
J. Austral. Math. Soc. Ser. B 29(1988), 410-429

THE MODULATION OF SHORT GRAVITY WAVES
BY LONG WAVES OR CURRENTS

R. GRIMSHAW1

(Received 6 May, 1987; revised 28 July 1987)

Abstract

The modulation of short gravity waves by long waves or currents is described for
the situation when the flow is irrotational and when the short waves are described
by linearised equations. Two cases are distinguished depending on whether the
basic flow can be characterised as a deep-water current, or a shallow-water current.
In both cases the basic flow has a current which has finite amplitude, while in
the first case the free surface slope of the basic flow can be finite, but in the
second case is small. The modulation equations are the local dispersion relation
of the short waves, the kinematic equation for conservation of wave crests and
the wave action equation. The results incorporate and extend the earlier work of
Longuet-Higgins and Stewart [10, 11].

1. Introduction

Since the pioneering work by Longuet-Higgins and Stewart [10, 11] on the mod-
ulation of short gravity waves by long waves or currents, there has been a large
amount of research done, much of which has been summarised in texts such as
those by Whitham [18], Le Blond and Mysak [9], and Mei [14]. However, at least
in the early stages of the development of this topic, the unifying nature of the
general concepts of wave kinematics and wave action conservation were not fully
appreciated. Hence, at a time when remote sensing techniques have given a new
importance to short-wave modulation, it seems useful to re-examine and review
this topic. Of course, short-wave modulation in the ocean is likely to be signif-
icantly affected by wave breaking and by the presence of wind-induced shear in
the surface layer of the ocean. Although these aspects will not be addressed here,
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[2] Modulation of short gravity waves 411

it still seems worthwhile to examine the modulation of short waves riding on a
basic irrotational flow, if only to clarify and summarise this case before further
extensions are contemplated. We shall show that there are two distinct cases to
be considered, depending on whether the basic flow can be classified as a deep-
water current, or a shallow-water current. This distinction, based on whether
the vertical scale of the basic flow is comparable with the horizontal modulation
scale or is much shorter, has not generally been recognised and results in some
differences in detail between the two cases. Further, we shall show that some of
the existing results in the literature can be generalised, and in some cases hold
under wider hypotheses than the original derivations would have suggested.

In the remainder of this introductory section we shall present the basic equa-
tions of motion and the wave action conservation equation. Then in Section 2
we develop the theory for the case when the basic flow is a deep-water current
and in Section 3 describe some applications. In Section 4 we describe the other
case when the basic flow is a shallow-water current.

The equation of motion for an inviscid incompressible fluid of constant density,
when the flow is irrotational, can be described in terms of a velocity potential
0(x, z, t), where x is a horizontal co-ordinate, z is the vertical co-ordinate and t
is the time. The fluid velocity is (u, w) where u is horizontal and w is vertical.

u = V<j>, w = 0 2 , (1-la)

and
V20 + 0 « = O, (1.1b)

where V denotes the horizontal gradient operator. The free surface is denoted
by z — f(x, t), and the rigid bottom boundary by z = —/i(x). The boundary
conditions are

ft + u.Vf = w, on z = f, (l-2a)

g^ + l^.fi + ^(\u\2 + w2) + <t>t^-P0, onz = f, (1.2b)

and
w + u.V/i = 0, on z--h, (1.2c)

where

Here fj is the unit normal to the free surface, while g is the acceleration due to
gravity, 7 is the surface tension coefficient and Po is an applied surface pressure.

To obtain the wave action conservation equation, we first suppose that
0(x,z,t;0) and f(x,t\9) depend smoothly on a phase parameter 0 and are pe-
riodic in 6, with period 2w. We then define < > to be an average over
one period in 0. In practice the averaging operation can be identified as a local
average over one wavelength, or over one period in time. For a general account of
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this procedure see Andrews and Mclntyre [1, 2] or Grimshaw [7]. By multiplying
(1.1b) by (j>e, it follows that

Q ^ ) =0, (1.3a)

and
+ (6gd>2)z = n. (1.3b)

This last equation is the local form of wave action conservation. A more useful
expression is the global form obtained by first integrating (1.3a) with respect to
z, applying the boundary conditions (1.2a,b,c) and then averaging. The result
is

>lt + V.B = 0, (1.4a)

where
A = <^(x,f,<)>, (1.4b)

and

B = /J* cj>eV<t>dz\ - ikeVH). (1.4c)

Here rjn is the horizontal component of f/ (1.2d). These equations are formally
exact, with no necessary restriction on either amplitude or length scale. In the
absence of surface tension (7 = 0) these equations can be shown to be equivalent
to those obtained by Whitham [17, 18] using an averaged variational principle,
but the form given here appears not to be very widely known.

