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Abstract

We study a periodic Kolmogorov model with m predators and n prey. By means of the
comparison theorem and a Liapunov function, a set of easily verifiable sufficient conditions
that guarantee the existence, uniqueness and global attractivity of the positive periodic
solution is obtained. Finally, some suitable applications are given to illustrate that the
conditions of the main theorem are feasible.

1. Introduction

The Kolmogorov system is a rudimentary model in mathematical ecology and has been
extensively investigated and developed (see [8, 9] and references therein). But most
of the literature requires that the systems be representable as autonomous differential
equations. If we consider the effects of environmental factors, the assumption of
periodicity of the parameters is both realistic and important.

Our main purpose in this paper is to study the asymptotic behaviour of the general
periodic Kolmogorov predator-prey system. Moreover, competition among predator
species and among prey species is simultaneously considered, that is, we will investi-
gate the following nonautonomous Kolmogorov predator-prey system of differential
equations:

{ jl(t) =xi(t)1:i(tv-xl(t)s o ,x,,(t), )’I(t), e :)’m(t)), i= 1) NP (B

1.1
¥i@®) =Gt x1(0), ..., xa (), y1 (1), .., ym(®)), j=1,...,m, (b

where x;(#) denotes the density of species X; at time ¢ and y; () denotes the density
of species ¥; at time ¢. To describe system (1.1), we give the following assump-
tions.
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(H1) Fi: R x R}*™™ — R, is continuous and periodic with respect to ¢, that is,

there exists a positive constant T, such that F;(t + T,-,...,") = Fi(¢t,-,...,");
G, : R x R}7*™ — R, is continuous and periodic with respect to ¢, that is, for the
above positive constant 7, G; (¢t + T, -,... ,-) = G;(¢, -, ..., -). Moreover,

F(t,0,...,00>0, G;(0,...,00<0, i=1,...,n, j=1,...,m.

H2) Fi(t,x1,... ,Xpu 01, --. , ym) and G;(t, X1, ... , Xn, Y1, ... , Ym) are continu-
ously differentiable with respect to (x3, ... , X5, ¥5, ..., ¥m) € R:'j’". Moreover,

aF; oF; 0G; i

— <0, — <0, —L >0, ﬁﬂ<0,

ax;, Ay, ox, Iy

(i=1,...,n,j=1...,ms=1...,n1l=1,... ,m),

for (x1, ..., X5 Y1,-.. , Ym) € E, where E is an arbitrary bounded set of R+,
(H3) There exist positive constants B;,i = 1, ..., n, such that

Fi(t0,...,0,B;,0,...,0,0,...,00 <0, i=1,...,n

Moreover, for arbitrary bounded positive constants X, ... , K,, there exist positive
constants D; = D;(K,,... ,K,) > 0,j =1,... ,m,such that
Gt Ky, ..., K,,0,...,0,D,0,...,00<0, j=1,...,m.

Wu and Zhao obtained the globally attractive almost periodic solution in the almost
competition Kolmogorov system in [12]. Yang and Xu obtained a globally attractive
periodic solution in the periodic Volterra-Lotka predator-prey system in [13]. In this
paper, we will study the periodic Kolmogorov predator-prey system. As an application,
we will consider some ecological systems.

The structure of this paper is as follows: in Section 2, we investigate the persistence
of system (1.1) and derive a persistence result. In Section 3 we obtain sufficient
conditions for the uniqueness and global attractivity of the periodic solution of (1.1).
Finally, in Section 4 we give some suitable applications to illustrate that the conditions
of the main theorem are feasible.

2. Persistence

Throughout this paper,
u(t9 uO) - (X|(I, uO)v ceey x,,(t, uO)v M1 (tv u0)9 vy ym(tv uo))r
denotes the solution of (1.1) with initial condition
Up = (X10, -+ » Xn0s Y101 -+ » Ym0) € int(Ri"’”').

