū
)
, (4.2)

where S and H are the entropy and total enthalpy. As H̄ is uniform outside the boundary
layer crossing the shock, the curl of Ū originates from the entropy gradient due to the
curved bow shock.

5. Linear instability results

5.1. Benchmark case results
The LST calculation is performed to determine the dominant disturbance mode. The
contours of the disturbance growth rate and phase velocity in the benchmark TCNE and
CPG cases are provided in figure 8 with different frequencies f and spanwise wavelengths
λz = 2π/β. It is worth mentioning that the growth rate −αi is measured in the s direction.
If measured in the potential-flow direction (or the cross-flow vortex orientation), then the
corresponding growth rate is −αi cos θe (or −αi cos θ2). As can be seen, both stationary
and travelling cross-flow modes have large growth rates, while no unstable streamwise
instability modes are observed. The most unstable cross-flow mode is travelling, consistent
with that in lower-speed flows (see e.g. Choudhari et al. 2013). At s = 0.2 m in the TCNE
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Figure 8. Growth rate contours (−αi) [m−1] with frequencies and spanwise wavelengths: (a) TCNE and
s = 0.2 m, (b) CPG and s = 0.2 m, (c) TCNE and s = 0.8 m and (d) CPG and s = 0.8 m. The contours of
phase velocities are also plotted as dashed lines. The level in red labelled ‘mc’ is the maximum cr/Q∞ and the
one in blue labelled ‘mg’ is the value of the most unstable mode.

case, the most unstable mode has f of 6 kHz and λz of 22 mm. The maximum phase
velocity cr/Q∞ of unstable cross-flow mode is 0.165, which is much smaller than those
of Mack modes. Moreover, it is interesting to see that as marked by the blue dotted lines,
the most unstable modes at each λz (larger than 22 mm) all have roughly the same cr/Q∞
of 0.0165, which is around one-tenth of the maximum cr/Q∞ of unstable modes. This
relation also holds at s = 0.8 m and in the CPG case, though the corresponding phase
velocity varies from case to case. Therefore, it seems to indicate some intrinsic similarities
among the travelling cross-flow modes of different spanwise wavelengths. Downstream
to s = 0.8 m, the unstable region is approximately twice as large in terms of spanwise
wavelength and half in terms of frequency, compared with that at 0.2 m. Meanwhile, the
maximum growth rate at s = 0.8 m is only one third. In terms of gas models, the cross-flow
mode in the TCNE case is shown to be more unstable than that in the CPG case. The
ratios of the maximum growth rates between the two cases are 1.59 at s = 0.2 m and 1.39
at s = 0.8 m.

Figure 9 plots the integrated N factors for the stationary and travelling cross-flow
modes with fixed frequency and wavelength. The disturbances of λz = 40 mm all have
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Figure 9. Streamwise distribution of the cross-flow mode N factors: (a) TCNE and stationary, (b) CPG and
stationary, (c) TCNE and travelling and (d) CPG and travelling. The notation in each legend denotes the mode
with [ f in kHz, λz in mm].

the largest N factors at the end of the computational domain at s = 1.2 m. Although
the most unstable mode in figure 8 is a travelling mode, its maximum N factor at a
fixed frequency is no higher than that of the stationary mode in both TCNE and CPG
cases. Previous receptivity researches revealed that a stationary cross-flow mode was
more receptive in flight conditions because of surface imperfections and low-amplitude
free-stream disturbance (Kurian et al. 2011). In addition, the stationary mode here has an
N factor comparable with that of the travelling mode. Therefore, it is conjectured that the
stationary cross-flow mode is more likely to dominate the disturbance linear growth regime
in the present case. Furthermore, it is observed that TCNE has a significant destabilizing
effect on both stationary and travelling cross-flow modes. In comparison with the CPG
case, the maximum N factors are lifted by 1.8–3.0 for the disturbance of the selected
spanwise wavelengths. A parametric study is performed as discussed below to explain this
destabilization effect of TCNE.

5.2. Effects of wall temperature and TCNE
Previous works suggested that TCNE influenced the primary instability mainly by
modifying the laminar boundary layer profiles. For the second mode, both TCNE and
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Figure 10. (a) Laminar temperature profiles at s = 0.8 m and (b) the N factors of the stationary cross-flow
modes (λz = 40 mm) in the hot-wall-CPG, cold-fs-CPG and benchmark (b.m.) CPG cases.

wall cooling (decreasing Tw) had a destabilization effect as they both decreased the flow
temperature (Bitter & Shepherd 2015; Miró Miró et al. 2020). For the cross-flow mode,
however, the effects of TCNE and wall cooling are somewhat the opposite. Contrary to the
destabilization effect by TCNE as shown in figure 9, Arnal (1996) found that wall cooling
stabilized the cross-flow mode, the same as the first mode which is also an inflectional
instability. To explain this opposite effect, we turn to focus on the parameter Tw/Te instead
of Tw alone, because Tw usually appears in the non-dimensional form of Tw/Te in the
stability equations (Mack 1984). For wall cooling, Te is unchanged and Tw decreases, so
Tw/Te decreases. For the TCNE case here, Tw is set equal to the CPG case but Te is
lower (see figure 5), so Tw/Te does not decrease but increases. In this sense, TCNE is
equivalent to wall heating in terms of Tw/Te. Therefore, the results from the TCNE and
wall-cooling cases both suggest that higher Tw/Te destabilizes the cross-flow mode and
vice versa.

For verification, two more cases with different Tw and T∞, respectively, are calculated
under the CPG model. The first case, termed the ‘hot-wall-CPG’ case, employs a higher
Tw of 2500 K. The second case only changes T∞ to 160 K, and also p∞ to keep R∞
unchanged, which is termed the ‘cold-fs-CPG’ case. Figure 10 gives comparisons of the
laminar temperature profiles and the N factors of stationary cross-flow modes. Only the
mode with λz = 40 mm is displayed, which has the largest N factor in the domain for
all three cases. In comparison with the benchmark case, T̄ in the hot-wall-CPG case is
higher, and Te is roughly unchanged. As a result, the maximum N factor is larger, which
confirms the stabilizing effect of wall cooling and also Tw/Te decreases. Comparisons
between the benchmark and cold-fs-CPG cases are analysed in the same way. With T∞
decreased, Te is reduced by 780 K at s = 0.20 m and 640 K at 0.80 m. Consequently, the
stationary cross-flow mode is destabilized with the larger Tw/Te. Therefore, it is concluded
that increasing Tw/Te, whether through increasing Tw or decreasing Te, destabilizes the
cross-flow mode. Hence the lower Te in the TCNE case tends to increase the growth rate
at the same Tw.

