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A LÉVY PROCESS WHOSE JUMPS
ARE DRAGGED BY A SPHERICAL
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Abstract

We investigate the large scale behaviour of a Lévy process whose jump magnitude follows
a stable law with spherically inhomogenous scaling coefficients. Furthermore, the jumps
are dragged in the spherical direction by a dynamical system which has an attractor.
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1. Introduction

In applications one often encounters the situation where the motion of a particle can be
decomposed into a deterministic and a random part. The interplay between both dynamics can
necessitate a complicated model. Therefore, it is important to be able to reduce its complexity
on the base of mathematical reasoning. For example, the path of a sand particle moving on the
ground of a turbulent river could be modelled as follows.

Occasionally the particle is lifted into the flow and is dragged to a random location before
it sediments back to the ground and waits for its next trip. This transport by saltation was
thoroughly investigated and described in Bagnold (1973). According to this work the jumps take
place as a result of the tangential force of the moving fluid and the contact with the solid ground.
Once the particle has left the ground, its motion follows the turbulent drift imposed by the flow.
The Langrangian motion of particles in a turbulent medium has been investigated by Kida
(1981), Polvani and Wisdom (1990), and Aref (1990). In Maxey (1990) the chaotic motions of
nonspherical particles in laminar flows were described. In recent years quantitative descriptions
of the chaotic dynamics were obtained by numerical simulations; see Kawakami and Funakoshi
(1999). Our emphasis is to present a model where the abovementioned informations on the
chaotic behaviour of the transport can be taken into account.

Since the particle stays in motion only for a relatively short time compared to the period
when it is at rest, we will neglect this time and assume that the particle immediately reaches its
destination with a jump. This assumption might be questionable since it may be the case that
a small particle is lifted into the core of the flow and stays there in suspension for a long time.
A more realistic model should have a continuous part. However, we disregard this fact for the
sake of simplicity.

After the particle falls back to the ground, it waits for the next jump. For simplicity, we will
assume that the mechanism which drives the jumps does not depend on either the location where
the particle is waiting for its next jump nor on the history of the motion. It is then reasonable
to model the particle as a Lévy process in three-dimensional Euclidean space with a suitable
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Lévy measure, which is determined by the dynamics of the particle in the flow. The resulting
motion of the particle on the ground is then obtained by projection to the plane.

We now want to specify a class of Lévy measures, which is reasonable for this kind of
situation. The turbulent behaviour of the vortex which drags the particle during the jump is
chaotic; see Aref (1990). Moreover, the motion of an irregular particle due to its shape follows
a chaotic dynamic; see Maxey (1990). We will assume that we can decompose the dynamics of
the jump into a spherical component and a radial component as follows: while the particle jumps
in the radial direction it is dragged simultaneously by the action of the flow in the spherical
direction. The resulting jump has the shape of a spiral, when the spherical dynamical system
is a rotation. However, more complicated chaotic dynamics on the sphere could be imagined.
The underlying motivation for this assumption is that a larger dislocation due to a jump should
result in a bigger influence of the dynamical system. Due to the nonlinearity of the problem
this is, however, only a rough idealization of the real world phenomenon.

We will assume that the initial state at which the particle enters the spherical dynamical
system is randomly and independently selected prior to every jump. In certain states of the flow
a departure of the particle is more probable than in others. This can be included in the model
by an intensity measure on the sphere which appoints a rate of departures to every part of the
state-space. Short trips occur with a higher rate and the distribution of the trips length might
have heavy-tails. Therefore, it is natural to model the jump distances by stable increments.
However, the index of stability might depend on the state of the spherical dynamical system at
which the particle enters the flow.

In this article we define a class of Lévy processes that has the abovementioned characteristics
and could serve as a model for a particle which saltates in a fluid flow. Our objective is to
prove that this model can be described by simpler ones on large scales when the deterministic
spherical dynamical system has an attractor. This model could serve as a starting point for the
investigation of multiparticle models for river bed sedimentation. Owing to the importance of
sedimentation processes in industry, environmental research, and civil engineering, the transport
of particles in fluid flows is a problem that is under constant investigation in physics, engineering,
and mathematics. Probabilistic models for sedimentation based on random walks and simple
Markov processes can be found, for example, in Pickard and Tory (1977), Gani and Todorovic
(1983), Gani (1988), and Ancey et al. (2006).