2. Basic flow is a deep-water current: formulation

Let e be a small parameter which measures the ratio of the short-wave wave-
length to the length scale of the basic wave. Then, to describe the basic flow,
we introduce the stretched space and time variables X and r by

X = ex, Z = ez, T = el/2t. (2.1)

The basic flow is then described by a velocity field e~1/2U(X, Z,r),
£~x/2iy(X, Z, r), a velocity potential e~3/2$(X, Z,r), and a free surface dis-
placement e - 1 5 (X, Z, r). On substituting these variables into (l.la,b) it follows
that

U = V x $ , W = $z, (2.2a)

and
V?<$ + $zz = 0, (2.2b)

while the boundary conditions (1.2a, b, c) become

DS/DT = W, on Z = S, (2.3a)
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[4] Modulation of short gravity waves 413

+ W2) = -.Po, onZ = S, (2.3b)

W + U . V X # = 0, on Z = -H, (2.3c)

where
D/DT = d/dr + U. Vx, (2.3d)

and
n = cos 0(1, - V X 5 ) , cos/? = (1 + |V X S| 2 ) - 1 / 2 . (2.3e)

Here the depth h has been rescaled to e~1H(X). Note that n is the unit normal
to the free surface and /3 is the angle between the normal to the free surface
and the vertical. PQ is an applied surface pressure. Equations (2.2a,b) and
(2.3a,b,c) describe a finite-amplitude deep-water wave or current. Relative to this
basic flow we now introduce the perturbed velocity field u(x, z, t), the perturbed
velocity potential 0(x,z, t) and the perturbed free surface displacement f(x, t).
Note that the total velocity field is e~i/2\3 + u, with similar expressions for
the total velocity potential and the total free surface displacement, and that the
variables u, <j> and f now represent the perturbed fields, rather than the total
fields as in Section 1. On substituting the total fields into (l.la,b) it follows that

u = V(f>, w = <j)z, (2.4a)

and

The

V20 + <j>zz = 0.

linearised free-surface boundary conditions

D$/Dt + u.VyiS + £1^2fVx.Uo = W,

-yV.{cos/?(Vf - (n.Vf)n)} + (D/Dt)(f>{x.,e

(1.2a,

on.

• C "f

b) are

) = 0, on ^ = i

(2.4b)

(2.5a)

(2.5b)
where

U0 = U(X,S,r), (2.5c)

go = g + {D2S/DT2), (2.5d)

and
D/Dt = d/dt + (T^Uo.V. (2.5e)

Note that Uo is the basic horizontal current evaluated at the free surface, and
go is the effective vertical acceleration due to gravity experienced by the short
waves. The bottom boundary condition (1.2c) becomes

ffi + u .Vx/f = 0, on z = -e~lH. (2.6)

As a preliminary to solving these equations, we introduce the new coordinate

T) = z-e~1S (2.7)
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in place of z. We prefer the non-orthogonal curvilinear co-ordinate system (x, r\)
to the more obvious curvilinear co-ordinate system which has one co-ordinate
normal to the free surface, as the latter would necessitate the introduction of
intrinsic co-ordinates on the free surface. We believe it is more convenient to
retain the conventional Cartesian co-ordinates to describe the free surface. In
effect we are choosing to parameterise the free surface with the horizontal Carte-
sian co-ordinates X = (X, Y) rather than with a pair of co-ordinates intrinsic
to the free surface, say a = (ffi,^). However the free surface can always be
represented in the form X = X(<r) and then a transformation of variables from
X <-> a would enable all our results (e.g. (2.13), (2.22a) below) to be expressed
in terms of a. Proceeding, Laplace's equation becomes

V2tf> + sec2 /? &,„ - 2V X 5 .V^ - eV^S<j>v = 0, (2.8)

while the free-surface boundary conditions (2.5a, b) become

D$/Dt + V<£.VXS + e1/2fVx.Uo = sec2 /? «£„, on r, = 0, (2.9a)

0o? - TV.{COS/?(V? - (n.V?)n)} + D<f>/Dt = 0, on r\ = 0. (2.9b)

The bottom boundary condition (2.6) becomes

(1 - VxS.Vxi/)</>r, + V<j>.VxH = 0, onrl = -e-1{H + S). (2.10)

Next we seek solutions which describe modulated waves. Thus we put

f = a(x, r) exp(i$) + *, (2.11a)

0 = /(x,77,T)exp(i0)-|-*, (2.11b)

where
0 = (l/e)e(X,r). (2.11c)

The local frequency w, and local wavenumber K are defined by

w = -e-1 /2eT, « = v x e , (2.12)

and satisfy the kinematic equation

KT + e1/2Vxc; = 0, (2.13)

which describes conservation of wave crests. Before proceeding, we note that
the ansatz (2.11a, b, c) excludes the possibility of an instability in the basic
wave. It has been shown by Hasselmann [8] that high wavenumber instabilities
of a periodic basic wave are due to an iVth order resonance, where N is a large
integer. In our terminology, N scales with e"1/2 and the instabilities have a
growth rate of O(aN) on the t-time scale, and a wavenumber bandwidth of
O(aN), where a is a measure of the basic wave amplitude. In the asymptotic
limit e-»0, these instabilities are insignificant and are ignored here.
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[6] Modulation of short gravity waves 415