We take a step further by calculating two more cases with adiabatic-wall conditions,
termed ‘adia-TCNE’ and ‘adia-CPG’ cases, respectively. This condition results in the
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Ȳs

0

15

30

45

60
O2

NO

O

(a) (b) (c)

Figure 11. (a) Streamwise distribution of the wall temperatures, and the boundary layer profiles at s = 0.8 m
of (b) temperature and (c) species mass fractions (TCNE only) in the adia-TCNE and adia-CPG cases.
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Figure 12. Curves of N factor of the stationary cross-flow modes with different spanwise wavelengths in
(a) the adia-TCNE case and (b) the adia-CPG case. The N factors of mode [0, 40] in the benchmark CPG
and TCNE cases are also plotted for reference.

theoretically maximum Tw without external heat sources, and hence the maximum growth
rate of the cross-flow mode. As shown in figure 11(a), Tw in the adia-CPG case slowly
decreases with s and is close to the theoretical value away from the stagnation line.
In comparison, Tw in the adia-TCNE case is approximately 5000 K lower due to the
intense energy relaxation and chemical reactions. Figure 11(b,c) gives the profiles of
temperatures and mass fractions. In the adia-TCNE case, the flow is close to thermal
equilibrium inside the boundary layer. The ȲO2 is less than 1 % at the wall, most of which
dissociates into O. In terms of the N factor shown in figure 12, the adiabatic-wall condition
strongly destabilizes the cross-flow mode as expected, compared with the benchmark
cases. As Tw rises by over six times, this destabilization is more evident in the CPG
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Figure 13. Profiles of (a) cross-flow velocity normalized by the free-stream velocity and (b) cross-flow Mach
number in different CPG and TCNE cases at s = 0.4 m. The numbers in parentheses in the inset are the
corresponding values of Tw/Te.

case where the maximum N factor is nearly doubled. For a comparison between the
adia-TCNE and adia-CPG cases, the ratios Tw/Te from figure 11 are 2.80 and 4.36,
respectively, i.e. Tw/Te in the adia-TCNE is smaller. However, different from the trend
above, the N factor in the adia-TCNE case is still larger, though the N-factor difference is
narrowed due to the Tw increase. Therefore, Tw/Te is not the only factor in determining
whether TCNE is stabilizing or destabilizing as there are also energy relaxation and
reactions inside the boundary layer. In the following, we turn to analyse the governing
base flow and disturbance equations with two objectives. One is to provide more physical
interpretations of the connection between the Tw/Te increase and the destabilization
of cross-flow modes. The other is to find a parameter that works for both CPG and
TCNE flows, and can correctly predict the stabilizing or destabilizing trend of cross-flow
modes.

Basically, the amplitude of the cross-flow velocity |Ūcf | is key to the growth rate of
the cross-flow mode. The increase of |Ūcf | is destabilizing with other factors unchanged
(Reed & Saric 1989). Meanwhile, from the momentum equation (2.2b), Ūcf is primarily
affected by the acceleration term (∂pe/∂x) cos θe/ρ̄ (see figure 5), which is related to the
pressure gradient and the density. Figure 13(a) provides the cross-flow velocity profiles at
s = 0.4 m in all the six cases mentioned above. From the four CPG cases (the first four
lines), a clear trend is observed that |Ūcf | increases rapidly with the rise of Tw/Te. This is
reasonable because the rise of Tw (the reduction of Te can be analysed in the same way)
decreases ρ̄ (∼ 1/T̄) in the boundary layer. As a result, (∂pe/∂x) cos θe/ρ̄ increases, and
thus |Ūcf | rises. In short, for CPG flows, the increase of Tw/Te leads to a larger |Ūcf |, and
hence a more destabilized cross-flow mode.

In the TCNE flows, the rise of Tw/Te also results in an increase in |Ūcf |. Nevertheless,
|Ūcf | in the two TCNE cases are no higher than their CPG counterparts (b.m.-CPG and
adia-CPG cases), contrary to the destabilization of TCNE effects shown above. As the
cross-flow instability is an inflectional instability, the inviscid disturbance equations are
adopted below to help locate critical parameters. After applying the LST assumptions, the
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governing inviscid equations are written as

i
(
αŪ + βW̄ − ω

)
ρ̂ + ρ̄

(
iαû + iβv̂ + Dηv̂

)+ (
Dηρ̄

)
v̂ = 0,

iρ̄
(
αŪ + βW̄ − ω

)
û + ρ̄

(
DηŪ

)
v̂ + iαp̂ = 0,

iρ̄
(
αŪ + βW̄ − ω

)
v̂ + Dηp̂ = 0,

iρ̄
(
αŪ + βW̄ − ω

)
ŵ + ρ̄

(
DηW̄

)
v̂ + iβp̂ = 0,

ρ̄c̄p,t−r

[
i
(
αŪ + βW̄ − ω

)
T̂ + (

DηT̄
)
v̂
]

− i
(
αŪ + βW̄ − ω

)
p̂ = −

[∑
m

(
h̄mω̂m + ĥmω̄m

)
+ Q̂t−v

]
,

iρ̄
(
αŪ + βW̄ − ω

)
Ŷs + ρ̄

(
DηȲs

)
v̂ = ω̂s,

ρ̄c̄vib

[
i
(
αŪ + βW̄ − ω

)
T̂v + (

DηT̄v

)
v̂
]

= Q̂t−v,

p̂ = R̄T̄ρ̂ + ρ̄R̄T̂ + ρ̄T̄
∑

m

RmŶm,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where Dη = d/dη and ω̂s and Q̂t−v are the linearized disturbances of ω̇s and Qt−v . The
applicability of (5.1) in describing the disturbance structure is further discussed in § 5.3.
Following the procedures of Mack (1984), a second-order ordinary differential equation
for p̂ is finally arrived at from (5.1) as

D2
ηp̂ − Dη(ln Ma2

r )Dηp̂ − (α2 + β2)(1 − Ma2
r )p̂ = f̂S, (5.2)

where f̂S is a function of ω̂s and Q̂t−v , and is absent in CPG flows. Moreover, f̂S was shown
to have minor effects on the second-mode instability (Bitter & Shepherd 2015; Chen et al.
2021b). The most important parameter in (5.2) is the well-known relative Mach number of
disturbance:

Mar = αŪ + βW̄ − ω√
α2 + β2 af

, a2
f = c̄p,t−r

c̄v,t−r
R̄T̄, (5.3a,b)

where af is the frozen speed of sound. Relative Mach number Mar is known to play a
decisive role in the Mack mode instability (Mack 1984). Its imaginary part is proportional
to the growth rate and its real part, in the special case here for the stationary cross-flow
mode, is simplified as

Re (Mar) |ω=0 = αrŪ + βW̄
β2af

= W̄2

af
, (5.4)

where W̄2 is the velocity perpendicular to the vortex orientation, as defined in (3.10a–c).
Note that W̄2 is close to but slightly different from Ūcf due to the small difference between
θe and θ2. As W̄2 is not fixed for different λz, we replace W̄2 in (5.4) by Ūcf , and the
resulting modified Mar is

Ma′
r = |Ūcf |

af
≡ Macf , (5.5)

where Macf is the cross-flow Mach number. The absolute value of Ūcf is used here as
being convenient for practical use. In comparison with Mar, Macf is fully determined by
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Figure 14. Distribution of (a) the maximum cross-flow Mach number and (b) the growth rates of stationary
cross-flow modes (λz = 40 mm) in different CPG and TCNE cases.

the laminar flow, so it can be evaluated prior to LST calculations. In short, the above
derivation indicates that Ūcf /af is more essential than Ūcf for the cross-flow mode in
compressible flows. Next, the relation is checked between Macf and the growth rate of the
cross-flow mode.