We now come to the mathematical definition of the Lévy processes studied in this article.
Let ν be a finite Borel measure on the (d − 1)-dimensional unit sphere Sd−1 in R

d . Let
� : R

+
0 × Sd−1 → Sd−1 be a dynamical system satisfying, for all continuous f : Sd−1 → R

and ν-almost all ϕ ∈ Sd−1,

T −1
∫ T

0
f (�tϕ) dt −→

∫
A
f dπ as T → ∞,

where A ⊂ Sd−1 is a �-invariant subset of Sd−1 and π is an invariant measure on Sd−1 with
support in A. The pair (A, π) is called the Bowen–Ruelle–Sinai attractor for the dynamical
system (Sd−1,�); see Buescu (1997, p. 18). Furthermore, let α : Sd−1 → (0, 2) be a
measurable function having a positive essential infimum αo with respect to ν. We use spherical
coordinates (|y|, ŷ) ∈ R

+ × Sd−1 to define the following jump measure:

µ(A) :=
∫
Sd−1

∫ ∞

0
1A(|y|,�|y|ŷ)|y|−1−α(ŷ) d|y|ν(dŷ).
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In the following we want to analyse the large-scale behaviour of the Lévy process L with Lévy
exponent

ψ(ξ) :=
∫

Rd\{0}
(ei〈ξ,y〉 − 1 − h(|y|)i〈ξ, y〉µ(dy),

where h : R
+ → R is a continuous truncation function which is equal to 1 around 0 and such

that y �→ 〈ξ, y〉h(|y|) is bounded for every ξ ∈ R
d . The process L can be defined on a suitable

probability space (�,F ,P); see Sato (1999). For n ∈ N, we introduce the scaled process

L
(n)
t := n−1/αo(Lnt − c(n)t),

where c(n) is a suitable centering having the following expression:

c(n) :=
∫
Sd−1

n1−(1+α(ẑ))/αo

∫ ∞

0
|z|−α(ẑ)�n1/αo |z|ẑ(h(|z|)− h(n1/αo |z|)) d|z|ν(dz).

Dependent on whether Co := ν(α = αo) is positive or not, we will encounter two different
cases. If Co > 0, we have the following central limit theorem for the sequence L(n). We
denote by D the space of right-continuous paths ω : [0, T ] → R

d whose left-limits exist. The
Skorohod-topology makes D a separable metric space and it is well known that there exists a
modification of L in D; see Jacod and Shiryaev (2003).

Theorem 1. If Co > 0, the sequence L(n) converges in distribution with respect to the
Skorohod-topology toward an αo-stable Lévy process L∗ determined by the following char-
acteristic exponent:

ψ(ξ) =
∫

Rd\{0}
(ei〈y,ξ〉 − 1 − h(|y|)i〈y, ξ〉)µ∗(dy),

with jump measure

µ∗(A) = Co

∫ ∞

0

∫
A

1A(y, ϕ)π(dϕ)|y|−1−αo d|y|.

For the case in which Co = 0, the scaling is too strong and we obtain convergence in
probability toward 0. It is then important to understand the large deviations for this convergence.
Since the increments of the process L have heavy-tails, they fail to satisfy Cramer’s condition
and the usual approach cannot be used in this setting. A discussion of large deviation theory
for processes with heavy-tails can be found in Wentzell (1990, Chapter 6). It turns out that the
theory presented there is suitable only for the sequenceL(n). The typical behaviour encountered
after summation of heavy-tailed random variables is the dominance of a finite number of big
jumps on large scales. In the limit, we can recognize only a finite number of events. In order to
make these statements precise we need some definitions from Wentzell (1990, Chapter 6). Let

Ek := {(x1, . . . , xk, t1, . . . , tk) : 0 < t1 < · · · < tk < T, xi ∈ R
d}

and Dk = 
kEk , where


k : Ek → D, (x1, . . . , xk, t1, . . . , tk) �→
k∑
i=1

xi 1[ti ,T ] .
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The space Dk contains the paths that possess no more that k jumps and are constant be-
tween those jumps. Again we use spherical coordinates to define the measure µ̄(dy) =
|y|−1−αo d|y|π(dŷ) on R

d \ {0}. On D we introduce the measure Qk := Rk ◦ 
−1
k , where

Rk( dx1, . . . , dxk, dt1, . . . , dtk) := µ̄(dx1) · · · µ̄(dx2)λ(dt1) · · · λ(dtk)
k! .