On substituting (2.11b) into Laplace's equation (2.8) we find that

sec2 /?/„„ - 2iK.VSfr, - n2f + O(e) = 0, (2.14)

where K = |K|, and here, and henceforth, we have omitted the subscript X from
the horizontal operator V since, from this point on, no confusion should arise.
The solution of (2.14) is

/ = 6(X,r)exp(A,?) + O(e), (2.15a)

where
A = (IK.VS + K') COS2 0, (2.15b)

and
K' = {K2 sec2 0 - ( K . V S ) 2 } 1 ' 2 . (2.15C)

The boundary condition (2.10) is not satisfied by this solution, but the error
involved is only O(exp{—Ae-1[.ff+ S]}), and can be ignored since K' is positive.
In interpreting this solution we recall that n (2.3e) is the unit normal to the
interface, and put

v = {K - n(*c.n)}(K
2 - (K.n)2)-1/2, (2.16a)

and
KS = K.V = K' COS /?. (2.16b)

Here v is the unit vector tangent to the interface in the place of n and K, and so KS
is the component of the wavenumber along the interface. Further, substituting
(2.15a) into (2.11b), it follows that

<f> = b{X, T) exp{(ie'/e) + K'T) COS2 0} + * + 0{e), (2.17a)

where
e ' = 6 + erin.VS cos2 /?, (2.17b)

is the total phase. It can now be shown that

(Ve',Q'z) = KSv, on 77 = 0, (2.18)

and is oriented along the interface with magnitude K§ as expected. Also

d/dn{K'rj cos2 /?} = KS, on r? = 0, (2.19)

which confirms that the rate of decay normal to the interface is KS .
The expressions (2.11a) and (2.15a) are now substituted into the boundary

conditions (2.9a, b). It follows that

-iaa = K'b + O(el/2), (2.20a)

(g0 + -ycos3 0 Kl2)a = iab + O(e1/2), (2.20b)

where
a = u)-e-1/2K.U0. (2.20c)
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Hence we obtain the local dispersion relation

<7
2 = 3o«/ + 7COS3/3/c'3, (2.21)

which, together with the kinematic equation (2.13) determines the variation of
the phase 6 . Note that the leading order term in the frequency w is the Doppler-
shift term which scales with e~ll2, rather than the intrinsic frequency a, which
is G{\). These results agree with those of Fhiliips [16], who considered the
case when the basic flow is steady and two-dimensional. Note that in this case
«2 = K'COS/3 — {k2 cos2/? + I2}1/2 where R = (k,l) and the basic flow is in
the x-direction. The local dispersion relation (2.21) is clearly recognisable as
the deep-water gravity wave dispersion relation, since go(2.5d) is the effective
acceleration due to gravity, and from (2.16) /c'cos/3 is the effective wavenumber
magnitude. In Section 3(a) we give more details of this special case.

The amplitude variation is now determined by considering the higher-order
terms in (2.14) and (2.20a, b). The resulting analysis is quite lengthy but routine,
and the details are omitted. The result is

DA/DT + AV.Uo + £1/2V.(VA) = O{e)\ (2.22a)

D/Dr{asga) + e1/2V.V(arga) = E1/2{K'/O)M + O(e), (2.22b)

where
A = (2<r/K')\a\2, (2.22c)

and
V = VK<r. (2.22d)

Thus V is the intrinsic group velocity, and is given by

V = (2aK')-1i9o +37«/2cos30)(Ksec2/?- ( K . V S ) V S ) . (2.23)

We note that V is horizontal and parallel to the horizontal component of u, but
is not necessarily parallel to K. Also the magnitude |V|, and its components Y.v
and V.n are given respectively by

|V| = (2a/c')~1(ffo + 37/c'2cos3/?)(«;'2sec2/?- ( K . V 5 ) 2 ) 1 / 2 , (2.24a)

V.i/ = |V|(1 - (K.VS)2 COS2 /? (/c')"2)1/2, (2.24b)

and
V.n = - | V | ( K . V S ) COS/3 (K'2 sec2 /3 - (»c.V5)2)-1/2. (2.24c)

A is the wave action density to leading order, and may be computed from (1.4b).
Indeed the simplest derivation of (2.22a) is to use the wave action equation (1.4a),
with A and B computed to leading order from (1.4b, c). However (2.22b), which
gives phase information, cannot be computed from the wave action equation, and
requires the more detailed analysis from (2.14) and (2.20a, b). The argument of
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a can be regarded as an O(e) correction to the phase O (2.11c). The 0
term in (2.22b) is given by