Figure 13(b) gives the profiles of Macf in the six cases. The Macf in the TCNE cases
increase relative to those in the CPG cases. This is owing to the temperature decrease
inside the boundary layer by the TCNE effects and thus a decrease of af . Furthermore,
figure 14 provides the streamwise distribution of Macf ,max (the maximum Macf inside the
boundary layer) and the growth rates of the stationary mode with λz = 40 mm. This mode
has the largest N factor in all six cases. Note that the growth rate displayed is −αi cos θe,
i.e. measured in the potential-flow direction. This is more reasonable than −αi here, as
it is defined in the same coordinate as that for Ūcf . As can be seen, there is basically a
positive correlation between Macf ,max and −αi cos θe for all six cases here, including both
TCNE and CPG flows with Tw and Te variations. A larger Macf tends to destabilize the
stationary cross-flow mode, and the correlation between Mar and −αi cos θe is nearly the
same. A slight reverse is observed between the adia-TCNE and adia-CPG cases, so a single
parameter Macf cannot rule out all the effects from viscosity, wall boundary conditions and
thermochemical processes. Nevertheless, it works better than Ūcf alone in predicting the
stabilizing or destabilizing trend of stationary cross-flow mode.

5.3. Disturbance structure
In this subsection, the shape function of the cross-flow mode is analysed to see its basic
characteristics. Furthermore, we aim to seek some analytical relations from (5.1) that help
understand the disturbance structure.

Figure 15 displays the shape function of the stationary mode with λz = 40 mm in the
TCNE benchmark case. All the disturbance components are normalized by p̂/p∞ at the
wall. The maximum |p̂| is located in the middle of the boundary layer, different from
the first and second modes whose peaks are at the wall. The real part of p̂ dominates over
the imaginary part throughout the boundary layer, so that the phase of p̂ is nearly constant.
The amplitudes of ûcf and v̂ are of the same order, while both are an order of magnitude
smaller than that of |ûpl|. The components T̂ and T̂v have two peak amplitudes, and |T̂|
947 A25-22
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Figure 15. Shape functions of the stationary cross-flow mode with λz = 40 mm at s = 0.8 m in the
TCNE benchmark case: (a) pressure, (b) velocity in the potential-flow direction, (c) cross-flow velocity,
(d) wall-normal velocity, (e) temperature, ( f ) vibrational temperature and (g) mass fraction. The dotted lines
denote the boundary layer edge.

is several times larger. The |ŶO2 | is low near the wall, while being relatively high even
outside the boundary layer.

From (5.1), the inviscid solution of disturbance components is written as

p̂inv = ρ̄W̄2

(
DηW̄2

DηŪ2
û2 − ŵ2

)
,

û2,inv = − i
β2W̄2

(
DηŪ2

)
v̂,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T̂inv = − i
β2W̄2

(
DηT̄

)
v̂,

T̂v,inv = − i
β2W̄2

(
DηT̄v

)
v̂,

ŶO2,inv = − i
β2W̄2

(
DηȲO2

)
v̂,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

where the subscript ‘inv’ denotes the solution from inviscid equations, Ū2 is the velocity
parallel to the vortex orientation (see (3.10a–c)) and its disturbance û2 = û cos θ2 +
ŵ sin θ2. Note that the disturbances of the pressure-related term in the energy equation
and the non-equilibrium source terms are dismissed (Klentzman & Tumin 2013; Chen
et al. 2021b). As can be seen, p̂inv is proportional to W̄2 and depends only on the velocity
disturbances û2 and ŵ2. Velocity û2,inv is proportional to v̂ but independent of ŵ2 due to the
spanwise uniformity of the laminar flow; the amplitude of û2,inv is inversely proportional
to W̄2. Furthermore, the expression of û2,inv bears a strong resemblance to that in the
lift-up mechanism in transitional or turbulent flows in the presence of streamwise vortices
(Ellingsen & Palm 1975). Also, T̂inv , T̂v,inv and ŶO2,inv have similar forms to û2,inv .

As verification of the inviscid solution, figure 16 provides a comparison between those
in figure 15 and from (5.6). The β2 and velocity disturbances used on the right-hand side
of (5.6) are from the viscous solution. In figure 16(a), û2,inv matches the viscous solution
remarkably well except near ηs where W̄2(ηs) = 0. So ηs is a singularity point for the
inviscid solution where the viscous effects cannot be neglected. In fact, Re(Mar) in (5.4)
is also zero at ηs. Therefore, the singularity point ηs satisfies the definition of the location
of a critical layer (Re(Mar) = 0), as that for the first and second modes (Mack 1984).
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Figure 16. Shape functions of the stationary cross-flow mode and the inviscid solution from (5.6):
(a) vortex-oriented velocity, (b) pressure, (c) temperature, (d) vibrational temperature and (e) mass fraction.
The location of the GIP is plotted in ( f ).

Away from ηs, û2 is determined by the inviscid convective term in the wall-normal
direction, or specifically, the product of the wall-normal velocity disturbance and the
laminar flow gradient. Good agreement is also observed in figure 16(b) between p̂ and p̂inv

except near ηs and the wall. Besides, the peak amplitude of p̂ is located near ηs and also the
generalized inflection point (GIP) to be discussed later. Same as û2, (5.6) well predicts the
distribution of T̂ , T̂v and ŶO2 except near ηs. As a result, the amplitude difference between
T̂ and T̂v is found mainly owing to the difference in the laminar flow gradient. Moreover,
the large amplitude of ŶO2 outside the boundary layer is due to the large gradient of the
laminar mass fraction there. Equation (5.6) also works well in the adia-TCNE case versus
the previously discussed TCNE benchmark case.