The support of Qk is given by Dk . For a measurable set A ⊂ D, the measure Qk(A) will
quantify the proportion ofA that the sequenceL(n) leaves with rate g(n)k . The exact expression
of the rate function g(n) is given in Theorem 2, below. The following condition on the regular
variation in αo of the distribution function Fα = ν ◦α−1 is essential in the proof of Theorem 2.

Condition 1. The distribution function Fα has a density F ′
α on [αo, 2] and there exists a β > 0

such that
F ′
α(tx + αo)

F ′
α(t + αo)

−→ xβ as t → 0.

For two subsets A,B ∈ D, we define

d(A,B) := inf{‖ω1 − ω2‖sup : ω1 ∈ A,ω2 ∈ B}.
For a set A ⊂ D, we define Aδ and A−δ to respectively be the union and intersection of all sets
B satisfying d(A,B) < δ.

Theorem 2. If Co = 0, assume that Condition 1 holds and let A be a measurable subset of D
satisfying

d(A, 
k−1(E
k−1)) > 0 and lim

δ↓0
Qk(A+δ \ A−δ) = 0,

then the following asymptotic holds:

P(L(n) ∈ A) = (g(n))kQk(A)+ o((g(n))k),

with

g(n) := F ′
α

(
αo

log n
+ αo

)
αo

log n

(β + 1).

In particular, L(n) converges in probability to the zero-function.

In recent years the concept of regular variation has been generalized to D-valued random
variables and applied to extreme-value theory; see Hult and Lindskog (2005). Let γ > 0 and
σ be a Borel probability measure on the sphere SD := {ω : ‖ω‖sup = 1} in D. A D-valued
random variable X is called regular varying with spectral measure σ and tail-index γ if, for all
x > 0 and for all measurable A ⊂ SD with σ(∂A) = 0, we have

P(‖X‖sup > ut, X/‖X‖sup ∈ A)
P(‖X‖sup > u)

−→ t−γ σ (A) as u → ∞.

The definition of regular variation is quite general and a lot of processes fall into this class. To
prove that the process L is regular varying we need a stronger condition on the ergodicity of�.

Condition 2. For all A ⊂ Sd−1 with π(∂A) = 0 and ν-almost all ϕ ∈ Sd−1, we have

1

T

∫ T

0
1A(�sϕ) ds −→ π(A) as t → ∞.
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Theorem 3. If Co > 0 and Condition 2 holds, the Lévy process L is regular varying with tail-
index αo. Its spectral measure is the distribution of the SD-valued process Zt := Y 1[τ,1](t),
where Y is distributed with πo := π/π(Sd−1) on Sd−1 and τ is an independent uniformly
distributed random variable on [0, T ].

However, it seems that we need strong assumptions on the dynamical system� to prove the
regular variation of L when Co = 0. The three theorems presented in this note are based on
the homogenization of heterogenities on large scales. Similar behaviour was described by the
author for stable-like processes with periodic coefficients; see Franke (2006).

2. The proofs

The processes L and L(n) are pure-jump processes and, therefore, are determined by the
behaviour of their jump measures. The jump measures of the sequence L(n) are given by

µ(n)(A) =
∫
Sd−1

∫ ∞

0
1A(|y|,�n1/αo |y|ŷ)|y|−1−α(ŷ)n1−α(ŷ)/αo d|y|ν(dŷ).

A short computation shows that the Lévy exponent ψ(n) of the centred and scaled process
L
(n)
t := n−1/αo(Lnt − c(n)t) is given by

ψ(n)(ξ) = nψ(n−1/αoξ) =
∫

Rd\{0}
(ei〈ξ,y〉 − 1 − h(|y|)i〈ξ, y〉)µ(n)(dy).

We will need the following lemma.

Lemma 1. Let f : R
+ × Sd−1 → R be a continuous function such that the function t �→

supψ∈Sd−1 |f (t, ψ)| is Lebesgue integrable on R
+. Then, for all sequences an → ∞, we have

∫ ∞

0
f (t,�antϕ) dt −→

∫ ∞

0

∫
A
f (t, ϕ) dπ dt as n → ∞.