The following lemmas are required for the derivation of a persistence result, which
follows directly from {12, Theorem 4.2].
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LEMMA 2.1. Iffor some i € {1,2, ..., n},

T
/ Fi(t,0,...,0)dt > 0, (P1)
0

then the equation dx;/dt = x;F;(1,0, ... ,0,x;,0,...,0) admits a globally asymp-
totically stable positive T-periodic solution x}(t) in int(R.).

LEMMA 2.2. If (P1) holds foralli =1, ... ,n, and for some j € {1,2,...,m)},

T
f Gj(t,x{(t),...,x;(,0,...,0dt >0, P2)
0

then the equation dy;/dt = y;G;(t,x{,...,x;,0,...,0,y;,0,...,0) admits a
globally asymptotically stable positive T-periodic solution y; (t) in int(R.).

LEMMA 2.3. If (P1) holds for all i = 1,...,n, and (P2) holds for all j =

1,...,m, and for somei € {1, ... ,n)},

T
/ Fi(t,x7(8), ..., X7, (0),0,x],(2), ..., %, (), y{(2), ..., ynm(2))dt > 0, (P3)
0

thenthe equationdx;/dt = x; Fi(t, X}, ... , X}, Xi, X[ 15 oo X5, Vi oo Vi) admits
a globally asymptotically stable positive T-periodic solution x}(t) in int(R.).

LEMMA 2.4. If (P1), (P3) hold for all i = 1, ... ,n, and (P2) holds for all j =

1,...,m, and for somej € {1,... ,m},

T
/ Gi(t,x;(), ..., x, (D, y7 (), ¥ (0,0, y7,,(0), -+, ¥, (1)) dt > 0, (P4)
0

then the equation dy; /dt = y; G; (¢, x}, ... , X3, V1, ... ,fj*_,, Vs y'j'+|, oo yy) ad-
mits a globally asymptotically stable positive T-periodic solution y;(t) in int(R.).

We can now obtain our main result of the section.

THEOREM 2.5. If (H1)~(H3) hold, (P1), (P3) hold foralli =1, ... ,n, and (P2),
(P4) hold for all j = 1,...,m, then system (1.1) is persistent, that is, there exist
constants M and n, M > n > O, such that for arbitrary '

Uy = (x109 o 3 X0y Y10y oo ymo)T € int(R.':.+m)v
there exists a T (ug) > 0, such that the solution u(t, ) of (1.1) satisfies
r’<xi(tvu0)<M1 77<)’j(t,u0)<M,

forallt > T(ug), i=1,...,n,j=1,...,m
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PROOF. We prove the theorem in two steps.
Step (1). Solutions exist globally on [0, 00).

For any up = (x10, ... , Xn0, Y10, - - - » Ymo) € int(R}*™), let I't (ug) = [0, B(uo)) be
the maximal interval of existence of u(t, ug). Then x;(t, up) > 0, y; (¢, up) > 0 for
1<i<n1<j<m,1tel0,B(u)). By the assumption (H2), x;(¢, up) satisfies

dxi(1)
dt
Therefore, by the comparison theorem, 0 < x;(¢) < x;(t), t € I'"(up), where x;(2) is
the unique solution of
dx(0)
dt
with x;(0) = x;0. Since X;(¢) exists globally on [0, 00), x;(¢) exists globally on [0, c0).
Moreover, for arbitrary > 0, there exists a fp > 0, such that 0 < x,(¢) < x7(1) + 4,

<x;(t)Fi(£,0,...,0,x,(,0,...,0).

=x; () Fi(1,0,...,0,x,(),0,...,0)

forall t > ¢.
By the assumption (H2), y; (¢) satisfies
dy; (t)
yé_t 5 yj(t)Gj(tv Klv-" ’ K’HO"" 101yj(t)107 e ’0)9

where K; = max{sup,j.o)[X] + 81, max,ejo,) Xi(¢)}. Therefore, by the comparison
theorem, 0 < y; (t) < y; (t), t € I*(ug), where y; (¢) is the unique solution of

% =yj(t)Gj(t, Kl’ ey K,,,O, ,O,yj(t),O,... ,O),
with y; (0) = yjo. Since y; (¢) exists globally on [0, 00), y;(#) exists globally on
{0, 00). Therefore B(up) = 00 and I+ (uy) = [0, 00).
Step (2). Uniform persistence.