The location of the GIP for the cross-flow mode ηGIP is defined as

G (ηGIP) = 0, G = ∂

∂η

(
ρ̄

∂W̄2

∂η

)
. (5.7a,b)

The distribution of G is plotted in figure 16( f ). It is observed that ηGIP is very close
to ηs with relative difference less than 1 %. In other words, the GIP can be regarded as
the singularity point in the inviscid solution. This is consistent with the criterion used
in the inflection-point method introduced by Oliviero et al. (2015), based on which the
spatial marching path in NPSE is obtained for the stationary cross-flow mode over complex
configurations.

6. Nonlinear saturation and secondary instability

6.1. Cross-flow vortex saturation
The nonlinear evolution of the cross-flow disturbance is calculated using NPSE in
the TCNE benchmark case. The initial disturbance is the stationary cross-flow mode
(0, 1) from LST with λz = 40 mm, which experiences the strongest linear growth in the
computational domain (see figure 9a). The amplitude of mode (m, n) is measured by its
maximum streamwise (s) velocity ûmax, normalized by Q∞. The initial amplitude of mode
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Figure 17. Streamwise development of (a) mode amplitudes and (b) contours of ū′
2 in the z2–η2 plane. Note

that the contours in (b) are originally plotted in the (s2–η2–z2) coordinates (compressed in the s2 direction
for clarity) and then transformed back to the (s–η–z) coordinates to be consistent with (a). Therefore, the
streamwise location in (b) is based on s, and the ten stations displayed are evenly distributed ranging from
s(1) = 0.33 m to s(10) = 1.20 m.

(0, 1) is set to 0.1 % at s = 0.07 m to simulate the natural transition process. Downstream
of the numerical onset, mean flow distortion and the modes with higher spanwise
wavenumbers, (0, n) where n = 2, 3, . . ., are generated due to nonlinear interactions. Here
Mmax and Nmax in (3.3) are set to 0 and 32, respectively, so up to 33 modes, along with
their conjugates, are considered. Their streamwise development in amplitude is plotted
in figure 17(a). The linear evolution of mode (0, 1) from linear PSE is also plotted for
reference. As can be seen, mode (0, 1) from NPSE follows the linear growth downstream
until it reaches an amplitude of 12 % at s = 0.57 m, and then begins to saturate. Modes of
higher spanwise wavenumbers undergo similar processes of evolution. They also saturate
or even gradually decay further downstream. The maximum amplitudes of modes (0, n)
with n > 16 are all less than ×10−4 in the domain. They seem to be negligible in the NPSE
calculation, but are still included for later SIT computations. This is because the required
Nsd in SIT is quite large (see § 6.2), and the SIT result is sensitive to the base flow accuracy
(Bonfigli & Kloker 2007).

Figure 17(b) gives a view of how the stationary cross-flow vortex develops downstream.
The contours of ū′

2 (see (3.11)) in the z2–η2 plane are displayed at ten evenly distributed
locations, and the spanwise range shown covers two spanwise wavelengths λz,2 = 2π/β2.
At the first three locations, mode (0, 1) dominates the disturbance, and its amplitude still
follows the linear growth. Co-rotating clockwise vortices are formed as viewed facing
downstream, leading to the upwash and downwash of fluids. Further downstream, the rapid
growth of other modes results in the classic co-rotating rollover (or half-mushroom-like)
structures in the cross-flow vortices. However, the rollover structures are somewhat
degenerated at the last two locations because of the modes’ decay. Compared with
the laminar flow, the stationary cross-flow vortices strongly promote the exchange of
momentum, mass and energy between the fluids at different η.

6.2. Preparatory analysis
The development of the stationary cross-flow vortex itself does not directly lead to
turbulence. Instead, high- and low-frequency waves induced by the cross-flow vortex play
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Figure 18. Contours of the gradients of streamwise (s2) momentum in the (a–c) wall-normal and (d–f )
spanwise directions. Three streamwise locations are s of (a,d) 0.5 m, (b,e) 0.8 m and (c, f ) 1.1 m. The white
dotted lines are the contours of the base streamwise velocity as in figure 17(b).

important roles. Here the secondary instability of stationary cross-flow vortex is analysed
using SIT, based on the distorted mean flow in figure 17. Previous studies suggested that
the characteristics of secondary cross-flow instability modes were tightly related to the
distribution of mean-flow gradients (Malik et al. 1999). Thereby, the gradient contours
of streamwise momentum ρ̄′ū′

2 in the wall-normal (η2) and spanwise (z2) directions
are depicted in figure 18 at different s. At s = 0.5 m, the wall-normal shear mainly
concentrates near the wall, and its magnitude is much larger than the spanwise shear.
Further downstream, the spanwise shear rapidly increases with the growth of harmonic
waves. Its two positive extrema are located at the downwash and the inner side of
the upwash regions, while the negative extremum lies at the outer side of the upwash
region. For the wall-normal shear, an additional peak appears on top of the vortex at
s = 0.8 m. However, this peak is weakened further downstream due to the increase of
vortex thickness, as shown in figure 18(c).

Next, a convergence study is conducted to determine the required Nsd (see (3.13)) for
SIT. Also, an examination is required on whether Nmax = 32 is adequate to ensure an
accurate base flow. The details of these two parts are provided in the supplementary
material. The conclusion is that Nsd = 18 and Nmax = 32 are adequate and adopted for
later calculations; σd is set to 0 and no distinctions are made between the fundamental,
subharmonic and detuned modes.

6.3. Energy budget analysis
The classification of unstable secondary instability modes into type I (z), type II (y)
or other types is based on their production mechanisms through the energy budget
analysis (Malik et al. 1999), so a definition of the disturbance energy is required first.
In incompressible flows, the disturbance energy is usually measured by the disturbance
kinetic energy:

2Ẽk = ρ̄|ũ|2 = q̃HMkq̃, (6.1)
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where q̃ is defined in § 3.2, the superscript H represents a conjugate transpose and Mk
is the energy-norm matrix. For hypersonic flows, however, the density and temperature
disturbances can have large amplitudes (see figure 15), but they are not reflected in
(6.1). Therefore, a question is raised as to how to define an appropriate energy norm for
hypersonic and TCNE flows. To take into account the contribution from each component
of q̃, following the physically based derivation by Chu (1965), we use the following form
of energy norm for TCNE flows (see Franko 2011; Chen, Wang & Fu 2022):

2Ẽq = ρ̄|ũ|2 + T̄R
ρ̄

|ρ̃|2 + ρ̄T̄
∑
s,m

RY,smỸ†
s Ỹm + T̄

∑
m

Rm

(
ρ̃†Ỹm + ρ̃Ỹ†

m

)

+ ρ̄c̄v,t−r

T̄

∣∣∣T̃∣∣∣2 + ρ̄c̄vib

T̄

∣∣∣T̃v

∣∣∣2 = q̃HMqq̃, (6.2)

where † denotes the complex conjugate and RY,sm is a species-related coefficient matrix.
For CPG flows, (6.2) reduces to the same form as that widely used in the transient growth
analysis (Hanifi, Schmid & Henningson 1996). The subscripts ‘k’ and ‘q’ are used below
to distinguish the energy-related terms based on Ẽk and Ẽq, respectively.