Proof. For a given ε > 0, there exists a T > 0 such that, for all ϕ ∈ Sd−1 and n ∈ N,
∣∣∣∣
∫ T

0
f (t,�antϕ) dt −

∫ ∞

0
f (t,�antϕ) dt

∣∣∣∣ < ε.

If T is chosen large enough, we also have
∣∣∣∣
∫ T

0

∫
A
f (t, ϕ)π(dϕ) dt −

∫ ∞

0

∫
A
f (t, ϕ)π(dϕ) dt

∣∣∣∣ < ε.

For large enough k ∈ N, we have

∣∣∣∣
∫ T

0

∫
A
f (t, ϕ)π(dϕ) dt −

k∑
j=1

T

k

∫
A
f

(
Tj

k
, ϕ

)
π(dϕ)

∣∣∣∣ < ε.

Since the function f is uniformly continuous on [0, T ]×Sd−1, we can choose k ∈ N such that

∣∣∣∣
∫ T

0
f (t,�antϕ) dt −

k∑
j=1

∫ T (j+1)/k

Tj/k

f

(
Tj

k
,�antϕ

)
dt

∣∣∣∣ < ε.
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Furthermore, there exists an n0 ∈ N such that, for all j ∈ {1, . . . , k} and n ≥ n0,∣∣∣∣
∫ T (j+1)/k

Tj/k

f

(
Tj

k
,�antϕ

)
dt − T

k

∫
A
f

(
Tj

k
, ϕ

)
π(dϕ)

∣∣∣∣ < ε

k
.

For this particular choice of k and all n ≥ n0, we then have∣∣∣∣
∫ T

0
f (t,�antϕ) dt −

∫ T

0

∫
A
f (t, ϕ)π(dϕ) dt

∣∣∣∣ < 3ε.

The choice of T > 0 now gives∣∣∣∣
∫ ∞

0
f (t,�antϕ) dt −

∫ ∞

0

∫
A
f (t, ϕ)π(dϕ) dt

∣∣∣∣ < 5ε.

This completes the proof.

Proof of Theorem 1. In order to prove the convergence in distribution of L(n) toward L∗
with respect to the Skorohod-topology we need to prove the following statements (see Jacod
and Shiryaev (2003, p. 414)):

1. for all i, j ∈ {1, . . . , d}∫
Rd\{0}

(h(y))2yiyjµ
(n)(dy) −→

∫
Rd\{0}

(h(y))2yiyjµ
∗(dy) as n → ∞,

2. for all bounded continuous f : R
d → R vanishing in a neighbourhood of 0,∫

Rd\{0}
f (y)µ(n)(dy) −→

∫
Rd\{0}

f (y)µ∗(dy) as n → ∞.

Note that the statement on the drift-vector is not mentioned here since, after the centering, the
drift-vectors are 0 in our case. Let g : R

d → R be a uniformly continuous, bounded function
with the property that, in a neighbourhood of 0, its absolute value is bounded by the function
x �→ |x|2, then we have∫

Rd\{0}
g(y)µ(n)(dy) =

∫
Sd−1

∫ ∞

0
g(|y|,�n1/αo |y|ŷ)n1−α(ŷ)/αo d|y|−α(ŷ)ν(dŷ)

=
∫

{α>αo}

∫ ∞

0
g(|y|,�n1/αo |y|ŷ)|y|−1−α(ŷ)n1−α(ŷ)/αo d|y|ν(dŷ)

+
∫

{α=αo}

∫ ∞

0
g(|y|,�n1/αo |y|ŷ)|y|−1−αo d|y|ν(dŷ).