By the first step, we know that for arbitrary § > 0, there exists a , > 0, such
that 0 < x;(1) < x! +6,1 < i < nfort > tp. Now we prove that y;(?) is
bounded for 1 <j < m. Let v;(¢) = x;(t + ), v(t) = (v, (2), ..., v, (1)), v*(¢) =
xy(t+ 1), ..., x:(t+ 1)) and z; (¢) = y; (¢ + %). Then

dz; (1)
dt

=z (DG @+ b, vi(8), ..., v (), 21(8)s ... , Zm(2))

<z (MGt + o, vi(1), ..., v.(1),0,...,0,7(0),0,...,0)
<zi(Gj(t+1t, x;(t+1)+6, ..., X (t+1)+6,0,...,0,7(),0,...,0).
Therefore, by the comparison theorem, 0 < z;(t) < w;(#), where w;(¢) is the
solution of
dw; (1)
dt

=w ()Gt + 1, x;0t+0)+8,....x,(t+16)+38,
0,...,0,w;(,0,...,0) 2.1
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with w;(0) = ¥j (o) > 0. Choose 8 > 0 small enough so that

T
/ Gi(t, 5}(t) +85,... , 22 +6,0,...,0)dt > 0
0

as 0 < & < §. Then (2.1) admits a unique globally asymptotically stable positive
periodic solution w;(¢) in int(R,). For arbitrary & > 0, there exists a ; = ¢(y;(0)) >
0, such that 0 < w; (t) < w;j(#) +&/2fort > ¢;.

Considering the system

dzj(t)
dt

=7z (DG (t+1, X (t+1),..., X (t+16),0,...,0,7(#),0,...,0), (2.2

then lim,, 1o (z; (£) — ij* (t + 1)) = 0, where z; (¢) is a solution of (2.2) with z; (0) =
¥ (%) > 0. Since the solution of (2.1) is continuous with respect to parameter 8, w; ()
and ij*(t + f) are periodic solutions of (2.1) and (2.2) respectively. Hence, for the
above g, there exists a §;, 0 < §;, < &, such that lf;‘(t + 1) — ';(t)l < ¢/2 for
0 < 6 < §,. Therefore

O<z(M<w(@ <w(D)+e/2<y/(t+n)+e t21,5<é

Accordingly, 0 < y; () < y/() + e, t 2 =1 + 1.
Letu;(¢) = x;(¢t+ 1), i = 1,...,n. Then u;(r) satisfies the inequality

du,-(t)
dt

> wOF(t+ 0, x5+ 0)+8, ... E (¢ + 1) + 8, ui(0),
X+ n)+8,... . x(t+4)+34,
i+ n)+e, ...,y + 1) +¢).

Therefore, by the comparison theorerﬁ, ui(t) > u,(),t>0,1 <i <n, where u,(r)
is the unique solution of

du;(t)
dt

=u(OF(t+n,x5@+0)+8,... % (t+ 1)+, u(1),
@ +n)+8,... 5 (r+0)+34,
i+ n)+e .., +n)+e) (2.3)

with 1,(0) = u;(0) = x;(#;) > 0. Define

Fit+n,8,e)=F(t+n,%5@+n)+8,... .5 ,t+0)+34,0,
X @ +n)+68,...,x,+1)+34,
ye+n)+e ..., n+n)+e)
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There exist positive constants &, and &,, §; < §;, such that foT Fi(¢ +1,8,6)dE >0,
when0Q <8 < 8,0 <¢e <e¢,i=1,...,n. Therefore we have

lim (,(1) - u} () =0, (2.4)

where 1} () is the globally asymptotically stable positive periodic solution of (2.3).
By (2.4), we know that for arbitrary y < inf,g, ¥(¢#), 1 < i < n, there exists

