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SUMMARY

A dengue vaccine is expected to be available within a few years. Once vaccine is available,
policy-makers will need to develop suitable policies to allocate the vaccine. Mathematical models
of dengue transmission predict complex temporal patterns in prevalence, driven by seasonal
oscillations in mosquito abundance. In particular, vaccine introduction may induce a transient
period immediately after vaccine introduction where prevalence can spike higher than in the
pre-vaccination period. These spikes in prevalence could lead to doubts about the vaccination
programme among the public and even among decision-makers, possibly impeding the
vaccination programme. Using simple dengue transmission models, we found that large transient
spikes in prevalence are robust phenomena that occur when vaccine coverage and vaccine efficacy
are not either both very high or both very low. Despite the presence of transient spikes in
prevalence, the models predict that vaccination does always reduce the total number of infections
in the 15 years after vaccine introduction. We conclude that policy-makers should prepare for
spikes in prevalence after vaccine introduction to mitigate the burden of these spikes and to
accurately measure the effectiveness of the vaccine programme.
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INTRODUCTION

Dengue is an RNA virus in the family Flaviviridae.
There are four serotypes of dengue virus, each of
which induces a specific antigenic response in humans.
Infection with any of the four serotypes can cause dis-
ease ranging from dengue fever (DF) to dengue
hemorrhagic fever (DHF) and dengue shock syn-
drome (DSS), in order of increasing severity [1].
Infection with a serotype provides lifelong immunity
to that serotype and an increased risk for the severe

forms of disease (DHF and DSS) during subsequent
infection with a different serotype [2]. Dengue infec-
tion has been recognized in over 100 countries: DF
and DHF are important public-health problems, es-
pecially in the tropics and subtropics, where nearly
2·5 billion people are at risk of infection [1]. An esti-
mated 50 million cases of DF occur every year, includ-
ing 500 000 hospitalizations for DHF [3].

Despite the expansion in the geographical range of
the virus over past four decades [4], there is no dengue
vaccine licensed for use currently. Dengue vaccine de-
velopment is an area of active research: significant
advances have occurred in recent years and several
vaccine candidates are showing promise in clinical stu-
dies [5]. The most advanced vaccine candidate showed
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efficacy of 30% and protection against three of the
four serotypes of dengue [6]. With several dengue vac-
cine candidates progressing through clinical trials, a li-
censed dengue vaccine is expected to be available in
less than 10 years [3].

Once the vaccine becomes available, policy-makers
will have to decide how to best allocate it. As a result,
it is imperative to carefully examine the effects of
vaccine-allocation policies. Mathematical models of
dengue transmission predict complex temporal pat-
terns in prevalence, driven by seasonality in mosquito
abundance [7], and may include a transient period
immediately after vaccine introduction where preva-
lence can spike higher than in the pre-vaccination
period. An increase in infections, however brief, can
raise doubts about the vaccination programme, while
the longer-term outcome may be highly favourable.
A temporary increase in infections might lead to
public doubts and refusal to use the vaccine or even
policy-makers ending the vaccination programme
altogether. Moreover, these spikes can also pose
serious problems by overwhelming resources like
available hospital beds. Thus, investigating short- and
long-term effects of the vaccination introduction is
important.

In the present study, we found that simple dengue
transmission models frequently predict large transient
spikes in prevalence in the years after vaccination is
begun. The presence of these spikes was highly

sensitive to the level of vaccination, the efficacy of
the vaccine, and the timing of the vaccination pro-
gramme. Despite the presence or absence of transient
spikes, vaccination reduced dengue infections when
averaged over the first 15 years after vaccine introduc-
tion and when averaged over the very long term.

METHODS AND APPROACH

Here we briefly describe the mathematical models for
dengue transmission that we used in this study. See
Appendices A–C for detailed descriptions of the
models.
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Fig. 1. Diagram of the main model. U denotes unvaccinated individuals, while V denotes vaccinated. S1 and S2 are
individuals susceptible to primary and secondary dengue infection, respectively. I1 and I2 are individuals infected with
primary and secondary infections, respectively. R represents individuals recovered from secondary infection and immune
to further infections. See Table 1 for definition of the other symbols.