Lebesgue’s dominated convergence theorem proves that the first term converges to 0 as n → ∞.
Furthermore, by Lemma 1, we have, for ν-almost all ŷ ∈ Sd−1,∫ ∞

0
g(|y|,�n1/αo |y|ŷ)|y|−1−αod|y| −→

∫ ∞

0

∫
Sd−1

g(|y|, ϕ)|y|−1−αoπ(dϕ) d|y|

as n → ∞. Another application of Lebesgue’s theorem implies that the second term in the
above computation converges toward∫

Rd\{0}
g(y)µ∗(dy) =

∫
{α=αo}

∫ ∞

0

∫
Sd−1

g(|y|, ϕ)π(dϕ)|y|−1−αo d|y|ν(dŷ).
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The theorem now follows from the general convergence theorem mentioned at the start of the
proof since the above argumentation works for f : R

d → R vanishing at 0 and also for the
functions (h(x))2xixj with i, j ∈ {1, . . . , d}.
Lemma 2. Under the assumptions of Theorem 2 we have

g(n)−1
∫ 2

αo

t−1−qn1−q/αoFα(dq) −→ t−1−αo as n → ∞,

uniformly when t is bounded away from 0.

Proof. We have

∫ 2

αo

t−1−qn1−q/αoFα(dq) =
∫ 2

αo

t−1−qn1−q/αoF ′
α(q) dq

=
∫ 2−αo

0
t−1−r−αon−r/αoF ′

α(r + αo) dr

= mn

∫ kn

0
t−1−mnp−αo e−pF ′

α(mnp + αo) dp

=: mnF ′
α(mn + αo)t

−1−αo
(β + 1)+ F(n, t)

= g(n)t−1−αo + F(n, t),

where kn := α−1
o (2 − αo) log n, mn := αo/ log n, and F(n, t) is the error term. Since we have

kn → ∞ and mn → 0, as n → ∞, it follows that

g(n)−1F(n, t) = 
(β + 1)−1
∫ kn

0
t−1−mnp−αo e−p

(
F ′
α(mn + αo)

F ′
α(mnp + αo)

− pβ
)

dp

converges to 0 uniformly as long as t is bounded away from 0.

Proof of Theorem 2. According to the conditions presented in Wentzell’s book we need to
prove the following properties for the sequence g(n) and the measure µ̄; see Wentzell (1990,
p. 155).

(i) For all bounded and continuous f : R
d → R vanishing in a neighbourhood of 0,

g(n)−1
∫

Rd\{0}
f (y)µ(n)(dy) −→

∫
Rd\{0}

f (y)µ̄(dy) as n → ∞.

(ii) For all δ > 0, there exists aK(δ) > 0 such that, for all sufficiently large n ∈ N, we have

µ(n)(y; |y| > δ) ≤ K(δ)g(n).

(iii) There exists a constant K > 0 such that, for all sufficiently large n ∈ N, we have

∫
Rd\{0}

(1 ∧ y2)µ(n)(dy) ≤ Kg(n).

https://doi.org/10.1239/jap/1189717541 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717541


A Lévy process with whose jumps are dragged 739

Here we also omitted the condition on the drift-vector, since it is 0 in our case. For a bounded,
continuous f : R

d → R vanishing in a neighbourhood of 0, we have∫
Sd−1

∫ ∞

0
f (|y|,�n1/αo |y|ŷ)|y|−1−α(ŷ) d|y|n1−α(ŷ)/αoν(dŷ)

=
∫
Sd−1

∫ ∞

0

∫
Sd−1

f (|y|, ϕ)π(dϕ)|y|−1−α(ŷ) d|y|n1−α(ŷ)/αoν(dŷ)+ E(n, y)

=
∫ 2

αo

∫ ∞

0
M(|y|)|y|−1−q d|y|n1−q/αoFα(dq)+ E(n, y),

where

M(|y|) :=
∫
Sd−1

f (|y|, ϕ)π(dϕ).
It follows, from Lemma 1 and the dominated convergence theorem, that the error term

E(n, y) =
∫ 2

αo

∫ ∞

0
(f (|y|,�n1/αo |y|ŷ)−M(|y|))|y|−1−α(ŷ) d|y|n1−α(ŷ)/αoν(dŷ)

converges to 0 as n → ∞. With Lemma 2 this implies that

g(n)−1
∫

Rd\{0}
f (y)µ(n)(dy) −→

∫
Rd\{0}

f (y)µ̄(dy) as n −→ ∞,

with µ̄(dy) = |y|−1−αo d|y|π(dŷ). This proves statement (i).
Furthermore, for large n ∈ N, we can use Lemma 2 to show that

µ(n)(y; |y| > δ) =
∫ 2

αo

n1−q/αo

∫ ∞

δ

|y|−1−q d|y|Fα(dq)

= g(n)

∫ ∞

δ

(|y|−1−αo d|y| + F(n, |y|)g(n)−1)

≤ g(n)(µ̄(y; |y| > δ)+ 1),

where F(n, y) is the error term from the proof of Lemma 2. This proves (ii), with K(δ) :=
µ̄(y; |y| > δ)+ 1.

