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The Steady Motion of a Spherical Vortex.

By H. S. OABSLAW.

The possibility of the steady motion of a spherical vortex of
constant vorticity in an infinite homogeneous liquid was first
pointed out by Hill in the Phil. Trans., 1894, pp. 213-245. He
had already discussed a case of motion which had for the surfaces
always containing the same particles those given by the equation

; +
v j - ^ - - 11 = constant,

a particular surface being

Since these surfaces are of invariable form it is possible to
imagine the fluid limited by any one of them, provided a rigid
frictionless boundary having the shape of the limiting surface be
supplied and supposed to move parallel to the axis of z with
velocity Z. His previous result gave the velocity components of a
possible rotational motion inside this boundary. Further he showed
that for the particular case of the surface being a sphere the
rotational motion inside is continuous as regards velocity normal
and pressure with a certain irrotational motion in all space outside.
This irrotational motion is that produced by the sphere moved in
the same direction with the same velocity.

Thus in this case the boundary may be removed and the
possibility of the state of motion known as Hill's Spherical Vortex
is established.

The object of this paper is to show that by using the ordinary
hydrodynamical equations, this and other allied types of steady
motion not yet noted may be quickly demonstrated. As the
problems deal with spheres and spherical shells the equations are
taken in spherical coordinates.
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Consider the possibility of a spherical vortex of constant
vorticity and density pi moving with velocity V in an infinite
homogeneous liquid of density p2. Impressing on the whole an
equal and opposite velocity we have the case of the vortex at rest
and fluid streaming from infinity with velocity V. This requires
the following equations to be satisfied by the current function :

£ ) * - • * - * • • •<»

where o>= - —rsin#,
2

1 at infinity, . . (3)

i/-! and i/-2 constant at r = a; . . . (4)

also the pressure must be continuous at r = a. . . . (5)

As in Hill's paper we have ^ = TT*^** - aa)sin*0, . . (6)

• (7)

We have still to examine the pressure equations.

P PThese may be written — + \<f - Mik = 1- iUs, . . (8)
Pi Pi w

v n
—+-1<T2 __iiyi ln\
Pi Pi ^

when P and II are the pressures at the centre and at infinity,
U the velocity at the centre.

By using the values given for ^ and ij/2 we have at once for the
pressure at r = a

p 1 P 1
7^ + 5 Q M V s i n ^ = — + 501

— — 4 - XV3

p2 8 P2

* Basset, Hydrodynamics, Vol. II., p. 81, Equations (55) and (57) in
spherical coordinates. The axis from which 8 is increased is parallel to the
direction of V

6 Vol.15
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2 IV
Therefore we must have V = - — A / — .Ma2, . , . (10)

15 V p2

Further we find for the pressure at the point (r, 6) inside the
vortex

p + -JL p2V
2[(a2 - r-f+r-W0(3r2 - 2a?) + 5r2(a2 - r^sin'fl] = P + JL^V2.

o& 8

Th i s m a y b e w r i t t e n

^ V 2 ^ 2 ^ ^ . (12)

Therefore p is least when r = —== and 6 = ± — .
V2 2

29 9
and this minimum pressure = II - —p2V

2 = P - ^p 2 ^ 2 - • (13)

We have thus found that, whether the density inside is the
same or different from that outside, the pressure is least at the

points I , , +— j : also a hollow will begin to form there if

29I I<— p2~V-: while the velocity of translation of the vortex is given

' 15

In the circular cylindrical vortex and the vortex ring treated of
by Hicks we find cases of hollow vortices. It might have been
expected that a possible state of steady motion would be a spherical
vortex with a concentric hollow. The fact that the points of
minimum pressure are as found above dissipates this idea: the same
conclusion might be reached by work resembling that in the next
portion of this paper.

§2.

By means of a similar analysis it can be shown that with certain
conditions between the vorticities, densities, and radii, it is possible

https://doi.org/10.1017/S0013091500032028 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500032028


79

to have a vortex in which the liquid is arranged in spherical strata.
The work may be generalised, but I take as sufficiently illustrative
the case of two strata.

Here we have

. (14)

. (15)

. (16)

where §=- = ?„_,(/,).
dp.

These functions are treated of by Sampson in Philosophical
Transactions, 1890, and, from the tables he gives, we see at once

— sin40. For that reason we do not carry our
o

that I4 -

expressions for ip past It.

We shall have demonstrated the possibility of this case of
motion if we can determine the constants to satisfy

ip= constant at r = b and r = o, (b<a); . . (17)

Pressure continuous at r = b and r — a. . . (18)

The results we now give follow at once from the expressions
for \j/ and those we obtain for the pressure

\\i constant at r = b and r = a.

For this we have = 0,

= 0,

(19)
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. The pressure continuous at r = b and r = a.

Hence we must have

*MJ>3 + 4AJ>*-3^ =0,

-4M 2 a=+2A 2 - ^ (20)

where

From these equations we have

a'-b*
•A_9 — TT-M-2 ~Z 7Z

15(o3-63)
(5o263-2a<>-365)

• (21)

• (22)

(23)

Equation (23) gives the velocity of translation of this vortex;
(22), the necessary relation between M,, M2, plf p2, a and 6, that
the motion may be possible; (21), the expressions for the current
function. Thus we have determined all the circumstances of the
motion.
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