Table 1. Parameters of the dengue models

Parameter Definition Values

β Transmission parameter (yr−1) 400
ε Seasonal-forcing amplitude 0·1
B Constant birth rate (yr−1) 20/1000
μ Natural mortality rate (yr−1) 20/1000
γ Recovery rate (yr−1) 365/7
σ Susceptibility reduction for

secondary infection
3/4

p Proportion of infants vaccinated (0–1)
v Vaccination rate for rest of

population
(50)

ϕ Vaccine efficacy (0–1)
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We developed standard SIR-type deterministic
dengue models to explore the short- and long-term ef-
fects of vaccine introduction. In the models, the popu-
lation was divided into unvaccinated and vaccinated
people, and then each of these groups was further div-
ided by infection history (Fig. 1). In the main model,
an individual with no prior dengue infection (state S1)
can have a primary infection from any serotype
of dengue (I1), recovery from which provides the indi-
vidual with lifelong immunity to that serotype (S2).
The individual can then acquire infection from any of
the remaining three serotypes, and enter the
secondary-infection class (I2). Third or fourth infec-
tions from dengue are very rare [8], so we assumed
that an individual recovering from secondary infection
becomes immune to all serotypes (R).Denguemortality
in humans is at most 1–2% [9] and is thus ignored in our
model for simplicity. As we are only interested in infec-
tions in humans,wedid notmodelmosquito population
explicitly [10]. We used model parameters consistent
with the literature, along with a small level of seasonal

forcing of transmission to capture seasonal oscillations
in mosquito population size [11].

We modelled the vaccine as having efficacy ϕ at pre-
venting infection. The vaccination programme was
modelled as having two possible components: one
component vaccinates a proportion p of infants, and
the other component vaccinates people in the general
population at rate v. For simplicity, for the main
results we used only vaccination of infants (v= 0).

To simulate vaccine introduction, we computed a
solution to the model with no vaccine (p= 0) from ar-
bitrary initial conditions until it converged to regular
periodic oscillations (a stable limit cycle, in mathemat-
ical terms [12]). From a new initial point on this per-
iodic solution, we then computed the solution to the
model with vaccine introduced (p> 0).

RESULTS

The model prevalence converged to regular periodic
oscillations, with or without vaccination (e.g. Fig. 2).

(a)

(b) (c)

Fig. 2. Simulated dengue prevalence after vaccine introduction. Starting at year t = 0, we assume 78% of infants are
vaccinated, i.e. p= 0·78, with a 30% vaccine efficacy; ϕ= 0·3. The black curves are prevalence after vaccine introduction,
while the grey curves are the prevalence had vaccine not been introduced. (a) Shows prevalence for 15 years after vaccine
introduction; (b, c) show only the first and last 15 years of this period. See Appendix A for model and parameter
definitions.
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Without vaccination, prevalence oscillates with a per-
iod of 2 years. The perturbation caused by the introduc-
tion of vaccine results in a transient period where the
prevalence has not yet converged to periodic oscilla-
tions. During this transient period, large spikes can
occur, to levels above those present before the vaccine
was introduced, and this transient period may last
many years.

For example, vaccinating 78% of infants at 30%
vaccine efficacy results in an initial period of about
60 years when prevalence can spike more than twice
as high as before vaccine introduction (Fig. 2). After
the transient period, prevalence converges to annual
oscillations with a smaller maximum than in the
2-year oscillations prior to vaccine introduction
(Fig. 2c). By contrast, vaccinating 90% of infants
results in a transient period of about 70 years, where
prevalence can spike more than three times as high
as before vaccine introduction, and prevalence then
settles down to 3-year oscillations with a higher maxi-
mum than before vaccine introduction (Fig. 3).

These two examples show that the effectiveness of a
vaccination programme may differ depending on

exactly what is evaluated. Effectiveness may consider
individual points in time (e.g. the height of the spikes
in prevalence) or periods of time (e.g. total number of
infections in a fixed period). In addition, effectiveness
may be evaluated over the period just after vaccine in-
troduction or, as is more convenient from a modelling
perspective, the period after the prevalence has con-
verged to periodic oscillations. To capture the transi-
ent period over many simulations, we considered the
transient period to be the first 15 years after vaccine
introduction. To quantify the severity of transient
spikes at any point in time, we calculated the maxi-
mum prevalence during first 15 years after introduc-
tion of the vaccine. To examine the effectiveness
over a period of time, we also calculated the total
number of infections during the first 15 years after
vaccine introduction. For the period after prevalence
has converged to periodic oscillations, we calculated
both the maximum prevalence and the mean preva-
lence per year.