M = {2K'2 cos4
 P)-1{K.V(COS? P K.VS) - VS.V(/c2 cos2 /?)}

The wave action equation (2.22a) can be recast in terms of wave energy E,
where

E = cA = 2{go + icos3l3 /c/2)|a|2. (2.26)

Substituting (2.25) into (2.22a) we find that

{ { o ) { / ) e o } =O(e). (2.27)
a

Here (D/Dr)e denotes the derivative of a (2.21) with both n and Uo held fixed,
that is the derivative with respect to the dependence of a on D2S/DT2 and VS.
From the second to last term in (2.27) we can identify EKVO'1 as a radiation
stress tensor. The last term in (2.27) is atypical, in that it cannot generally be
expressed in the form of a stress tensor acting on a velocity gradient. It vanishes
in the limit when the basic flow has a small free surface slope (/? —* 0). In this
same limit (2.27) agrees with the wave energy equations derived by Longuet-
Higgins and Stewart [10, 11]. Further details of this limit will be described in
the next section.

3. Basic flow is a deep-water current: applications

The equations governing the modulation of the short waves are the kinematic
equation (2.13) for the conservation of wave crests, the Doppler-shift expression
(2.20c), the local dispersion relation (2.21) and the wave action equation (2.22a).
The scaling for the basic flow introduced at the beginning of Section 2 shows
that the basic flow has an amplitude e~l and a length scale e~l so that /?,
the slope of the free surface, is generally finite and scales with 1. The short
waves have a characteristic amplitude as and a characteristic wavenumber KS,
so that the slope of the short wave is O(asKs)- Since the equations (2.5a, b)
for the short waves have been linearised, and the derivation of the modulation
equations requires the retention of O(e) terms, the modulation equations are
valid for as^s <& e. The subsequent discussion will be divided into two cases,
depending on whether /?, the slope of the free surface for the basic flow, is finite
or infinitesimal {O(e1/2)).
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(a) /? finite: In this case the basic flow retains the scaling introduced in Section
2. The modulation equations become

dn/dr + V(«.U0) = -e1/2V<r, (3.1a)

dA/dr + V.(\J0A) = -e1/2V.(VA). (3.1b)

Higher-order terms will not be displayed henceforth. If the O(e1^2) terms on
the right-hand side are omitted, these equations are particularly simple, as then
the only feature of the basic flow that is needed is Uo, the horizontal current
evaluated at the free surface. Equations (3.1a, b) then determine K and A
respectively; with K known the local dispersion relation determines a. These
reduced equations are valid provided only that as^s ^ e1^2. However, in
general it is useful to retain the 0{e1l2) terms in (3.1a, b) as these are the terms
which contain V, and hence the information on the intrinsic speed of propagation
for the short-wave modulations.

Now let us consider the special case when the basic flow is a two-dimensional
progressing wave of speed c. Thus H is constant, and

Uo = U(X - cr)i, S=S{X-CT) and P0 = P0(X-CT), (3.2)

where i is a unit vector in the X-direction. Subsequent simplifications in the
basic flow equations allow us to simplify (2.21) to

a2 = KS cos/3 {g+{U- c)2SXX - SxPox) + 4 - (3-3)

where we recall that KS is the wavenumber component along the interface. If
K = (k, I) then from (2.15c) .and (2.16) it follows that

KS = {k2 cos2 0 + I2}1'2. (3.4)

Also we note that Sxx cos3 /? is the curvature of the free surface of the basic
flow. If we seek solutions of (3.1a, b) which are functions only of (X — CT) then
it follows that / is constant, and

k{U -c) + ex/2a = constant, (3.5a)

A{{U -c)+ e1/2V} = constant, (3.5b)

where V = V.i is the x-component of group velocity. For the case when the
basic flow is a free wave (Po = 0)> these results agree with those of Phillips [16]
who derived them using more heuristic and physical arguments. In making the
comparison, note that the wavenumber component along the interface is /eg, that
in a frame of reference moving with the flow, (U — c) sec /? is the basic current
along the interface, and that here \a\ is the wave amplitude measured vertically,
whereas in Phillips [16] the wave amplitude is measured normal to the interface.
The present results thus extend those of Phillips [16] to include forced waves
(Po ^ 0)- Longuet-Higgins and Stewart [11] derived analogous equations to (3.3)
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[10] Modulation of short gravity waves 419

and (3.5a, b) for the case when the basic flow is a steady current (c = 0), with no
applied forcing (Po = 0), under the additional restriction that the free-surface
slope is small (/? —• 0). A noteworthy special case of our results is when the basic
flow is a steady forced current, with no surface displacement. Thus c = 0, S = 0,
and from the basic flow equations (2.3a-e), W = 0 at S = 0 and Po = -U2/2.
It follows that then /? = 0 and (3.3) is replaced by a2 — gnS + 7« | . Equations
(3.5a, b) then agree exactly with the results of Longuet-Higgins and Stewart
[11] indicating that their results are also valid for this class of forced current.
In general, however, equations (3.5a, b) must be used with the full dispersion
relation (3.3). Equation (3.5a) is an algebraic equation which determines k (or
KS), and then A is found from (3.5b), with \a\ then given by (2.22c). Since
Phillips [16] and more recently Longuet-Higgins [12, 13], have given an extensive
discussion of the solutions when Po = 0, w e shall not discuss this case further.