t, = t(x;(0)) > 0, such that »;(t) > u;(t) — y/2,t > 4,1 < i < n. Considering the
equation

dw;(t)
dt

= w(OF(t + 0, X7+ n), ..., X7, 0+ 0), wi @),
i"‘.g.](t + tl)s ] 1j;(t + tl)’ 91‘(’ + t])v U] )’-:,(t + tl))’ (25)

we know that (2.5) admits a unique positive periodic solution x}(r + #), which is

globally asymptotically stable in int(R,). This holds since the solution of (2.3) is
continuous, with respect to parameters § and ¢, and u](z) and x; (¢ + 1) are positive
periodic solutions of (2.3) and (2.5), respectively. Forthe above y, there exist constants
£,831,0 < 83 < 85,0 < g5 < &y, such that
xi(t+n)—ui(®)| <y/2, 0<b6<8;, 0<e<e,.

Hence, for0 <8 < 83,0 <& < g and 1> 1,

ui(t) = w () > uj()—y/2> 2@+ 1) —v.
Therefore, letting 1, = #; + #,, we obtain

xi()Zx;() -y, t21>0,1<i<n (2.6)
Similarly, for arbitrary 0 < v < inf,¢z X;(’)’ there exists 13 > 1, such that

y@®zy®—v, t256>01<j=<m 2.7
By the above proof, we know that system (1.1) is persistent, which completes our

proof.

3. Global attractivity

We first give an assumption and then introduce our main theorem.
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(H4) There exist continuously differentiable bounded functions 8;:(0, 0c0)— (0, 09),
a; : (0,00) > (0,00),i=1,...,n,j =1,...,m, and a positive T-periodic
function b(¢) : R, — R,, such that

Bix)Filt x, ) | dF (1, X, y) 3G,(t,x, )|
ax‘ [;ﬁ( 1) ‘ ' s(y:) - |
< —b(1),
da; (y,)G;(t, x, y) zﬂ( ),BF,(t x, y)’ .0) aG(t, x,y)
3y; oy e 3y,
< —b(r)

forallt € Ryandx = (x1,..., %), ¥y = 01, --- , Ym), Xi € [0, M1, y; € [n, M},
i=1...,nj=1...,m

THEOREM 3.1. If (H4) and the conditions of Theorem 2.5 hold, then (1.1) admits a
globally attractive positive T-periodic solution u*(t) € int(R+™), that is, for any u, €
int(R}*™), the solution u(t) of (1.1) with u(0) = u, satisfies tlim W@ —u (1)) =0.

—00

PROOF. By Theorem 2.5, we know that system (1.1) is persistent, that is, there exist
M > n > 0, forany uy = (X10,--- , Xn0s Y10, - - - » Ymo)' € int(R}™), there exists
To = T(up) > 0, such that the positive solution u(z, ug) of system (1.1) satisfies

77<xi(t,u0)<M, 77<)’j(t1u0)<M,

fort> Th,i=1,...,n,j =1,...,m. By [11], we know that system (1.1) admits
a positive T-periodic solution u*(¢) = (x;(®), ..., x (), yy (&), ...,y o).
Define

V() = V(u@ + To), w*(t + To)

n

“'”‘”ﬂ() e
S| ]+ 2

i=1 1(t+To)

¥} (1+To) o (w)
f ! dwl .
¥; U+To) w

For any w € [n, M], we have B;(w)/w > 0 and o; (w)/w > 0. Hence there exist
positive constants D, and D,, such that

D, [Z [ere+ To) —xit + T)| + ) _ |yt + T) — y; (e + ml]

i=1 j=1

< V@) <D, [Z e+ T) —xi(e+ T)| + D [y e+ To) =y (e + n)l].

i=l i=1
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Using the notation ¢, = ¢ + Tp and letting n(x;, x;) = sx;(t;) + (1 — 5)x;(13), we

have
/ X Bi(w) (w)
dt Jia) w

BRI Filtr u* (1)) = Bixi(6s)) Filts u(24)
1
d
- / S B} X Fit ()] ds
0 Y
_ /' [Z B(B. (Nt %) Filtss 0, )
0

Py (ef (1) — x;(24))
j=1 !