To explore the transient spikes in prevalence, we
varied vaccine coverage (p), for low (ϕ= 0·3) and
high (ϕ= 0·7) vaccine efficacy (Fig. 4a). Large

(a)

(b) (c)

Fig. 3. Simulated dengue prevalence after vaccine introduction. The model and parameter values are as in Figure 2, but
with 90% of infants vaccinated, i.e. p= 0·9.
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transient spikes (i.e. above the pre-vaccine maximum
of about 2/1000) were present after vaccine introduc-
tion for both levels of vaccine efficacy. Moreover,
for the higher vaccine efficacy, large transient spikes
appeared at lower vaccine coverage.

By varying vaccine efficacy, we found that large
transient spikes occur particularly when vaccine
efficacy is neither very low nor very high (Fig. 5).
For 80% vaccine coverage, when vaccine efficacy is
below 30%, the perturbation caused by vaccine intro-
duction is insufficient to generate transient spikes. On
the other hand, when vaccine efficacy is higher than
97% at 80% vaccine coverage, vaccination quickly
reduces prevalence without large transient spikes.
Similarly, with 40% vaccine coverage, there are no
large transient spikes below 58% or above 96% vac-
cine efficacy.

Since prevalence oscillates with a period of 2 years
without vaccination, we varied the time of vaccine
introduction over the 2-year period (Fig. 6). The pres-
ence or absence of large transient spikes after vaccine
introduction is highly sensitive to the time of vaccine
introduction.

Despite the presence of large transient spikes in
prevalence, the total number of infections over the
first 15 years was lower with vaccine than without in
all of the simulations we performed (Fig. 4b).
However, we cannot rule out that the initial burden
may be higher in some cases, especially over shorter
time spans than 15 years. Moreover, higher vaccine
efficacy yields a higher drop in the initial burden at
constant vaccine rates. Thus, although the presence
of large transient spikes may pose immediate prob-
lems by overwhelming the resources, over a 15-year
period, vaccination reduces infections.

After the transient period caused by vaccine intro-
duction, prevalence converges again to a regular per-
iodic oscillation, but the oscillation may have a
different period and the maximum prevalence may
be lower or higher than prior to vaccine introduction
(e.g. Figs 2c, 3c). In all of our simulations, we found
that in the long term, the mean annual incidence
decreased as vaccine coverage increased (Fig. 4c).
Although some vaccine introductions did lead to long-
term prevalance with a higher maximum, their period
was longer, so that the mean over many years was

(a)

(b)

(c)

Fig. 4. Effectiveness of the vaccination programme at different levels of coverage. (a) Maximum prevalence in the first 15
years after vaccine introduction. (b) Total number of infections over the first 15 years after vaccine introduction. (c)
Long-term mean annual incidence.
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always lower than without vaccine. Moreover, as
expected, long-term mean annual incidence was
lower for higher vaccine efficacy.

The model also showed large transient spikes in
prevalence when we modelled vaccination pro-
grammes in the whole population rather than just
infants (p= 0 and v> 0) and vaccination programmes
that combine the two (p> 0 and v> 0). We also tested
simpler and more complex dengue models. The sim-
pler model assumed that there are no secondary infec-
tions, so that individuals who recover from their first
infection move directly to the recovered class
(Appendix B). Our more complex model included a
period of short-term cross-protection after primary in-
fection [13] (Appendix C). Both models exhibited the
potential for large transient spikes (Fig. 7).

DISCUSSION

Using mathematical models of dengue transmission,
we found that vaccine introduction may lead to a tran-
sient period when infection prevalences spike higher
than in the pre-vaccination period. These spikes in in-
fection prevalence may pose serious problems by

overwhelming health resources like hospital beds, as
well as creating doubt about the efficacy of the vacci-
nation programme. In our models, the presence of
large spikes required that vaccine coverage and vacci-
nation efficacy were not both very low or both very
high. The occurrence of large transient spikes for
lower vaccine coverage and higher vaccine efficacy
suggests that a sufficiently large perturbation to the
system is required in order for large transient spikes
to exist. These perturbations are generated by the
combination of vaccine coverage and vaccine efficacy.
When vaccine coverage and efficacy are both very
high, the vaccination programme reduces prevalence
so quickly that no spikes appear.