Another special case of some interest occurs when the basic flow is a spatially-
varying steady current so that Uo = Uo(X). The solution of (3.1a) is then

Uo.Ve + e1 /V = wo, (3.6)

where uo is a constant, and we recall from (2.12) that K = V0. Ignoring the
O(e1^2) term in (3.6), the solution of (3.6) is G = u)os + 6o(ip) where s is a time-
like variable along the particle trajectories of the basic flow. These are described
by X = X(s,V0) where ip is a co-ordinate which labels each trajectory. Also
8o (ip) is the initial phase on each trajectory. Solving for s and tp as functions of
X then gives 0 = 0(X). Again ignoring the O(e1^2) term the solution of (3.1b)
is

A3 = constant, (3.7)

where J is the Jacobian of the transformation from (s, rp) to X. In the special
case when Uo is non-divergent (i.e. V.Uo = 0), we can identify xp as a stream
function for Uo, and then J = 1; the wave action density A is then constant
along the streamlines of the basic flow.

(b) P is O{e1/2): We shall now discuss the case when the basic flow has a
small free-surface slope. This could be achieved simply by letting /? —> 0 in the
previous results. However, if f3 —• 0 while the current Uo remains finite, then it
is apparent from (2.3b) that the basic flow generally requires a pressure gradient
to be maintained. In order to avoid this restrictive situation we shall adopt a
rescaling of both 5 and Uo, thus we put

S = e^S, $ = e1'2® (3.8a)

so that

U = e1'2^ = £1 / 2VX£, W = e1/2W = el>2Sz. (3.8b)
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, Z) satisfies Laplace's equation (2.2b) and the boundary condition (2.3c),
while the free-surface boundary conditions (2.3a, b) become

ST = W + 0{e1/2), on Z = 0, (3.9a)

9S + $T = -Po + O(e1/2), on Z = 0, (3.9b)

where Po = £1^2Po- Thus, to O{e1/2), the basic flow satisfies the linearised
equations for surface gravity waves. With this scaling /? is O(e1/V!), but it should
be noted that the basic flow velocity field is finite, since we recall that the
original velocity field was e"1/2!!, and this is now U. Prom (2.15c) we see that
K' = K + O(e) and the local dispersion relation (2.21) reduces to

a2 = gK + 1K
3 + £

1/2KSTT + O(e), (3.10)

while (2.20c) becomes,
a = w-K.\J0 + O{e1/2), (3.11a)

where
U0 = U(X,Z = 0,r). (3.11b)

Further, equations (3.1a, b) become

dn/dr + £ 1 / 2 V ( K . U 0 + a) = O{e), (3.12a)

dA/dr + e1'2 V.((U0 + V)A) = O{e). (3.12b)

The modulation equations (3.12a, b) can now be solved by expanding with
respect to e1/2. Thus we put

K = KO(X) + e1/2K! + O{e), (3.13a)

A = Ao(X) + e1'2A1 + 0(e). (3.13b)

Here KO(X) and Ao(X) are determined from initial conditions. It follows that

dKi/dr + V(/cO-Uo + ^o) = 0, (3.14a)

dA1/dT + V.{{Vo + Vo)Ao) = 0, (3.14b)

where

4 = 9*0 + 7«o. (3-14c)

and
Vo = VKoa0. (3.14d)

Elquations (3.14a, b) determine «i and Ai respectively. The wave amplitude a
is found from (2.22b, c). We put

\a\ = 60(X) + £l/Hi + O(e), (3.15a)

+O(e) (3.15b)
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where
J4O = 2oo&o/'co> (3.15c)

while bo(X) is determined from the initial conditions. It follows that

26i/6o = (A1/A0) — (<7i/<7o) + Ki-Ko/Koi (3.16a)

where
ox = V0.Ki + (KO/2<TO)STT, (3.16b)

and

As an illustration of the solution procedure, let us again suppose that the
basic flow is a two-dimensional progressing wave of speed c. Thus we put

tio = U(X-er)l, S = S(X-CT),

and
Po = Po(X - CT). (3.17)

If we assume that «o = (ko, lo) and Ao are constant, and seek solutions of (3.14a,
b) which are functions of (X — CT) above, it then follows that h — 0, and

kx/ko = U/c, and A1/A0 = U/e. (3.18)

Further, 61, and o\ are then given by (3.16a, b) respectively, and 6x = 0. If
it is further assumed that the basic flow is a free wave (that is, Po = 0) with
wavenumber eL, then