The governing equation of the disturbance energy norm is obtained after
left-multiplying q̃HMF−1 to (3.2), where M is either Mk or Mq. For SIT, the base flow
and the disturbance are replaced with q̄′

2 and q̃2,sd, respectively (see § 3.3). The resulting
classified energy-norm equation in SIT is written as

DẼsd

Dt
= Py + Pz + Ξ + Π + V + S, (6.3)

where Ẽsd is the energy norm of q̃2,sd. Terms Py and Pz are the production terms due
to the wall-normal and spanwise gradients, respectively. Term Ξ is the production term
due to the streamwise gradients and is negligible under the parallel-flow assumption. Term
Π represents the diffusion and dilatation work contributions by the pressure disturbance.
Term V denotes the viscous diffusion and dissipation terms related to μ, κt−r, κv and Dsm.
Term S is the energy transfer term due to the disturbance of TCNE source terms. Detailed
expressions of these terms can be found in Chen et al. (2022). If Ẽsd takes the form of
Ẽsd,k in (6.1), the production terms are expressed as

Py,k = −Re

(
ρ̄′ũ†

2,sdṽ2,sd
∂Ū′

2
∂η2

)
, Pz,k = −Re

(
ρ̄′ũ†

2,sdw̃2,sd
∂Ū′

2
∂z2

)
, (6.4a,b)

where Re(·) denotes the real part of complex variables. If Ẽsd is Ẽsd,q in (6.2), then
Py,q and Pz,q contain extra terms related to the gradients of ρ̄′, T̄ ′, T̄ ′

v and Ȳ ′
s. After a

spatial integration in the η2–z2 plane, the growth rate of a secondary instability mode is
decomposed as (Malik et al. 1999; Xu et al. 2019)

ωs,r = σPy + σPz + σΞ + σΠ + σV + σS, (6.5)

where σφ is the growth-rate contribution from the term φ (P , V or others):

σφ = 2
EI

∫ 2π/β2

0

∫ ∞

0
φ dη2 dz2, EI =

∫ 2π/β2

0

∫ ∞

0
Ẽsd dη2 dz2. (6.6a,b)

Consequently, the contribution from each term on the right-hand side of (6.3) to the
disturbance growth rate is quantified.
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Figure 19. Contribution from different terms in (6.5) to the disturbance growth rates for (a) type-I-1,
(b) type-I-2 and (c) type-IV-1 modes at s = 1.0 m based on the two energy norms in (6.1) (subscript ‘k’)
and (6.2) (subscript ‘q’). The mode names used are discussed in § 6.4. (d) Profiles of the spanwise-averaged
components of Ẽsd,q normalized by the maximum energy norm (type-IV-1 mode at f = 197 kHz).

We now compare the results based on the two energy norms in (6.1) and (6.2). Figure 19
provides the decomposed growth rate with different frequencies for three representative
secondary instability modes at s = 1.0 m. The shapes of these modes are further discussed
in § 6.4. For all the modes here, Py, Pz and V are the main three contributing terms,
while the other three terms are insignificant to the growth rate. One can see that V always
has a negative contribution to the mode’s growth, and this stabilizing effect tends to be
stronger with a frequency increase. In comparison, the two production terms support
the growth of modes, but they also have negative contributions within some frequency
ranges. In general, the decomposed growth rates based on the two energy norms differ
only slightly, though the differences slowly increase with frequency. In fact, though
|T̃sd| is an order of magnitude larger than |ũ2,sd| for the modes in figure 19, the term
ρ̄′c̄′

v,t−r/T̄ ′|T̃sd|2/2 (denoted as ET) in (6.2) is smaller than ρ̄′|ũ2,sd|2/2 (termed as EU),
as shown in figure 19(d). Term EU makes up roughly 50 %–80 % of Ẽsd after a spanwise
average for all the unstable secondary instability modes here. Thereby, it is concluded
that the energy-norm choice between (6.1) and (6.2) does not change the classification
of secondary instability modes based on the energy budget analysis. The energy norm in
(6.2) is employed for later use. For the modes in figure 19(a,b), σPz is dominant while
σPy is negative, so these two modes are classified as type-I modes. However, a difficulty
is encountered for the mode in figure 19(c) in that neither σPy nor σPz shows a clear
dominance on the mode’s growth. It seems that the mode classification is not unique based
on the production terms, but physically there is no mode switch. The mode that received
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Figure 20. (a) Growth rates and (b) phase velocities of secondary instability modes at s = 1.0 m in the TCNE
benchmark case, as well as (c) contours of their normalized streamwise (s2) velocity amplitudes of the most
unstable one. The white dotted lines are the contours of the base streamwise velocity as in figure 17(b).

comparable contribution from σPy and σPz was termed as a y/z mode by Li et al. (2014).
More discussions on the mode classification are provided in § 6.4.

6.4. Characteristics of various modes
For an overview of the results at s = 1.0 m in the TCNE benchmark case, the growth rates,
phase velocities and spatial distributions of the unstable secondary instability modes are
plotted in figure 20. There are minor differences among the contours of |ũ2,sd|, |T̃sd| and
Ẽsd normalized by their maximums. Hence the contours of |ũ2,sd|/ max |ũ2,sd| are used to
exhibit the modes’ spatial distribution.

Same as those in lower-speed flows, the frequency ranges of secondary instability modes
are an order of magnitude larger than that of the primary instability (see figure 8), and the
maximum frequency is as high as 425 kHz. These unstable modes are classified into the
type-I or type-II modes as discussed in § 6.3. In addition, a new series of type-IV modes
are defined here, which receive combined contribution from Py and Pz, and have unique
distributions rarely reported before, as is discussed at length later. Correspondingly, the
three modes in figure 19 are named type-I-1, type-I-2 and type-IV-1 modes, respectively.
As can be seen, the low-frequency type-I-1 mode has the highest maximum growth rate
and the lowest phase velocity at s = 1.0 m. Its frequency at the largest growth rate is
65 kHz, which is only a half or a third of those of other modes. Besides, the type-I-1 mode
locates at the outer side of the upwash region of the vortex, where the spanwise shear is
the negative extremum (see figure 18). This is consistent with the classic distribution of
type-I modes observed in lower-speed flows (White & Saric 2005; Craig & Saric 2016). In
comparison, the type-I-2 mode locates at an upper region with a much lower growth rate.
The spatial distribution of this mode looks similar to that of the traditional type-II mode,
but the energy budget analysis in figure 19(b) demonstrates its classification as a type-I
mode. The type-II1 mode is found on top of the vortex, where the wall-normal shear is
much stronger than the spanwise shear. This is also a classic location for type-II modes
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(Malik et al. 1999). The two type-II-2 modes displayed have wide unstable frequency
ranges and high phase velocities. Moreover, they are located near the trough of the vortex,
similar to the location of the modes reported by Koch et al. (2000) as a type-III mode, and
by Xu et al. (2019) as a new y mode.