We also found that the presence or absence of large
transient spikes were highly sensitive to the time when
the vaccine programme is first begun. Indeed, the
results are so sensitive to introduction time, and prob-
ably also to changes in parameter values or model
structure, that we do not believe that model results
can be used to minimize the chance of large transient
spikes.

Despite the presence of large transient spikes in
prevalence, the total number of infections over the

Fig. 5. Maximum prevalence over the 15 years after vaccine introduction for varying vaccine efficacy. Eighty percent (p=
0·8, blue) and 40% (p= 0·4, red) of infants are vaccinated. The dashed grey line is the maximum prevalence prior to
vaccine introduction.
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first 15 years after vaccine introduction was always
less than in the 15 years prior to vaccine introduction.
The decrease in infections was higher for higher
efficacy as well as for higher vaccine coverage.
Likewise, in the long term, the mean number of infec-
tions per year was always smaller than during the
pre-vaccination period and decreased with increasing
vaccine coverage and vaccine efficacy.

Vaccination reduces the susceptibility of the popu-
lation, but the short-term interaction of the change
in susceptibility with the seasonal forcing of the mos-
quito population causes complex results, including
large transient spikes. When averaged over longer
times, the impact is as expected: both the number of
infections in the 15 years following vaccine introduc-
tion and the long-term annual mean were always
found to be lower after vaccine introduction than
before.

Large transient spikes after vaccine introduction
were frequent for our main model, along with simpler
and more complex models that we also tested. In gen-
eral, we believe that the occurrence of large transient

spikes in response to perturbation is a robust phenom-
enon of seasonally forced epidemic models. We are
unaware of any theoretical research on the short-time
transient behaviour of seasonally forced epidemic
models; however, there is a rich literature on the long-
time behaviour of such models [14–17].

It is possible that interaction between different
dengue serotypes may have some impact on the pres-
ence or absence of transient spikes after vaccine intro-
duction. Moreover, antibody-dependent enhancement
(ADE), increased susceptibility to or increased trans-
mission of secondary infection, has been hypothesized
for dengue [2, 13, 18]. Using a mathematical model
that included ADE, Billings et al. [19] showed that if
a dengue vaccine does not protect against all sero-
types, then increased transmission of the strain not
covered by vaccine could occur. This increase in den-
gue transmission could increase the likelihood of large
spikes in prevalence after vaccine introduction.

In our models, we have used generic parameter
values rather than those for a specific location. In par-
ticular, different parameter values may change the

Fig. 6. Maximum prevalence over the 15 years after vaccine introduction for varying time of vaccine introduction. Eighty
percent of infants are vaccinated (p= 0·8) with a vaccine efficacy of 30% (ϕ= 0·3, blue) and 70% (ϕ= 0·7, red). The time
that the vaccination programme begins was varied from the beginning (t = 0) to the end (t = 2) of the 2-year cycle in
prevalence that exists when there is no vaccine. The dashed grey line is the maximum prevalence prior to vaccine
introduction.
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period and maximum amplitude of the pre-
vaccination oscillation [2, 16]. However, because of
the robustness of the appearance of large transient
spikes in prevalence, we expect that these spikes
would continue to appear for different parameter
values. Similarly, we expect large transient spikes
would also be present (1) if the vaccination pro-
gramme were modelled as starting gradually rather
than instantaneously, (2) if the human population
were growing rather than remaining a constant size
and (3) if the vaccine were introduced at a state
other than regular periodic oscillation.

Introduction of dengue vaccine reduces the overall
prevalence in the long term, but at the risk of large
spikes in prevalence immediately after the vaccine in-
troduction. Policy-makers may need to re-evaluate
their vaccination programme based on their short-
and long-term goals for reduction in total infections.
In order to minimize the risk of large spikes in preva-
lence, it may be necessary to trade a smaller reduction
in short-term burden. For example, in Figure 4(a, b)

with vaccine efficacy of 70%, vaccinating 25% of
infants rather than 40% of infants may be a better
strategy to avoid the spikes at the expense of more
total infections over 15 years.