U/c = {coth LH)LS, (3.19)

where we recall that £~XH is the fluid depth, here assumed to be constant. It
follows that

2bA =U L+ k%(9 -1$) ^gtanh* LH\ (

bo c ( 2KQ (g + 7/c(j) {9 + lKo) J
and

= — 1 ~i "Jx—% 5— i • (3.20b)

°o c [ \9 + 7Ko) ^o \9 + T^o) J
For the case when the modulation is also in the X-direction (fo = 0), there is no
forcing (PQ = 0) and in the absence of surface tension (7 = 0), these results for
fci and 61 agree with those of Longuet-Higgins and Stewart [10]. However, it is
worthwhile noting that the present results are valid when asKs 4C £ where we
recall that a s Kg is a measure of the slope of the short waves and e is the ratio of
the short-wave wavelength to the long-wave wavelength, whereas the derivation
by Longuet-Higgins and Stewart [10] requires both as^s < e and a^Ks < e,
where ax, is the amplitude of the long wave. Here, of course, aL scales with
e"1/2, although the long-wave slope (that is /?) is O{exl'1).
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A simple extension of the above results is for the case when the short waves
are described by a continuous narrow-banded spectrum at leading order, instead
of being described by a discrete mode. In physical space we model this situation
by again supposing that initially «o is a constant, but that 60 and hence AQ are
functions of X. Then K is again given by (3.13a) with *i = (&i,0) and ki given
by (3.18). However, (3.13b) is now replaced by

A = A0(X - el'2V0T + e1/2£) + e1/2A1 + O(e), (3.21a)

where
Vb = V0.i = (g + ^Kl)ko/2aoKO. (3.21b)

A simple calculation now shows that, to leading order, Ai is again given by
(3.18), b is found from (3.16a), and f, given by

£T + U(X - CT) = 0, (3.22)

measures a displacement of the centre of the wave packet. For the case when the
basic wave is a free wave (that is PQ = 0) with wavenumber eL, the solution of
(3.22) is

Z = -Sx(LtarihLH)-1. (3.23)

This last result agrees with that recently obtained by Craik [4] who used a
completely different derivation, based on long-short wave interactions described
in spectral space. While this latter approach can also, in principle, obtain results
for wide-band spectrums as well, it appears to be immensely more complicated
algebraically than the present theory.

Finally we note that the results (3.18) or (3.21a, b) can be expressed in a
slightly more general form directly from (3.12a, b). With the basic flow given by
(3.17), and k = (k,l), it follows from (3.12a) that I is constant, and k is given
by

—fee + e1/2(kU + 0) = constant. (3.24)

The wave action density is then found from (3.12b), whose solution is

A{-c + e^2(U + V)} = constant on the rays, dx/dr = exl2{U + V), (3.25)

where V = V.i, is the X-component of the group velocity. Expanding with
respect to e1/2 then recovers the previous results.

4. Basic flow is a shallow-water current

The essential difference between this and the previous deep-water case is that
the vertical scale of the basic flow is 0(1) instead of scaling with e~1/2. Hence
we put

T = et, (4.1)
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and let the basic flow be described by the velocity potential e - 1 $(X, z,T), and
a free surface displacement 5(X,T). Note that, although we are using the same
notation, $ and 5 differ in scaling from the corresponding quantities introduced
at the beginning of Section 2. On substituting the velocity potential into (1.1b),
it follows that

£2VX$ + $ „ = 0, (4.2)

and so
* ( X , 2 , r ) = So(X,T) + 0(e2), (4.3)

and the horizontal velocity U(X, z, T) is given by

U(X, z, T) = U0(X, T) + O{e2), (4.4a)

where
Uo = Vx0$o- (4.4b)

To leading order the horizontal velocity is independent of depth. Although Uo
has been obtained by a different process here, it has essentially the same meaning
as the Uo defined in Section 2, that is it describes the surface current. On using
the bottom boundary condition, the vertical velocity W(X., z,T) is given by

W = -eV*.{(z + /i)U0(X, T)} + O(e3). (4.5)

The free-surface boundary conditions (1.2a, b) now give

ST + V X . ( £ > U O ) = 0 , (4.6a)

i |U0 | 2 = -.Po + 0(£2) (4.6b)

where
D = h + S. (4.6c)

Together with (4.4b) these equations are, to leading order, the nonlinear shallow-
water equations. Relative to this basic flow we introduce the perturbed velocity
field u, the perturbed velocity potential <j>, and the perturbed free-surface dis-
placement f. Equations (2.4a, b) again hold, but the linearised free-surface
boundary conditions (1.2a, b) are now

D$/Dt + eu.VxS + £?V.Uo = w, on z = S, (4.7a)

gS-iV2s + {D/Dt)<t>{x,S,t) = O{e2), on z = S. (4.7b)

Of course these equations are just (2.5a-e) but with a different scaling for the
basic flow. The bottom boundary condition (1.2c) becomes

w + £U.Vx/i = 0, on 2 = -ft(X). (4.8)

