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Uniform Distribution in Model Sets
Robert V. Moody

Abstract. We give a new measure-theoretical proof of the uniform distribution property of points in
model sets (cut and project sets). Each model set comes as a member of a family of related model
sets, obtained by joint translation in its ambient (the ‘physical’) space and its internal space. We prove,
assuming only that the window defining the model set is measurable with compact closure, that almost
surely the distribution of points in any model set from such a family is uniform in the sense of Weyl,
and almost surely the model set is pure point diffractive.

When thoughts spring up,
The wind freshens, and like waves

A thousand worlds arise.

1 Introduction

Model sets are discrete point sets formed by projections into ‘physical space’ of a
lattice in some super-space, the projection being controlled by a relatively compact
set, called the window, in the internal space. Initially introduced by Y. Meyer in the
context of Diophantine approximation and harmonic analysis in his extraordinary
book [4], model sets have become an important tool in the mathematical study of
aperiodic order and quasicrystals.

Most often in applications, the setting for model sets has been real Euclidean
spaces, but, as is already evident in [4], the extension to σ-compact, locally compact
Abelian groups is natural, and that is the setting that we adopt here.

Unfortunately two of the best results in the subject, the property of uniform dis-
tribution of the points of a model set and the property of their being pure point
diffractive have depended on the requirement of the window having boundary of
(Haar) measure 0. The restriction would not be so bad, except that it is not a prop-
erty that we know how to identify on the physical side of the picture, and it can be
hard to verify in practice.

Here we derive a result proving that the properties of uniform distribution and
pure point diffractivity hold for arbitrary relatively compact and measurable win-
dows almost surely, in a measure theoretical sense to be explained below, (Theorem 1
and the Corollary to Proposition 4). Furthermore we recover the two previously
known results when the boundary is of measure 0 and the resulting proof seems con-
ceptually clearer.

Each model set may be viewed as a member of a family whose members are re-
lated by translation in physical space and translation of their windows. This family is
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‘parameterized’ by the compact group that is the quotient of the superspace and the
projection lattice (the so-called torus parameterization). It is for this parameterized
family (with the Haar measure) that we have the almost sure results.

The main result on uniform distribution is a consequence of the Birkhoff ergodic
theorem. From this we derive a result that model sets for which uniform distribution
holds are also ε-almost periodic. Their diffractivity follows then by the main result
of [2].

2 Main Results

A cut and project scheme is a triple (G,H, L̃) consisting of a pair of σ-compact, locally-
compact, Abelian Hausdorff topological groups G, H and a lattice L̃ ⊂ G× H. Fur-
thermore it is assumed that the projections πG : G×H −→ G and πH : G×H −→ H
satisfy

1. πG|L̃ is one-to-one and
2. πH(L̃) is dense in H.

We write L := πG(L̃), so L is a subgroup of G, and note that the mapping

( )∗ := πH ◦ (πG|L̃)−1 : L −→ H(1)

has dense image in H. Using this notation, we see that L̃ = {(u, u∗) | u ∈ L}. The
assumption of σ-compactness shows that L is countable.

We will denote by θ and θH a fixed pair of Haar measures on G and H.
A set Λ ⊂ G is a (weak) model set for the cut and project scheme (G,H, L̃) if there

is a measurable and relatively compact set W ⊂ H (called the window) and an x ∈ G
such that

Λ = x + Λ(W ) := x + {πG(ũ) | ũ ∈ L̃, πH(ũ) ∈W}

= x + {u ∈ L | u∗ ∈W}.
(2)

If, in addition, W has non-empty interior, then Λ is a called a (full) model set or cut
and project set. In this case Λ is relatively dense in G [4], [5].

In this paper we will use the term model set for either weak or full model sets.
Fix any non-empty measurable and relatively compact subset W of H. Associated

with W we have an entire family of model sets M = M(G,H, L̃,W ) of the form
Λ(x, y) := x + {u ∈ L | u∗ ∈ −y + W}, where (x, y) runs over G × H. Two
such sets Λ(x, y) and Λ(x ′, y ′) are equal if (x, y) and (x ′, y ′) are congruent modulo
L̃.1 Thus we have a type of parameterization of M via T := (G × H)/L̃ and it is
appropriate to write Λ(ξ) = Λ(ξ,W ), where ξ := (x, y) + L̃, instead of Λ(x, y).
This parameterization is often called the torus parameterization, after [1] where it
was first introduced. We supply T, which is a compact Abelian group, with Haar
measure µ. We assume that the Haar measures on G and H are normalized so that
the canonical measure defined on T by them makes µ a probability measure, i.e.,
fundamental regions have volume 1.