We used mathematical models to evaluate the
short- and long-term effects of introducing a dengue
vaccine. We found that vaccine introduction may
lead to a transient period when infection prevalences
spike higher than in the pre-vaccination period. We
believe such transient spikes are robust to changes in
parameters and model structure, and thus must be
accounted for in planning vaccination programmes
because they may overwhelm health resources.
Despite the presence of transient spikes, the vacci-
nation programme is likely to be effective at reducing
the total number of infections during the first few
years after introduction, as well as decreasing infec-
tions in the long term. Policy-makers should be pre-
pared for transient spikes to mitigate their burden
and to accurately understand the effectiveness of the
vaccine programme.

(a)

(b)

Fig. 7. Transient prevalence spikes in (a) simpler and (b) more complex dengue models. (a) Eighty percent of infants are
vaccinated (p= 0·8) and the remainder of the population is vaccinated at a per capita rate of ν= 0·6 per year. See
Appendix B for model and parameter definitions. (b) Sixty percent of infants are vaccinated (p= 0·6) and the remainder of
the population is vaccinated at a per capita rate of ν= 0·9 per year. Vaccine efficacy is 70% in both models, i.e. ϕ= 0·7.
See Appendix C for model and parameter definitions.
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APPENDIX A. Main model

We developed a simple deterministic model for den-
gue to explore the short- and long-term effects of vac-
cine introduction. The model consists of four
unvaccinated (U), four vaccinated (V) and one recov-
ered (R) class, the variables for which represent the
number of people in that class over time (Fig. 1).
An individual with no prior dengue infection (sub-
script S) can have a primary infection from any sero-
type of dengue (I1), recovery from which provides
lifelong immunity to that serotype (S2). The individual
can then acquire infection from any of the remaining
three serotypes, and enter the secondary-infection
class (I2). Third or fourth infections from dengue is
very rare [8], sowe assume that an individual recovering
from secondary infection becomes immune to all sero-
types (R). Individuals in both primary- and second-
ary-infection class recover at rate γ= 7/365 yr−1 so
that themean infectious period is 7 days [20]. The para-
meters B and μ are natural birth and death rates in
humans, respectively, which were chosen to be B = μ
= 1/50 yr−1 so that the mean human lifespan is 50
years and the population size is constant. Dengue-
induced mortality in humans is around 1–2% [9] and
is thus ignored in our model for simplicity. We were
only interested in infections in humans, so we did
not model mosquito population explicitly [10].
Infection occurs when a susceptible individual comes
in contact with individuals from any of the infectious
classes through mosquito bites at the rate given by the
force of infection

λ(t) = 1+ ε cos (2πt)[ ] βI (t)
N

, (1)

where the total number of people currently infected is

I (t) = UI1(t) +UI2 (t) + VI1 (t) + VI2 (t), (2)
N is the total human population size and β is a com-
posite transmission parameter [10], taken to be β=
400 yr−1 [18]. Seasonality in the mosquito population
was captured by the cosine term in the force of infec-
tion, where t is units of years, making transmission
most intense at the beginning of a year (i.e. when t
is near an integer 0, 1, 2, . . .) and least intense in the
middle of a year (t near 0·5, 1·5, 2·5, . . .). We used a
small amplitude of seasonal forcing, ε= 0·1. The
force of infection for secondary infection was reduced
by the factor σ = 3/4 since they are only susceptible to
three of the four serotypes.

The vaccination programme with two components
was modelled: a proportion p of infants are vaccinated

and the rest of the susceptible population is vaccinated
at rate v. The vaccine efficacy ϕ was modelled as re-
ducing the force of infection by the factor 1− ϕ.