In addition, another class of modes, termed type-IV modes, are found at higher
frequencies. The three type-IV modes shown all have relatively large growth rates and
are located at the downwash region of the vortex. In the following, the energy budget
analysis is employed to study the contribution from Py and Pz to the type-IV-2 mode,
dominating the linear growth regime of the secondary instability (shown in figure 24
later). Figure 21 gives the growth rate decomposition and the spatial distributions of Ẽsd,
Py and Pz (normalized by maxy,z Ẽq and ωs,r) at a sequence of streamwise locations.
One important observation is that σPy and σPz alternately dominate the mode growth at
different s. Specifically, σPy is dominant upstream of 0.75 m, and Py mainly concentrates
on top of the vortex. Further downstream, σPy decreases and σPz grows to be dominant.
Term Pz is mainly located at the downwash region of the vortex, in connection with local
high spanwise shear as shown in figure 18(e, f ). The hot zone of Pz gradually rotates
clockwise as viewed facing upstream and moves to the right-hand side of the vortex at
s > 0.90 m. Meanwhile, σPz also drops further downstream, leading to the rapid decrease
of ωs,r. Meanwhile, σPy slowly increases and surpasses σPz at s = 1.10 m, which is mainly
contributed by the production term near the trough of the vortex. In short, the type-IV-2
mode is located primarily in the downwash region of the cross-flow vortex (contributed
by σPz), and also has distributions on top or trough of the vortex (contributed by σPy)
at different streamwise locations, which is essentially different from the type-I or type-II
modes. Many more unstable modes are also found in figure 20, but are not discussed in
detail here because of their relatively low growth rates.

The streamwise evolutions of the secondary instability modes in figure 20 are further
investigated to provide a comprehensive knowledge of their characteristics for this flow.
Moyes et al. (2018) pointed out the correlation between the transition onset and the neutral
point of secondary cross-flow instability in the HIFiRE-5b flow case. Downstream of the
neutral point, various unstable modes appear, and their growth rates and shapes are plotted
in figure 22 at s = 0.65 m, 0.75 m, 0.90 m and 1.10 m. Here s = 0.75 m is near the location
where all Fourier modes in NPSE reach their largest amplitudes (see figure 17a). The
evolution of four representative modes, namely type-II1, type-IV-1, type-I-1 and type-IV-2
modes, is tracked, while the growth rates of other modes are also plotted. The type-II1
mode rides on top of the vortex, and reaches its highest growth rate at s = 0.81 m. Further
downstream, its growth rate decreases, and the mode is stable downstream of s = 1.10 m.
This stabilization is accompanied by the weakening of the wall-normal shear, as reflected
in figure 18. The streamwise evolution of the type-IV-2 mode has been discussed in relation
to figure 21. It is the most unstable one at s = 0.65 m and 0.75 m, but further downstream
its growth rate also quickly decreases and the frequency shifts to a lower range. The
type-IV-1 mode has a similar distribution pattern to the type-IV-2 mode. Its growth rate
surpasses that of the type-IV-2 mode at s = 0.90 m and then drops. In comparison, the
type-I-1 mode is destabilized to be the most unstable mode downstream at s = 1.0 m owing
to local strong spanwise shear. Its frequency is below 200 kHz, and it is located at the outer
side of the upwash region of the vortex. Furthermore, the orientation of its concentration
area is nearly perpendicular to the wall at s = 1.1 m owing to the increase of the vortex
thickness.

It is worth mentioning that Groot et al. (2018) (their figure 8) found two unstable modes
of secondary cross-flow instability that had similar distribution to the type-IV modes in
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Figure 21. Streamwise development of the type-IV-2 mode at s of (a) 0.70 m, (b) 0.80 m, (c) 0.90 m, (d) 1.00 m
and (e) 1.10 m. (i) The growth rate decomposition, and (ii)–(iv) the contours of the normalized disturbance
energy, wall-normal and spanwise production terms, respectively.

the present case (specifically, figures 21b(ii) and 22a(iii)) in their biglobal analyses on an
incompressible flow. These modes were not analysed in detail in their study because they
did not have the largest growth rate. Nevertheless, their results support the findings of the
present paper. In fact, as is shown in § 6.5, the growth rates of the type-IV modes are not
the largest in the CPG case, but they are largely destabilized in the TCNE cases.

The phase information of modes is missing in figure 22. Hence (3.13) is used to
reproduce the three-dimensional (s2–η2–z2) distribution of ũ2,sd, which is applicable
under the locally-parallel-flow assumption. Figure 23 illustrates the spatial structures of
ũ2,sd of the four modes near s = 0.90 m. The temporal sequence (t–η2–z2) of ũ2,sd at a
fixed s2 exhibits the same structures except in the opposite (−t) direction. Alternating
inclined strips are observed for ũ2,sd of the type-I mode, which is quite similar to those
documented in the low-speed experiments through a proper orthogonal decomposition
(Groot et al. 2018). Also, the streamwise wavelength (2π/αs) of the type-I mode is several
times larger than that of the other three modes. For the type-II1 mode, inclined curved
strips are observed on the top of the vortex. Their orientation is consistent with the
base-flow streamlines. In comparison, the two type-IV modes exhibit aligned-arrow and
inclined-dumbbell shapes in the downwash region of the vortex.
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Figure 22. Streamwise development of the secondary instability modes at s of (a) 0.65 m, (b) 0.75 m,
(c) 0.90 m and (d) 1.10 m. (i) The growth rate, and the normalized streamwise velocity amplitudes of (ii)
type-II1, (iii) type-IV-1 and (iv) type-I-1 modes. The colourbar is the same as that in figure 20.