Next we seek solutions which describe modulated waves. Similarly to (2.11a-
c) we put

f = a(X, T) exp(i<?) + *, (4.9a)
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4> = f(X,z,T)exp(iO) + *, (4.9b)

where
0 = (l/e)9(X,T). (4.9c)

Note again that although we are using the same notation these expressions differ
in their scaling from the corresponding expressions used in Section 2. The local
frequency and wavenumber are defined by

u) = -eT, K = v x o , (4.io)

and satisfy the kinematic equation

KT + Vxw = 0. (4.11)

On substituting (4.9b) into Laplace's equation (2.4b), and using the bottom
boundary condition (4.8), we find that

' ^ > ^ | ^ + 0<*>- (4,2)

The free-surface boundary conditions (4.7a, b) then give

-ioa - K tanh KD b + O(e), (4.13a)

{g + 7/c2)a = tab + O(e), (4.13b)

where
a = u - K.U0. (4.13c)

Hence we obtain the local dispersion relation

<72 =(0 + 7/c2)Ktanh«;Z), (4-14)

which, together with the kinematic equation (4.11) determines the variation of
the phase ©. The amplitude variation is now determined by considering the
higher-order terms in (4.12) and (4.13a, b). Since this analysis is quite lengthy,
but routine, the details are omitted. The result is

dA/dT + VX.((UO + V)A) = O(e), (4.15a)

d/dT(arga) + (Uo + V).Vx(argo) = O(e), (4.15b)

where
A = 2a\a\2/{KtanhKD), (4.15c)

and
V = VKa. (4.15d)

Here A is the wave action density to leading order, and may be computed from
(1.4b). Indeed (4.15a) is most easily derived directly from (1.4a). However,
(4.15b), which gives phase information, cannot be computed directly from the
wave-action equation. These results (that is (4.11), (4.14), (4.15a-d)) are, of

https://doi.org/10.1017/S0334270000005919 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005919


[16] Modulation of short gravity waves 425

course, well known and can be obtained as a special case of internal or surface
waves propagating on a horizontal current (see, for instance Grimshaw, [6]). The
wave-action equation (4.15a) can be recast in terms of wave energy E, where

E = oA = 2{g + 1K?)\a\2. (4.16)

Substituting (4.16) into (4.15a), we find that

dE/dT + VX.((UO + V)E) + (£/a){K.(V.VU0) + Dda/dDV.V0} = O(e),
(4.17a)

where
ladaldD = {g + 7/c2)*2 sech2 KD. (4.17b)

In the absence of surface tension (7 = 0), equation (4.17a) is equivalent to
that proposed by Longuet-Higgins and Stewart [11]. The equivalence between
(4.15a) and (4.17a) was noted in the work of Whitham [17], Garrett [5] and
in Bretherton and Garrett [3]. From the last term in (4.17a) we can identify
£ ( B V + Dda/dDI)cr~1 as a radiation stress tensor.

The equations governing the modulation of the short waves are the kine-
matic equation (4.11a), the Doppler-shift expression (4.13c), the local dispersion
relation (4.14) and the wave-action equation (4.15a). The basic flow has a free-
surface slope of O(asKs)- Because of the neglect of the nonlinear terms in the
short-wave equations, the modulation equations are valid for asKs •C e. Note,
however, that the basic flow has a finite current Uo and a finite free-surface
displacement S. Longuet-Higgins and Stewart [10, 11] have given an extensive
discussion of the modulation of short waves by long waves, including the param-
eter regime we are now discussing. Hence we shall not give a detailed account
of the various applications of the modulation equations, but will confine our ac-
count to the same special case discussed in Section 3 when the basic flow is a
two-dimensional progressing wave of speed c. Thus h is a constant, and we put
(cf. (3.2))

Uo = U(X - cT)i, S = S{X - cT),

and
Po = P0(X - cT). (4.18)

If we now seek solutions of the modulation equations which are functions only
of X - cT, it follows that / is constant, and

k(U - c) + a = constant, (4.19)

where K = (fc,Z). Here c is given by (4.14) and depends, inter alia, on S (see
(4.6c)). The wave action density is given by

A{{U -c) + V} = constant, (4.20)

where V = V.i is the X-component of group velocity. The wave amplitude is
obtained from (4.15c).
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Although the expressions (4.19) and (4.20) are appealingly simple, they are
algebraically complex. In order to obtain explicit expressions for k and \a\, we
now make the further hypothesis that | 5 | < h (or \U\ < c). It follows that we
may put k = ko + ki, where ko is a constant, and \ki\ <& |fco|- From (4.19) we
can show that

( c - V b ) ( * i / * b ) = ( 1 + { h / k o c ) ( d a o / d h ) U ) + ••• , (4.21)

where OQ and VQ are a and V evaluated at ko, and da/dh is given by (4.17b). For
the wave amplitude we put |o| = bo + bi where 6o is a constant, and |&i| C bo.
From (4.15c) it follows that