The model equations are

dUS1

dt
= (1− p)BN − (λ+ v+ μ)US1 ,

dUI1

dt
= λUS1 − (γ+ μ)UI1 ,

dUS2

dt
= γUI1 − (σλ+ v+ μ)US2 ,

dUI2

dt
= σλUS2 − (γ+ μ)UI2,

dVS1

dt
= pBN + vUS1 − [(1− ϕ)λ+ μ]VS1 ,

dVI1

dt
= (1− ϕ)λVS1 − (γ+ μ)VI1,

dVS2

dt
= γVI1 + vUS2 − [σ(1− ϕ)λ+ μ]US2 ,

dVI2

dt
= σ(1− ϕ)λVS2 − (γ+ μ)VI2 ,

dR
dt

= γ(UI2 + VI2 ) − μR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

The parameters of the model are also shown in
Table 1.

To minimize the computational rounding error of
our simulations, we reformulated our model equations
using log-transformed variables [21]. For the pre-
vaccination state, using parameter values in Table 1,
setting both vaccination rates p and v to 0, and setting
the initial conditions for unvaccinated susceptible
individuals with no prior infection, unvaccinated
infected individuals with no prior infection and per-
manently recovered individuals to be 0·09, 0·01 and
0·9, respectively, with all other initial conditions to
be zero, we simulated the dengue model (3) until it
reached a limit cycle, a regular periodic oscillation.
With the parameter values used, the model (3) con-
verged to a 2-year cycle (Figs 2 and 3). We defined
t= 0 to be just before the year with the larger peak
in prevalence (e.g. see Fig. 2a). In most of the simula-
tions, vaccination was begun at tv= 0, but we also var-
ied the start time tv∈ [0, 2) (Fig. 6).

To measure effectiveness of the vaccination pro-
gramme, we used 15-year maximum prevalence

max
t[[tv,tv + 15]

I (t), (4)
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15 year total infections

γ
∫tv+15

tv

I (t) dt, (5)

and long-term annual incidence

γ

P

∫tc+P

tc

I (t) dt, (6)

where tc is a time after the system has converged to the
post-vaccine limit cycle and P is the period of that
limit cycle.

APPENDIX B. Simpler model

For our simpler dengue model, we assumed that there
is no secondary infection so that an individual after
recovering from a dengue infection is immune to all
serotypes. This reduces our original dengue model
(3) to

dUS1

dt
= (1− p)BN − (λ+ v+ μ)US1 ,

dUI1

dt
= λUS1 − (γ+ μ)UI1 ,

dVS1

dt
= pBN + vUS1 − [(1− ϕ)λ+ μ]VS1,

dVI1

dt
= (1− ϕ)λVS1 − (γ+ μ)VI1 ,

dR
dt

= γ(UI1 + VI1) − μR,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

with the same force of infection (1), but with total
number infected

I (t) = UI1 (t) + VI1 (t). (8)

APPENDIX C. More complex model

A more complex model compared to model (3) was
obtained by adding the hypothesis of short-term
cross-protection after primary infection. Wearing &
Rohani [13] hypothesized that after recovering from
primary infection, an individual has short-term cross-
protection to the other serotypes for about 9 months,
after which he becomes susceptible to the remaining
three serotypes. We added two classes of people tem-
porarily immune to all serotypes, one for unvacci-
nated (UT) and one for vaccinated (VT) people, to
our existing model. After primary infection, people
now enter these temporary immune classes, and
before moving on to become susceptible to secon-
dary infection. The model equations for this new

model are

dUS1

dt
= (1− p)BN − (λ+ v+ μ)US1 ,

dUI1

dt
= λUS1 − (γ+ μ)UI1 ,

dUT

dt
= γUI1 − (ρ+ μ)UT ,

dUS2

dt
= ρUT − (σλ+ v+ μ)US2 ,

dUI2

dt
= σλUS2 − (γ+ μ)UI2,

dVS1

dt
= pBN + vUS1 − [(1− ϕ)λ+ μ]VS1,

dVI1

dt
= (1− ϕ)λVS1 − (γ+ μ)VI1 ,

dVT

dt
= γVI1 − (ρ+ μ)VT ,

dVS2

dt
= ρVT + vUS2 − [σ(1− ϕ)λ+ μ]US2 ,

dVI2

dt
= σ(1− ϕ)λVS2 − (γ+ μ)VI2 ,

dR
dt

= γ(UI2 + VI2 ) − μR,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where 1/ρ = 0·75 yr is the average duration of short-
term cross-protection against all serotypes. With the
same force of infection and total number infected
as before [(1) and (2)].
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