Next, we focus on the accumulative growth (N factors) of these secondary instability
modes in the streamwise direction to find the spatially dominant one. There are generally
two approaches to obtain the spatial growth rate. The first is to solve the spatial-mode
version of (3.13), i.e. solve for the complex αs at a given real ωs. The second is to use
the extended Gaster transformation (see Koch et al. 2000), where the temporal growth
rate is transformed to a spatial one through a group velocity. Comparisons show that the
growth rate differences of the type-I-1, type-II1 and type-IV modes by these two methods
are less than 2 % at s = 1.0 m, so the extended Gaster transformation also works in this
high-enthalpy flow. Nevertheless, small differences exist so the spatial-mode calculation is
performed in the following to obtain the disturbance N factors. Figure 24 gives the N factor
distribution of the four modes in figure 22 at the frequencies related to their maximum
growth rates. The N factor envelopes within specific frequency bands are also plotted. The
type-IV-2 mode is observed to have the largest N factor with the onset at s = 0.59 m. The
N factors of the type-IV-1 and type-II1 modes are close to each other, and the N factor
of the type-I-1 mode is the lowest within the computational domain. In short, the present
results highlight the vital role of the type-IV modes. This is the first report, to the authors’
knowledge, wherein a secondary instability mode, located at the downwash region of the
stationary cross-flow vortex, has the largest N factor in hypersonic boundary layers.
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Figure 23. Isosurfaces of the normalized streamwise velocity (Re(ũ2,sd)/ max |ũ2,sd| = ±0.2) for the modes
near s = 0.9 m: (a) type-I-1, (b) type-II1, (c) type-IV-1 and (d) type-IV-2 modes. The black solid lines are the
contours of the base streamwise velocity and the red dash-dotted lines the contours of |ũ2,sd|/ max |ũ2,sd| at 0.2.
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Figure 24. Streamwise distribution of the N factors for the four secondary instability modes in the TCNE
benchmark case (a) at the frequencies related to their local maximum growth rates and (b) within specific
frequency bands with �f = 10 kHz.

It is important to note that the type-IV-2 mode might not necessarily dominate
the secondary instability region, because the initial amplitudes of different modes
can significantly differ under specific conditions. Similar phenomena exist in some
lower-speed flows in that the type-II mode was not observed in experiments or DNS results
though its growth rate was comparable with that of the type-I mode from SIT (Bonfigli &
Kloker 2007; Craig & Saric 2016; Chen et al. 2021a). This might be attributed to the higher
receptivity coefficient of the type-I mode in those cases. Therefore, a receptivity analysis
is required in the future, in combination with SIT, to determine the initial amplitudes and
subsequent growth of different modes.
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Figure 25. Streamwise development of the mode amplitudes in (a) adia-TCNE and (b) adia-CPG cases.

Finally, as the type-IV modes were rarely reported before, a parameter study of wall
temperatures and gas models is performed to examine their effects. Note that for flows
with different parameters, the difference in the primary instability makes it hard to isolate
the effects of the parameters on the secondary instability. Therefore, we make a direct
comparison between the secondary instability results of the most unstable stationary
cross-flow vortex with the same initial amplitude of the primary disturbance. This
is designed to study the most likely change under the same free-stream perturbation
conditions. Therefore, the change in secondary instability characteristics results from the
combined effects of the differences in the laminar flow, vortex saturation amplitude, the
streamwise location of the saturation region (thus local Reynolds number and boundary
layer thickness), and so on.

6.5. Effects of wall temperature and TCNE
As a parameter study, the nonlinear evolution and secondary instability of the stationary
cross-flow vortices in the adia-TCNE and adia-CPG cases are also calculated. In the NPSE
calculation, the spanwise wavelengths of mode (0, 1) in the two cases are both selected to
be 40 mm with the neutral point (also the computational onset) at s = 0.04 m, based on
the results in figure 12. The initial amplitudes of mode (0, 1) are set to 0.1 % as well. The
streamwise development of the mode amplitudes is plotted in figure 25. As can be seen,
the amplitude evolution in the two adiabatic-wall cases bears a strong resemblance to that
in figure 17(a) except for the higher growth rates upstream of the saturation region due to
Tw increase. Mode (0, 1) begins to saturate at s = 0.39 m and 0.47 m in the adia-TCNE
and adia-CPG cases, respectively.

The contours of T̄ ′ in the adia-CPG case are depicted in figure 26(a) at s = 0.45 m
and 0.60 m. These two locations are upstream and downstream where all Fourier modes
reach their maximum amplitudes, respectively. In the same way, the contours of T̄ ′, T̄ ′

v and
Ȳ ′

O2
in the adia-TCNE case are provided in figure 26(b–d) at s = 0.40 m and 0.55 m. The

laminar counterpart is also provided for comparison. The local velocity vectors [w̄′
2, v̄

′
2] are

displayed to help identify the fluid motion due to cross-flow vortex. From the T̄ ′ contours,
high-temperature regions are observed in the two cases near the wall between the stems
of two adjacent vortices. The maximum temperature in the adia-TCNE case is 16.5 %
higher than the laminar Tw at s = 0.55 m, while in the adia-CPG case the difference is less
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Figure 26. (a) Contours of the temperature at s of (i) 0.45 m and (ii) 0.60 m in the adia-CPG case. Contours
of (b) temperature, (c) vibrational temperature and (d) mass fraction at s of (i) 0.40 m and (ii) 0.55 m in the
adia-TCNE case.

than 1 %. This is because the mixing of fluids leads to the energy absorbed by the energy
relaxation and chemical reactions being released again. In addition, the temperature near
the stem of the rollover structure is reduced in the adia-TCNE case, but in the adia-CPG
case the stem is a high-temperature region. This difference is explained from the contours
of T̄ ′

v and Ȳ ′
O, whose maximums are at the stem of the rollover. This is associated with the

local low speed and thus low Damköhler number, so the flow is closer to thermochemical
equilibrium and the temperature is reduced. The rollover structures are clearly recognized
from the contours of T̄ ′

v and Ȳ ′
O. This indicates the overall and thus more structurally

analogous influence of the cross-flow vortices on essential variables.
Next, the secondary cross-flow instability in the adia-TCNE case is calculated. The

growth rates and shape functions of the unstable modes from SIT are plotted in figure 27
at s = 0.45 m. As can be seen, the most unstable four modes are the same as those in
the TCNE benchmark case: type-I-1, type-II1, type-IV-1 and type-IV-2 modes. The two
type-IV modes have the largest growth rate and they are located at the downwash region
of the cross-flow vortex. In addition, the type-IV-1 mode has a distribution at the trough
of the vortex, which is contributed by Py as discussed in § 6.4. Subsequently, the N factor
envelopes of the type-I-1, type-II1 and type-IV-2 modes are calculated within specific
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Figure 27. (a) Growth rates of unstable secondary instability modes with different frequencies at s = 0.45 m
in the adia-TCNE case. (b) Contours of their normalized streamwise velocities at the frequencies corresponding
to the largest growth rates.
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Figure 28. Streamwise distribution of the N factors for the three secondary instability modes in the
adia-TCNE case within specific frequency bands with �f = 10 kHz.

frequency bands, as shown in figure 28. Again, the type-IV mode has the largest N factor in
the computational domain, while the type-I-1 mode has the lowest. Therefore, the type-IV
mode has the largest N factors in both the benchmark TCNE and adia-TCNE cases.