1If in addition W is the closure of its interior and H has no non-trivial compact subgroups then this
condition is also necessary for equality.
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Proposition 1 The natural action of G on T through

t +
(

(x, y) + L̃
)
= (t + x, y) + L̃

defines a minimal and uniquely ergodic (that is, strictly ergodic) dynamical system.

Proof To show that every G-orbit is dense, it is sufficient to show that the orbit of 0 is

dense. However, (G, 0) + L̃ ⊃ (0, L∗) and, since L∗ is dense in H, (G, 0) + L̃ ⊃ (0,H).
Now it follows that (G, 0) + L̃ = G×H.

From the minimality, it follows that any G-invariant measure is also T-invariant,
and hence a Haar measure (see, for example, [11, Theorem 6.20]).

It is well-known that model sets are uniformly discrete. Here we have a uniform
version of this result:

Proposition 2 Let W be a relatively compact neighbourhood of {0} in H. Then there
exists a compact neighbourhood V of {0} in G so that for all (x, y) ∈ G × H, the sets
z + V , z ∈ Λ(x, y) are all mutually disjoint.

Proof We may, replacing W by its closure if necessary, assume that W is compact.
Let U be a compact neighbourhood of {0} in G. Since U × (W −W ) is compact,(

U × (W −W )
)
∩ L̃ is finite, and we may assume, reducing U if necessary, that in

fact
(

U × (W −W )
)
∩ L̃ = {(0, 0)}. Let V be a compact neighbourhood of {0} in

G so that V −V ⊂ U .
Now we observe that if, for some (x, y) ∈ G × H and z1, z2 ∈ Λ(x, y) we have

(z1 + V ) ∩ (z2 + V ) �= ∅, then the preimage of z1 − z2 in L̃ lies in
(

(V − V ) ×

(W −W )
)
∩ L̃, and so z1 = z2.

In order to talk about uniform distribution we need to have an appropriate av-
eraging sequence. First, a definition: if A and K are compact subsets of G then the
K-boundary of A is

∂KA := (K + A) \ A◦ ∪
(

(−K + G \ A) ∩ A
)
.(3)

Ignoring the interior and closure operators in this definition, which assure that ∂K A
is compact, the K-boundary of A consists of the points that have fallen out of A by
adding points of K and the points of A that have come into A from outside by adding
points of K. For empty K, ∂K A is the usual boundary of A and for symmetric K (that
is, K = −K) it contains

⋃
k∈K A∆(k + A).

A sequence A = {An} of compact subsets of G is called a van Hove sequence if
θ(An) > 0 for all n and

lim
n→∞

θ(∂K An)

θ(An)
= 0.(4)
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In this paper, A will be assumed to be a fixed van Hove sequence with the addi-
tional property that there is a positive constant C so that for all n,

θ(An − An) ≤ Cθ(An).(5)

Sequences with these two properties can be shown to exist by using the structure
theorem for σ-compact locally compact Abelian groups (for details see [7], [9]).

We will assume that such a sequence A is fixed once and for all, with respect to
which all averaging throughout the paper will be taken.

Theorem 1 Let W ⊂ H be a measurable relatively compact set. Then

lim
n→∞

1

θ(An)
card{Λ(ξ) ∩ An} = θH(W )(6)

for ξ ∈ T µ-almost surely. If the boundary of W has Haar measure 0 then the result
holds for all ξ ∈ T.

Proof Choose a compact neighbourhood V of {0} in G satisfying the disjointness
condition of Prop. 2. Let B be a compact neighbourhood of {0} in G with B ⊂ V
and Λ(W −W ) ∩ B = {0}. Define Ω := (B ×W ) + L̃/L̃ ⊂ T. Then the quotient
mapping G× H −→ T is injective on the measurable set B×W and it follows from
the extended Weil formula [6, Theorem 3.4.6] that µ(Ω) = θ(B)θH(W ).