+ Z’": 3(Bi(n(x;, xi))aFi('+» n(u*, u)))
Yi
i /y, (u) o (w)
dt (1)
=a; (y} (t+))G, (e, 0 (1)) — 0 (3 () G (84, u(24))

1
d
- fo Loy (105}, ) Gy (1 e’ )] ds

- f| [XH: 3(e; (¥}, i) Gj (14, n(u*, w))
0

Oj (1) — v, (u))] ds,

3 Gy (84) — x,(84))
X,

r=1
N i (e (n(y}, y; );fj (t, n(u*, u)))

Oy () — yr(t+))] ds.

r=1

Therefore, calculating the upper right derivative D* V(¢) of V(z) along the solutions
of (1.1), we get

-+
DTV () 5/ ox.

i=l1

! {Z [aﬂi(n(x,’-‘,x;))l’i(u, n(ut, u))
1]

o0 F; (¢,
(Zﬂ;(ﬂ(x,' !))l (. n(u u))

J#i

3G, <t+, (u*, u))

+ Za, Gy}, y,)),

):l [x[(ey) — Xi(f+)|} ds
j=1

N /' [Z [aaj(n(y,f, YiNGj (b4, n(u, w))
0

j=1 %i
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+ (Z B:(n(x;, x,)) aF,(ty, n(u*, u))
r=1

9y
u aGr ] *,
+ Datnry, ey [SEA D) )] 76 =, <t+>f] ds
r#j J

n m b
< —b(z,) (Z i) — xi el + 3 332 =, (u)l) <-22 v,
i=1 j=1

Therefore, by the comparison theorem, we get
V(1) < V@' (Ty), u(Ty)) e heermipd,

since b(t) is a positive periodic function. This implies that lim,_, ., V(1) = 0. Ac-
cordingly, we have

lim |x;(t) —x!()| =0, i=1,...,n,

=00
and

lim|y; ) —y; )| =0, j=1,...,m.
=00

This completes the proof of Theorem 3.1.

4. Applications

In this section, some suitable applications are given to illustrate that the conditions
of Theorem 3.1 are feasible.
We first consider the system

xi(t) = x;(1) [bi(t) - Z:=1 a;()xs(t) — ZT:I Cl‘s(t)yx(t)] )
3 =y [—r () + Loy dis(Dx:(1) — i, €5:(0)ys ()],

where bi(t), r;(t), a;(t), c;(t), d;j(t), e;(¢) are positive continuous 7T-periodic
functions with respect to ¢. There exists a positive constant no > 0, such that
min,ez+{b;(1), a;i(1), €;; (1)} > no.

Letting i) = 1, ;(-) = 1, i = 1,...,n, j = 1,...,m in the proof of
Theorem 3.1, we obtain the following theorem.

“.1)

THEOREM 4.1. If system (4.1) is persistent, and there exists a continuous positive
periodic function b(t),with [ b(s)ds > O such that

a;;(t) — [Z::—l#“ ai(8) + >, d:i(f)] > b(1),
ej; (1) — [ZL; ¢y (1) + Z:;j €5 (t)] > b(1),
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foralli=1,... ,n,j =1,...,m, thenthere exists a unique strictly positive periodic
solution in the system (4.1) which is globally attracting.

In the following, we consider a simple system

X1(8) = x1 () (ry — anux, (1) — apx,(h)
Xi(t) = xi(@)(—rit+aiicixio () —aix; () —a; i1xia (1), 2<i<n-—1, (4.2)
X.,,(t) = xn(t)(_rn + an.n—lxn—l(t) - ann-xn(t))’

where r;, a;,1 <i <n,1 <j < n, areall positive constants.