A further quantitative comparison indicates two moderate influences due to Tw
increase. The first is that both the type-II1 and type-IV modes are somewhat stabilized
in comparison with that in figure 24. The second is the frequency increase of the
type-I-1 mode relative to the type-II1 and type-IV modes. These two influences can
both be associated with the change of the boundary layer thickness. Specifically, previous
investigations suggested that with an increase of Re∞, a thinner boundary layer leads to
the destabilization and frequency increase of the type-II mode. The former effect was
through the strengthening of the wall-normal shear (see Malik et al. 1999; White & Saric
2005). In the present case, the increase of Tw leads to a thicker boundary layer, but
the secondary instability region moves upstream due to the stronger primary instability,
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Figure 29. Growth rates of the secondary instability modes with different frequencies at (a) 0.50 m and
(b) 0.60 m in the adia-CPG case.

decreasing the local boundary layer thickness. As the outcome of these two competing
effects, the type-II1 and also the type-IV modes are slightly stabilized, and the frequency
of the type-I-1 mode rises.

For the adia-CPG case, the secondary instability modes of the stationary cross-flow
vortices in figure 25(b) are also analysed to examine the effect of TCNE. Figure 29
provides the growth rates of the unstable modes at s = 0.50 m and 0.60 m. The growth rate
results are found to be significantly different from the TCNE benchmark and adia-TCNE
cases, indicating the essential influence of TCNE on the secondary cross-flow instability.
We also notice that the results in figure 29(a) are quite similar to figure 12 in Xu et al.
(2019) for a Mach-6 swept-parabola case with an adiabatic-wall condition. Both identify
a dominant type-I mode, a low-frequency type-III mode (following that in the reference)
and low-growth-rate type-II modes. Also, the frequency of the type-I mode is comparable
to that of the type-II modes, which reflects the insensitivity of cross-flow instability to
free-stream Mach number. In addition, the type-IV mode is observed in the present CPG
case, which is located at the downwash region and trough of the vortex. The frequency
relation between the type-IV mode and the others also indicates that the type-IV mode is
not the harmonic of either type-I or type-II modes, as noted by Groot et al. (2018). Further
downstream to s = 0.60 m, the growth rates of the type-I and type-III modes decrease,
while the those of the type-II1 and type-IV modes increase. The distribution of the type-I
modes moves towards the top of the vortex, which also reflects the strengthening of the
wall-normal shear.

The comparison between the adia-CPG case and the two TCNE cases indicates that the
type-IV modes are heavily destabilized by the TCNE effects, and the type-I modes are
stabilized. Also, the frequency of the type-I mode is largely reduced by TCNE, relative
to those of the type-II and type-IV modes. These changes are also consistent with the
trends concerning the variation of the boundary layer thickness, as discussed above. The
local thinner boundary layer in the TCNE cases is due to the temperature decrease and
the destabilization of the primary instability (so the secondary instability region moves
upstream). Furthermore, the destabilization of the type-IV modes is strongly related to the
spanwise gradients of the base flow, as shown in figure 30. In the adia-CPG case, the two
positive peaks of the spanwise shear are also located at the downwash region and the inner
side of the upwash region, as discussed in relation to figure 18, but the peak amplitude
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levels for all the panels are the same.

in the downwash side is much lower than the other. In comparison, in the adia-TCNE
case, the spanwise shear in the downwash region of the vortex is also of large amplitude.
Therefore, the stronger downwash of fluids in the TCNE cases promotes the growth of the
type-IV modes located in this region.

7. Conclusions

In this work, the cross-flow primary and secondary instabilities in hypersonic
high-enthalpy boundary layers are analysed using LST, NPSE and SIT with TCNE effects.
The flow over a swept parabola is calculated at Ma∞ of 16 under the TCNE and CPG
models. The entropy layer induced by the strong bow shock leads to a high-temperature
region and thus strong TCNE effects outside the boundary layer. Thereby, Te is reduced in
the TCNE case, and Mae is generally 0.18–0.45 higher than that in the CPG case.

The results from LST identify unstable stationary and travelling cross-flow modes. The
most unstable one is travelling, but its N factor at a fixed frequency is no higher than
that of the stationary mode. The TCNE is shown to have a destabilizing effect on the
cross-flow mode under the non-catalytic wall boundary condition, lifting the maximum
N factors by 1.8–3.0 within the computational domain as compared with the CPG case.
With an adiabatic-wall condition, the difference of the maximum N factors is narrowed,
but the TCNE effect is still slightly destabilizing. To explain this effect, a parameter study
is performed and two important non-dimensional parameters are summarized. One is the
temperature ratio Tw/Te and the other is the cross-flow Mach number Macf = |Ūcf |/af .
Increases of the two tend to destabilize the cross-flow mode, while the latter is more
essential and works better for both TCNE and CPG cases. Therefore, the TCNE effects
have three influences on the growth rate of the cross-flow mode. The first is to decrease
the temperature and thus af inside the boundary layer, which is destabilizing. The second
is to decrease Te, which is also destabilizing. The third is to decrease Tw if Tw is not
fixed, which is stabilizing. The second effect is quite obvious for the cases with strong
entropy layers and thus high Te, such as the present parabola case. The third effect is
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most obvious under an adiabatic-wall condition. The simple relation (5.6) derived from
the inviscid disturbance equations well predicts the disturbance shape functions except
near the singularity point where W̄2 (the velocity perpendicular to the cross-flow vortex
axis) is zero. This singularity point is also found very close to the GIP based on W̄2.

Using NPSE, the classic co-rotating rollover structures are observed in the saturated
stationary cross-flow vortices. Compared with the laminar flow, the cross-flow vortices
strongly promote the exchange of momentum, mass and energy between the fluids at
different wall-normal heights. The SIT is employed to find the unstable secondary
instability modes of cross-flow vortices. Two kinds of disturbance energy norms are
used in the energy budget analysis to classify the modes. The first form only considers
the disturbance kinetic energy, while the second form additionally takes into account
the contribution from ρ̂, T̂ , T̂v and Ŷs. Nevertheless, the difference of the growth-rate
decomposition between the two is negligible. The traditional type-I (z) and type-II (y)
modes are recognized. In the adia-CPG case, the type-I mode has the largest growth rate.
However, the newly defined type-IV modes are observed to have the largest N factors in
the TCNE benchmark and adia-TCNE cases. Energy budget analysis indicates that the
type-IV modes are located at the downwash region of the vortex and receive a combined
contribution from the wall-normal (on top and trough of the vortex) and spanwise (in the
downwash region) production terms. As compared with the CPG case, the destabilization
of the type-IV modes in the TCNE cases is attributed to the stronger spanwise shear
at the downwash region, as well as the thinner boundary layer due to the temperature
decrease and the destabilized primary instability. Moreover, the type-IV modes are slightly
stabilized with wall temperature increase.

Future efforts, including receptivity, DNS and experimental researches, are expected
to further clarify the roles of different secondary instability modes downstream towards
turbulence.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.607.
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