Let ξ be represented by (x, y) ∈ G× H. Consider the G-orbit of ξ in T. We have
t + ξ ∈ Ω if and only if (t + x, y) + (u, u∗) ∈ B×W for some u ∈ L. That is,

t ∈ −x − u + B

u∗ ∈ −y + W.

The latter is equivalent to u ∈ Λ(−y + W ) and so we have

t + ξ ∈ Ω⇐⇒ t ∈ −x − Λ(−y + W ) + B.(7)

This means that the part P of the orbit falling into Ω comes from points in G that lie
in B-neighbourhoods of the points of the weak model set −x − Λ(−y + W ), which,
in view of the choice of B, are all disjoint. The measure of P ∩ An is thus a num-
ber lying between the total measure of those B-neighbourhoods of points of −x −
Λ(−y + W ) which are contained entirely in An and those whose B-neighbourhoods
simply intersect An. The difference between the two sets of points of−x−Λ(−y +W )
lies in ∂BAn.

Let 1Ω be the indicator function on Ω. Then, since A is van Hove,

lim
n→∞

1

θ(An)

∫
An

1Ω(t + ξ) dθ(t) = lim
n→∞

θ(B)

θ(An)
card
{(
−x − Λ(−y + W )

)
∩ An

}(8)
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(if the limit exists).
On the other hand, by the Birkhoff ergodic theorem (see [3]—this is where the

property (5) is used),

lim
n→∞

1

θ(An)

∫
An

1Ω(t + ξ) dθ(t) =

∫
T

1Ω dµ = θ(B)θH(W )

for ξ ∈ T, µ-almost surely. Comparing, we obtain the first part of the theorem.
Suppose that the boundary of W has measure 0. We can certainly assume the same

of B, whence also Ω has boundary of measure 0. Then families of compactly sup-
ported continuous functions fi , gi with fi ≤ 1Ω ≤ gi and converging in the L1-norm
to 1Ω can found. Since T is uniquely ergodic, the conclusion of the Birkhoff theorem
applies to these functions for all ξ. The proof of this well-known fact depends only
on the van Hove property of the averaging sequence, see for example [11]. Thus we
can bound the left hand side of (8) between two quantities converging to θ(B)θH(W ).

We continue to assume that we have a relatively compact and measurable window
W . Let ξ ∈ T and let z ∈ G. The A-autocorrelation coefficient η(z, ξ) of Λ(ξ) is
defined by

η(z) = η(z, ξ) = lim
n→∞

1

θ(An)

∑
u,v∈Λ(ξ)∩An,u−v=z

1,(9)

if this limit exists. Clearly 0 ≤ η(z) ≤ η(0) = den
(
Λ(ξ)
)

and η(z) = 0 unless z ∈ L.

Proposition 3 The autocorrelation coefficient η(z, ξ) exists and is equal to
θH

(
W ∩ (z∗ + W )

)
for all z ∈ L for ξ ∈ T, µ-almost surely.

Proof Let ξ = (x, y) + L̃. Let z ∈ L and let u, v ∈ G be any two points satisfying
u− v = z. We have

u, v ∈ x + Λ(−y + W )⇐⇒ (u− x)∗ ∈ (−y + W ) ∩ (z∗ − y + W )

⇐⇒ u ∈ x + Λ
(
−y +

(
W ∩ (z∗ + W )

))
.

Notice that the sets being counted in

lim
n→∞

1

θ(An)
card
{

x + Λ
(
−y +

(
W ∩ (z∗ + W )

))
∩ An

}
differ from the corresponding sets of the definition (9) of the autocorrelation coeffi-
cient at z only on the set An∆(−z + An) whose contribution is negligible as n→ ∞.
However, by Theorem 1, the former is θH

(
W ∩ (z∗ + W )

)
for ξ ∈ T almost surely.

Since L is countable, this is true for all z ∈ L simultaneously.

An element x ∈ G is called an ε-almost period of Λ(ξ) if η(0) − η(x) < ε. We say
that Λ(ξ) is ε-almost periodic if for all ε > 0 the set of ε-almost periods is relatively
dense in G. If ε is small enough and η is not everywhere 0, the almost periods of ω
are in L.
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Proposition 4 The model set Λ(ξ,W ) is almost ε-periodic, for µ-almost all ξ ∈ T. If
W has boundary of measure 0 it is true without restriction on ξ.