Define Dl =n, A,' = j:; a,-j,
ag 0 0 rn
—ax ap - 0 -n
Di = 0 —Qas; 0 -nf, i =2, , Ry (43)
0 0 N 2 B
and also define E, = r, — a;zD;/ A2, appyy =0and, fori =2,... ,n,
an o .- 0 n —apDy/A,
—dy ax s 0 —r - a23D3/A3
E,‘ = 0 —asz . 0 —-r3 — a34D4/A4 . (44)
0 0 - =—aji.1 —ri—aiDig/Dig

We then have the following theorem

THEOREM 4.2. If D; > 0and E; > O,fori=1,... ,n, and

ay > Qxy,  Qupn > Qp-y s 4.5)

@i > aii+ai;, fori=2,...,n—1, 4.6)
then the positive steady state of system (4.2) is globally attracting in int(R}).
PROOF. In fact

>0, fori=1,...,n,

x;= >0, fori=1,...,n—-1.

Plmp|o

By Theorem 2.5, we know that system (4.2) is persistent. Finally, by (4.5) and (4.6),
we know that assumption (H4) of Theorem 3.1 holds, which completes the proof.
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In pariicuiar, we consider

[i(t) =x(t)(r — anx(t) — apy())

. 4.7
y(@) = y(@)(—r; + anx(t) — any(?)),

where r;, a;, i, j = 1, 2 are all positive constants.

COROLLARY 4.3 ([9]). Ifaiax—anaz > 0, then the positive steady state of system
(4.7) is globally attracting.

PROOF. In fact, rja;; — r,a; > 0 is a necessary condition for system (4.7) if there
exists a positive steady state in the system since

R o . l(anan —apay)n + anapn
x*=—>0, x'= 5 > 0,
a ayax
-, hay—nay . (anan —anay)(nan — nay) 0
y* = ———— >0, y' = —— > 0.
anax - ana

Hence, by Theorem 2.5, we know that system (4.7) is persistent.
~ Choose constants c¢; and d; satisfying
ay d Q)
— > — > —,
an 4] an
Let a(-) = ci1, B(-) = d, all be constant, then we have
and, — azic; > 0
anc; — a12d1 > 0.

Therefore assumption (H4) of Theorem 3.1 holds. This completes the proof of

Corollary 4.3.
Finally, we consider a Michaelis-Menten type functional response predator-prey
system
. S@) mx (1)
SO)=SO(l—— - ————1|,
® ()( X a+“0) s
. mS(t) '
=x(O){ ———~—-d—x(1) |,
x(1) x()<a+S(t) x())

where a, d, K and m are all positive constants. We suppose that K < aandd < m.
) Letting dt = ad(a + S)dt,x =x(a— K)/K, S = §(a — K)/adK, replace dr,
S and x by dt, S and x, respectively. Then we have

[ﬂﬁ=ﬂMn—ﬂn—mﬁm—mmmx

. 4.9
x(1) = x((=1 4 a:5(0) — x(S()) — myx (1)),
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where ri=1/d, aj=adK /(a — K)?, a=K(m — d)/(a — K), my=m(a — K)/adK
and m; = (a — K)/dK.

Letting 8* =2r/(1 + J/Aar; + 1), #* = (@8 — 1)/(my + §*), o = n, —m,%*,
S* = 2n/(1+ J4air, + 1) and x* = (a;8* — 1)/(m, + S*), by Theorems 2.5
and 3.1, we obtain the following theorem.

THEOREM 4.4. If there is only one positive steady state in system (4.9), S* > 0,
x* > 0, x* > 0 and a;m, < m;, then the positive steady state is globally attracting.

If n =15,a; = 1/4, a = 1/5, m; = 2 and m, = 4, by simple computations we
know that the equations

15— 8 —8%/4-2x =0,
—~14+8/5-8Sx—-4x=0

have only one positive solution. Moreover, we obtain

e mol o 748 29 |, 2
=6, = —, = ee———— > X >
50° % T 25454399 S5 T 125

The conditions of Theorem 4.4 then hold.
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