Also, for sufficiently large n ∈ N, we have∫
Rd\{0}

(1 ∧ y2)µ(n)(dy) = g(n)

∫ ∞

0
(1 ∧ y2)(|y|−1−αo d|y| + g(n)−1F(n, |y|))

≤ g(n)

(∫
Rd\{0}

(1 ∧ y2)µ̄(dy)+ 1

)
.

Therefore, (iii) follows, with

K :=
∫

Rd\{0}
(1 ∧ y2)µ̄(dy)+ 1.

Lemma 3. Under Condition 2 we have, for all t > 0, q ∈ (0, 2), allA ⊂ Sd−1 withπ(∂A) = 0,
and for ν-almost all ϕ ∈ Sd−1,∫ ∞

t

1A(�usϕ)s−q ds −→ π(A)

∫ ∞

t

s−q ds as u → ∞.
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Proof. This follows from the following computation:

lim
u→∞

∫ ∞

t

1A(�usϕ)s−q ds = lim
u→∞

∫ t−q

0

∫ c−1/q

t

1A(�usϕ) ds dc

= π(A)

∫ t−q

0
(c−1/q − t) dc

= π(A)

∫ ∞

t

s−q ds.

Proof of Theorem 3. To prove that the Lévy process L is regular varying with tail-index αo
we need to prove that its jump measure µ is regular varying in R

d with tail-index αo, i.e.

µ(x; |x| ≥ ut, x̂ ∈ A)
µ(x; |x| ≥ u)

−→ t−αoπo(A) as x → ∞

for a suitable probability measure πo on Sd−1 and allA ⊂ Sd−1 with σo(∂A) = 0. The spectral
measure σ for L is then given by the distribution of the SD-valued process Zt := Y 1[τ,1],
where Y is distributed with πo on Sd−1 and τ is an independent, uniformly distributed random
variable on [0, T ]; see Hult and Lindskog (2005, p. 262). We have

∫
Sd−1

∫ ∞

ut

1A(�|y|ŷ)|y|−1−α(ŷ) d|y|ν(dŷ)

=
∫
Sd−1

∫ ∞

ut

π(A)|y|−1−α(ŷ) d|y|ν(dŷ)+ E(u)

= Co

αo
(ut)−αoπ(A)+

∫
{α>αo}

∫ ∞

ut

π(A)|y|−1−α(ŷ) d|y|ν(dŷ)+ E(u)

=: M(t, u)π(A)+ F(u)+ E(u).

For the first error term, we have

|E(u)| =
∫
Sd−1

o(1, ŷ)
∫ ∞

ut

π(A)|y|−1−α(ŷ) d|y|ν(dŷ)

= u−αo

∫
Sd−1

o(1, ŷ)
1

α(ŷ)
t−α(ŷ)Fα(dŷ),

where o(1, ŷ) converges to 0 for ν-almost all ŷ. Therefore, it follows that E(u) converges
toward 0 after division by M(t, u). For an arbitrary ε > 0, there exists a δ > αo such that
ν(αo < α ≤ δ) ≤ ε. It then follows that

|F(u)| ≤
∫

{δα>αo}

∫ ∞

ut

π(A)|y|−1−αo d|y|ν(dŷ)

+
∫

{α>δ}

∫ ∞

ut

π(A)|y|−1−δ d|y|ν(dŷ)

≤ ε
1

αo
(ut)−αo + ν(Sd−1)

1

δ
(ut)−δ.

This implies that the limit of the quotient F(u)/M(t, u) is smaller then ε/αo. Since ε > 0
can be arbitrarily small, it follows that F(u)/M(t, u) converges to 0 as u → ∞. From these
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considerations, it now follows that

lim
u→∞

µ(x; |x| ≥ ut, x̂ ∈ A)
µ(x; |x| ≥ u)

= lim
u→∞

M(t, u)π(A)

M(1, u)π(Sd−1)
= t−αoπo(A).
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