Proof Except for ξ ∈ T on a set of measure 0, we have, for all z ∈ L,

η(0, ξ)− η(z, ξ) = θH(W )− θH

(
W ∩ (z∗ + W )

)
= θH(W )− 1W ∗ 1̃W (z∗).

Now, θH(W ) − 1W ∗ 1̃W (u) is uniformly continuous in u and vanishes at 0 [7],
and so, given any ε > 0, there exists an open neighbourhood V of 0 in H such that
z ∈ Λ(ξ,V ) ⇒ η(0) − η(z) < ε. Since Λ(ξ,V ) is relatively dense and consists of
ε-almost periods, we are done.

Since Λ(ξ) − Λ(ξ) is contained in the model set Λ(W −W ) which is uniformly
discrete, we can define, almost surely, a translation bounded measure, the auto-
correlation measure, by γξ :=

∑
z∈L η(z, ξ)δz , for Λ(ξ). The diffraction of Λ(ξ) is,

by definition, the Fourier transform of γξ . The diffraction is thus another measure,
and it is a positive measure because the autocorrelation measure is positive-definite.
The set Λ(ξ) is said to be pure point (resp. singular continuous, absolutely continuous)
if the diffraction measure has the corresponding property.

Corollary 1 Let W ⊂ H be a measurable relatively compact set. Then Λ(ξ,W ) is a
pure point diffractive set (with diffraction measure independent of ξ) for µ-almost all
ξ ∈ T. If W has boundary of measure 0 this holds for all ξ ∈ T without restriction.

Proof Referring to [2] we need only verify the four axioms listed there:

•
∑

x∈Λ(ξ,W ) δx is translation bounded;
• the autocorrelation exists for all z;
• Λ(ξ,W )− Λ(ξ,W ) is uniformly discrete;
• Λ(ξ) is ε-almost periodic.

3 Comments

The uniform distribution property in the context of general model sets was proved in
[8], but depends on the Riemann integral, and so requires boundaries of measure 0.

When the boundary of the window does not have measure 0 there is a certain
paradoxical nature to the uniform distribution property. This is best illustrated by
an example. Consider a cut and project scheme in which the physical and internal
spaces are both the real line. Let I := [0, 1] in internal space and let W ⊂ I be an
open set of measure strictly between 0 and 1 whose closure is I. Such a set can be
constructed by choosing a sequence of positive numbers λi , i = 0, 1, . . . satisfying∑∞

i=0 2iλi = w < 1. One can then construct a generalized Cantor set, removing
from the middle of I an open interval of length λ0, then removing open intervals
of length λ1 from the middles of the pair of remaining pair of closed intervals, then
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open intervals of length λ2 from the remaining 4 intervals, and so on. Let W denote
the union of the removed intervals and B its complement in I. Now I is the closure
of W , B is the boundary of W , and W has Lebesgue measure w.

Consider the model sets Λ(x + I) as x varies over R. These model sets satisfy the
uniform distribution property and all have density equal to 1. On the other hand,
Λ(x + W ) is a model set whose Lebesgue density µ-almost surely exists and equals
the Lebesgue measure of W , namely w. Using the Baire category theorem, it is easy
to see that the set of x for which the boundary of x + W contains points from the
projection of the lattice of the cut and project scheme is a meagre set (since the lattice
is a countable set). So for a set of x of the second category, x + W has no boundary
points which are projections of lattice points. For such x, it follows that Λ(x + W ) =
Λ(x + I) and thus has density 1, instead of the µ-almost sure density w. Of course
one is comparing measures on T and on the internal space, and in any case second
category sets can have Lebesgue measure 0, but still the result seems counter-intuitive.

The boundary of measure 0 version of the diffraction theorem was originally
proved by M. Schlottmann in [9]. His original proof also depends on the Birkhoff
ergodic theorem, but proceeds via the dynamical spectrum of the model set. Another
approach to the pure point diffraction through dynamical systems and connections
with almost periodicity is to be found in Solomyak’s paper [10].

In [2] we give a proof of the pure point nature of the diffraction via almost pe-
riodicity for the boundary of measure 0 case based on the same argument as here,
except using the Weyl theorem on uniform distribution.

But when the wind falls,
The trader sinks with his ship

— from the Ashtavakra Gita, tr. Thomas Byrom
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