2b1/b0 = (A./Ao) + (aj/ao) - 2^0^/(9 + 7*g) + • • • , (4.22a)

where

o \ = V o h + h { d a o / d h ) {U/c) + •••, (4.22b)

Next from (4.20) we can show that

(c - Vo)A1/A0 = U + Vi + • • • , (4.23a)

and

V i = ( d 2 a 0 / d k 2
0 ) k 1 + h { d 2 a o l d k o d h ) { U l c ) + ••• (4.23b)

For the case when the modulation is also in the X-direction (IQ — 0), there is no
forcing (Po = 0) and in the absence of surface tension (7 = 0) these results for
ki and 61 agree with those of Longuet-Higgins and Stewart [10].

A simple extension of the above results is for the case when the short waves
are described by a continuous narrow-banded spectrum at leading order, instead
of being described by a discrete mode. As in Section 3, we model this situation
by supposing that k is again given by (4.19), but that A is initially given by
AQ(X); the initial value for \a\ then follows from (4.15c). The expression (4.21)
for the wave-action density is now replaced by

A{(U-c) + V} = constant on the rays, dX/dT = U + V. (4.24)

For the case when | 5 | >C h, or |U| •C c, it follows as before that ko is a constant
and fci is given by (4.21). But Ao (and hence 60) is a function of X and (4.24)
reduces to

A = A0(X - V0T + 0 + Ai + • • • , (4.25a)

where

U + V1 + --- = 01 (4.25b)

while Ai is again given by (4.23a), and 61 is given by (4.22a). As in Section 3,
f measures a displacement of the centre of the wave packet.
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5. Summary and discussion

In this account of the modulation of short waves by long waves or currents,
two cases have been identified, depending on whether the basic flow can be
classified as a deep-water current, or a shallow-water current. In both cases,
the modulation equations consist of a local dispersion relation for the short
waves, the kinematic equation for the conservation of wave crests and the wave
action equation. The first two equations together determine the short-wave
wavenumber, and then the wave-action equation determines the wave amplitude.
One of the main differences between the two cases is that when the basic flow is a
deep-water current, the short waves are effectively in deep water (that is do not
feel the bottom) and their local dispersion relation (2.21) is strongly influenced
by the slope of the free surface of the basic flow, which is generally finite whereas
when the basic flow is a shallow-water current the short waves feel the bottom,
but the local dispersion relation (4.14) is not directly affected by the slope of
the free surface which is now small. Another main difference is that when the
basic flow is a deep-water current, this current is generally much greater than
the group velocity of the short waves, with the consequence that the kinematic
equation (3.1a) is dominated by the Doppler-shift term in the frequency, while
in the wave-action equation (3.1b), transport by the basic current dominates. In
contrast, when the basic flow is a shallow-water current, the kinematic equation
(4.11) and the wave-action equation (4.15a) adopt more conventional forms.

The applications described here can be regarded as extending the early work
of Longuet-Higgins and Stewart [10, 11] on the modulation of short waves by
a steadily progressing long wave, or by a steady current, both by clarifying the
range of validity of their results and by including the effects of surface tension,
and allowing for the basic flow to be forced by a surface pressure. In particular,
the results obtained here show that it is not necessary to assume that the long
wave has small amplitude, or that the basic current has small free-surface slope.
These restrictions were removed by Phillips [16], and more recently by Longuet-
Higgins [12, 13], and the present results agree with these authors, and indicate
several possible extensions. One of these is to the case when the short waves are
described by a narrow-banded spectrum, instead of a discrete mode (see (3.21a,
b) and (3.22)). Another is to the case when the short waves are modulated by a
spatially varying steady current (see (3.6) and (3.7)).

There are a number of limitations of the present work. One of these is the
restriction that the short waves be described by linearised equations. However,
as the work of Whitham [17, 18] indicates, a theory can be developed for finite-
amplitude short waves for the case when the basic flow is a deep-water current, in
which the modulation equations would be the local dispersion relation, the wave
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kinematic equation and the wave-action equation (Peregrine and Thomas, [15]).
For the case when the basic wave is a shallow-water current, these equations
would have to be supplemented by equations describing the wave-induced mean
flow (see, for instance, Andrews and Mclntyre [1, 2] and Grimshaw [7]). A
more severe restriction is that to irrotational flow, as the effect of shear in the
surface layer of the ocean is likely to be very significant for the modulation of
short waves. For the case when the underlying shear flow can be characterised
as a shallow-water current, this case has been discussed by Grimshaw [6] in a
more general context. However, the case when the underlying shear flow can
be characterised as a deep-water current has apparently yet to be considered.
Nevertheless, in spite of these limitations, it is to be hoped that this account will
be found useful in clarifying and summarising our existing understanding of the
modulation of short waves by long waves or currents.
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